Duckstation/src/core/gpu_hw_opengl.cpp
2021-06-25 13:56:06 +10:00

1384 lines
51 KiB
C++

#include "gpu_hw_opengl.h"
#include "common/assert.h"
#include "common/log.h"
#include "common/state_wrapper.h"
#include "common/timer.h"
#include "gpu_hw_shadergen.h"
#include "host_display.h"
#include "shader_cache_version.h"
#include "system.h"
#include "texture_replacements.h"
Log_SetChannel(GPU_HW_OpenGL);
GPU_HW_OpenGL::GPU_HW_OpenGL() : GPU_HW() {}
GPU_HW_OpenGL::~GPU_HW_OpenGL()
{
// Destroy objects which don't have destructors to clean them up
if (m_vram_fbo_id != 0)
glDeleteFramebuffers(1, &m_vram_fbo_id);
if (m_vao_id != 0)
glDeleteVertexArrays(1, &m_vao_id);
if (m_attributeless_vao_id != 0)
glDeleteVertexArrays(1, &m_attributeless_vao_id);
if (m_texture_buffer_r16ui_texture != 0)
glDeleteTextures(1, &m_texture_buffer_r16ui_texture);
if (m_host_display)
{
m_host_display->ClearDisplayTexture();
ResetGraphicsAPIState();
}
// One of our programs might've been bound.
GL::Program::ResetLastProgram();
glUseProgram(0);
}
GPURenderer GPU_HW_OpenGL::GetRendererType() const
{
return GPURenderer::HardwareOpenGL;
}
bool GPU_HW_OpenGL::Initialize(HostDisplay* host_display)
{
if (host_display->GetRenderAPI() != HostDisplay::RenderAPI::OpenGL &&
host_display->GetRenderAPI() != HostDisplay::RenderAPI::OpenGLES)
{
Log_ErrorPrintf("Host render API type is incompatible");
return false;
}
const bool opengl_is_available =
((host_display->GetRenderAPI() == HostDisplay::RenderAPI::OpenGL &&
(GLAD_GL_VERSION_3_0 || GLAD_GL_ARB_uniform_buffer_object)) ||
(host_display->GetRenderAPI() == HostDisplay::RenderAPI::OpenGLES && GLAD_GL_ES_VERSION_3_0));
if (!opengl_is_available)
{
g_host_interface->AddOSDMessage(
g_host_interface->TranslateStdString("OSDMessage", "OpenGL renderer unavailable, your driver or hardware is not "
"recent enough. OpenGL 3.1 or OpenGL ES 3.0 is required."),
20.0f);
return false;
}
SetCapabilities(host_display);
if (!GPU_HW::Initialize(host_display))
return false;
if (!CreateFramebuffer())
{
Log_ErrorPrintf("Failed to create framebuffer");
return false;
}
if (!CreateVertexBuffer())
{
Log_ErrorPrintf("Failed to create vertex buffer");
return false;
}
if (!CreateUniformBuffer())
{
Log_ErrorPrintf("Failed to create uniform buffer");
return false;
}
if (!CreateTextureBuffer())
{
Log_ErrorPrintf("Failed to create texture buffer");
return false;
}
if (!CompilePrograms())
{
Log_ErrorPrintf("Failed to compile programs");
return false;
}
RestoreGraphicsAPIState();
return true;
}
void GPU_HW_OpenGL::Reset(bool clear_vram)
{
GPU_HW::Reset(clear_vram);
if (clear_vram)
ClearFramebuffer();
}
bool GPU_HW_OpenGL::DoState(StateWrapper& sw, HostDisplayTexture** host_texture, bool update_display)
{
if (host_texture)
{
HostDisplayTexture* tex = *host_texture;
if (sw.IsReading())
{
if (tex->GetWidth() != m_vram_texture.GetWidth() || tex->GetHeight() != m_vram_texture.GetHeight() ||
tex->GetSamples() != m_vram_texture.GetSamples())
{
return false;
}
CopyFramebufferForState(
m_vram_texture.GetGLTarget(), static_cast<GLuint>(reinterpret_cast<uintptr_t>(tex->GetHandle())), 0, 0, 0,
m_vram_texture.GetGLId(), m_vram_fbo_id, 0, 0, m_vram_texture.GetWidth(), m_vram_texture.GetHeight());
}
else
{
if (!tex || tex->GetWidth() != m_vram_texture.GetWidth() || tex->GetHeight() != m_vram_texture.GetHeight() ||
tex->GetSamples() != m_vram_texture.GetSamples())
{
delete tex;
tex = m_host_display
->CreateTexture(m_vram_texture.GetWidth(), m_vram_texture.GetHeight(), 1, 1,
m_vram_texture.GetSamples(), HostDisplayPixelFormat::RGBA8, nullptr, 0, false)
.release();
*host_texture = tex;
if (!tex)
return false;
}
CopyFramebufferForState(m_vram_texture.GetGLTarget(), m_vram_texture.GetGLId(), m_vram_fbo_id, 0, 0,
static_cast<GLuint>(reinterpret_cast<uintptr_t>(tex->GetHandle())), 0, 0, 0,
m_vram_texture.GetWidth(), m_vram_texture.GetHeight());
}
}
return GPU_HW::DoState(sw, host_texture, update_display);
}
void GPU_HW_OpenGL::CopyFramebufferForState(GLenum target, GLuint src_texture, u32 src_fbo, u32 src_x, u32 src_y,
GLuint dst_texture, u32 dst_fbo, u32 dst_x, u32 dst_y, u32 width,
u32 height)
{
if (target != GL_TEXTURE_2D && GLAD_GL_VERSION_4_3)
{
glCopyImageSubData(src_texture, target, 0, src_x, src_y, 0, dst_texture, target, 0, dst_x, dst_y, 0, width, height,
1);
}
else if (target != GL_TEXTURE_2D && GLAD_GL_EXT_copy_image)
{
glCopyImageSubDataEXT(src_texture, target, 0, src_x, src_y, 0, dst_texture, target, 0, dst_x, dst_y, 0, width,
height, 1);
}
else if (target != GL_TEXTURE_2D && GLAD_GL_OES_copy_image)
{
glCopyImageSubDataOES(src_texture, target, 0, src_x, src_y, 0, dst_texture, target, 0, dst_x, dst_y, 0, width,
height, 1);
}
else
{
if (src_fbo == 0)
{
glBindFramebuffer(GL_READ_FRAMEBUFFER, m_state_copy_fbo_id);
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, target, src_texture, 0);
}
else
{
glBindFramebuffer(GL_READ_FRAMEBUFFER, src_fbo);
}
if (dst_fbo == 0)
{
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, m_state_copy_fbo_id);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, target, dst_texture, 0);
}
else
{
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, dst_fbo);
}
glDisable(GL_SCISSOR_TEST);
glBlitFramebuffer(src_x, src_y, src_x + width, src_y + height, dst_x, dst_y, dst_x + width, dst_y + height,
GL_COLOR_BUFFER_BIT, GL_NEAREST);
glEnable(GL_SCISSOR_TEST);
if (src_fbo == 0)
{
glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
}
else if (dst_fbo == 0)
{
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
}
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, m_vram_fbo_id);
}
}
void GPU_HW_OpenGL::ResetGraphicsAPIState()
{
GPU_HW::ResetGraphicsAPIState();
glEnable(GL_CULL_FACE);
glDisable(GL_SCISSOR_TEST);
glDisable(GL_BLEND);
glBindVertexArray(0);
m_uniform_stream_buffer->Unbind();
}
void GPU_HW_OpenGL::RestoreGraphicsAPIState()
{
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, m_vram_fbo_id);
glViewport(0, 0, m_vram_texture.GetWidth(), m_vram_texture.GetHeight());
glDisable(GL_CULL_FACE);
glEnable(GL_DEPTH_TEST);
glEnable(GL_SCISSOR_TEST);
glDepthMask(GL_TRUE);
glBindVertexArray(m_vao_id);
m_uniform_stream_buffer->Bind();
m_vram_read_texture.Bind();
SetBlendMode();
m_current_depth_test = 0;
SetDepthFunc();
SetScissorFromDrawingArea();
m_batch_ubo_dirty = true;
}
void GPU_HW_OpenGL::UpdateSettings()
{
GPU_HW::UpdateSettings();
bool framebuffer_changed, shaders_changed;
UpdateHWSettings(&framebuffer_changed, &shaders_changed);
if (framebuffer_changed)
{
RestoreGraphicsAPIState();
ReadVRAM(0, 0, VRAM_WIDTH, VRAM_HEIGHT);
ResetGraphicsAPIState();
m_host_display->ClearDisplayTexture();
CreateFramebuffer();
}
if (shaders_changed)
CompilePrograms();
if (framebuffer_changed)
{
RestoreGraphicsAPIState();
UpdateVRAM(0, 0, VRAM_WIDTH, VRAM_HEIGHT, m_vram_ptr, false, false);
UpdateDepthBufferFromMaskBit();
UpdateDisplay();
ResetGraphicsAPIState();
}
}
void GPU_HW_OpenGL::MapBatchVertexPointer(u32 required_vertices)
{
DebugAssert(!m_batch_start_vertex_ptr);
const GL::StreamBuffer::MappingResult res =
m_vertex_stream_buffer->Map(sizeof(BatchVertex), required_vertices * sizeof(BatchVertex));
m_batch_start_vertex_ptr = static_cast<BatchVertex*>(res.pointer);
m_batch_current_vertex_ptr = m_batch_start_vertex_ptr;
m_batch_end_vertex_ptr = m_batch_start_vertex_ptr + res.space_aligned;
m_batch_base_vertex = res.index_aligned;
}
void GPU_HW_OpenGL::UnmapBatchVertexPointer(u32 used_vertices)
{
DebugAssert(m_batch_start_vertex_ptr);
m_vertex_stream_buffer->Unmap(used_vertices * sizeof(BatchVertex));
m_vertex_stream_buffer->Bind();
m_batch_start_vertex_ptr = nullptr;
m_batch_end_vertex_ptr = nullptr;
m_batch_current_vertex_ptr = nullptr;
}
std::tuple<s32, s32> GPU_HW_OpenGL::ConvertToFramebufferCoordinates(s32 x, s32 y)
{
return std::make_tuple(x, static_cast<s32>(static_cast<s32>(VRAM_HEIGHT) - y));
}
void GPU_HW_OpenGL::SetCapabilities(HostDisplay* host_display)
{
GLint max_texture_size = VRAM_WIDTH;
glGetIntegerv(GL_MAX_TEXTURE_SIZE, &max_texture_size);
Log_InfoPrintf("Max texture size: %dx%d", max_texture_size, max_texture_size);
m_max_resolution_scale = static_cast<u32>(max_texture_size / VRAM_WIDTH);
m_max_multisamples = 1;
if (GLAD_GL_ARB_texture_storage || GLAD_GL_ES_VERSION_3_2)
{
glGetIntegerv(GL_MAX_SAMPLES, reinterpret_cast<GLint*>(&m_max_multisamples));
if (m_max_multisamples == 0)
m_max_multisamples = 1;
}
m_supports_per_sample_shading = GLAD_GL_VERSION_4_0 || GLAD_GL_ES_VERSION_3_2 || GLAD_GL_ARB_sample_shading;
Log_InfoPrintf("Per-sample shading: %s", m_supports_per_sample_shading ? "supported" : "not supported");
Log_InfoPrintf("Max multisamples: %u", m_max_multisamples);
glGetIntegerv(GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT, reinterpret_cast<GLint*>(&m_uniform_buffer_alignment));
Log_InfoPrintf("Uniform buffer offset alignment: %u", m_uniform_buffer_alignment);
if (!GLAD_GL_VERSION_4_3 && !GLAD_GL_EXT_copy_image && !GLAD_GL_ES_VERSION_3_2 && !GLAD_GL_OES_copy_image)
Log_WarningPrintf("GL_EXT/OES_copy_image missing, this may affect performance.");
#ifdef __APPLE__
// Partial texture buffer uploads appear to be broken in macOS's OpenGL driver.
m_use_texture_buffer_for_vram_writes = false;
#else
m_use_texture_buffer_for_vram_writes = (GLAD_GL_VERSION_3_1 || GLAD_GL_ES_VERSION_3_2);
#endif
m_texture_stream_buffer_size = VRAM_UPDATE_TEXTURE_BUFFER_SIZE;
if (m_use_texture_buffer_for_vram_writes)
{
GLint max_texel_buffer_size;
glGetIntegerv(GL_MAX_TEXTURE_BUFFER_SIZE, reinterpret_cast<GLint*>(&max_texel_buffer_size));
Log_InfoPrintf("Max texel buffer size: %u", max_texel_buffer_size);
if (max_texel_buffer_size < static_cast<int>(VRAM_WIDTH * VRAM_HEIGHT))
{
Log_WarningPrintf("Maximum texture buffer size is less than VRAM size, not using texel buffers.");
m_use_texture_buffer_for_vram_writes = false;
}
else
{
m_texture_stream_buffer_size =
std::min<u32>(VRAM_UPDATE_TEXTURE_BUFFER_SIZE, static_cast<u32>(max_texel_buffer_size) * sizeof(u16));
}
}
if (!m_use_texture_buffer_for_vram_writes)
{
// Try SSBOs.
GLint max_fragment_storage_blocks = 0;
GLint64 max_ssbo_size = 0;
if (GLAD_GL_VERSION_4_3 || GLAD_GL_ES_VERSION_3_1 || GLAD_GL_ARB_shader_storage_buffer_object)
{
glGetIntegerv(GL_MAX_FRAGMENT_SHADER_STORAGE_BLOCKS, &max_fragment_storage_blocks);
glGetInteger64v(GL_MAX_SHADER_STORAGE_BLOCK_SIZE, &max_ssbo_size);
}
Log_InfoPrintf("Max fragment shader storage blocks: %d", max_fragment_storage_blocks);
Log_InfoPrintf("Max shader storage buffer size: %" PRId64, max_ssbo_size);
m_use_ssbo_for_vram_writes = (max_fragment_storage_blocks > 0 &&
max_ssbo_size >= static_cast<GLint64>(VRAM_WIDTH * VRAM_HEIGHT * sizeof(u16)));
if (m_use_ssbo_for_vram_writes)
{
Log_InfoPrintf("Using shader storage buffers for VRAM writes.");
m_texture_stream_buffer_size =
static_cast<u32>(std::min<u64>(VRAM_UPDATE_TEXTURE_BUFFER_SIZE, static_cast<u64>(max_ssbo_size)));
}
else
{
Log_WarningPrintf("Texture buffers and SSBOs are not supported, VRAM writes will be slower and multisampling "
"will be unavailable.");
m_max_multisamples = 1;
m_supports_per_sample_shading = false;
}
}
int max_dual_source_draw_buffers = 0;
glGetIntegerv(GL_MAX_DUAL_SOURCE_DRAW_BUFFERS, &max_dual_source_draw_buffers);
m_supports_dual_source_blend =
(max_dual_source_draw_buffers > 0) &&
(GLAD_GL_VERSION_3_3 || GLAD_GL_ARB_blend_func_extended || GLAD_GL_EXT_blend_func_extended);
// adaptive smoothing would require texture views, which aren't in GLES.
m_supports_adaptive_downsampling = false;
}
bool GPU_HW_OpenGL::CreateFramebuffer()
{
// scale vram size to internal resolution
const u32 texture_width = VRAM_WIDTH * m_resolution_scale;
const u32 texture_height = VRAM_HEIGHT * m_resolution_scale;
const u32 multisamples = m_multisamples;
if (!m_vram_texture.Create(texture_width, texture_height, multisamples, GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE, nullptr,
false, true) ||
!m_vram_depth_texture.Create(texture_width, texture_height, multisamples, GL_DEPTH_COMPONENT16,
GL_DEPTH_COMPONENT, GL_UNSIGNED_SHORT, nullptr, false) ||
!m_vram_read_texture.Create(texture_width, texture_height, 1, GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE, nullptr, false,
true) ||
!m_vram_read_texture.CreateFramebuffer() ||
!m_vram_encoding_texture.Create(VRAM_WIDTH, VRAM_HEIGHT, 1, GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE, nullptr,
false) ||
!m_vram_encoding_texture.CreateFramebuffer() ||
!m_display_texture.Create(GPU_MAX_DISPLAY_WIDTH * m_resolution_scale, GPU_MAX_DISPLAY_HEIGHT * m_resolution_scale,
1, GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE, nullptr, false) ||
!m_display_texture.CreateFramebuffer())
{
return false;
}
if (m_vram_fbo_id == 0)
glGenFramebuffers(1, &m_vram_fbo_id);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, m_vram_fbo_id);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, m_vram_texture.GetGLTarget(),
m_vram_texture.GetGLId(), 0);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, m_vram_depth_texture.GetGLTarget(),
m_vram_depth_texture.GetGLId(), 0);
Assert(glCheckFramebufferStatus(GL_DRAW_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE);
if (m_downsample_mode == GPUDownsampleMode::Box)
{
if (!m_downsample_texture.Create(VRAM_WIDTH, VRAM_HEIGHT, 1, GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE) ||
!m_downsample_texture.CreateFramebuffer())
{
return false;
}
}
if (m_state_copy_fbo_id == 0)
glGenFramebuffers(1, &m_state_copy_fbo_id);
SetFullVRAMDirtyRectangle();
return true;
}
void GPU_HW_OpenGL::ClearFramebuffer()
{
const float depth_clear_value = m_pgxp_depth_buffer ? 1.0f : 0.0f;
glDisable(GL_SCISSOR_TEST);
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
IsGLES() ? glClearDepthf(depth_clear_value) : glClearDepth(depth_clear_value);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnable(GL_SCISSOR_TEST);
m_last_depth_z = 1.0f;
SetFullVRAMDirtyRectangle();
}
bool GPU_HW_OpenGL::CreateVertexBuffer()
{
m_vertex_stream_buffer = GL::StreamBuffer::Create(GL_ARRAY_BUFFER, VERTEX_BUFFER_SIZE);
if (!m_vertex_stream_buffer)
return false;
m_vertex_stream_buffer->Bind();
glGenVertexArrays(1, &m_vao_id);
glBindVertexArray(m_vao_id);
glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1);
glEnableVertexAttribArray(2);
glEnableVertexAttribArray(3);
glEnableVertexAttribArray(4);
glVertexAttribPointer(0, 4, GL_FLOAT, false, sizeof(BatchVertex), reinterpret_cast<void*>(offsetof(BatchVertex, x)));
glVertexAttribPointer(1, 4, GL_UNSIGNED_BYTE, true, sizeof(BatchVertex),
reinterpret_cast<void*>(offsetof(BatchVertex, color)));
glVertexAttribIPointer(2, 1, GL_UNSIGNED_INT, sizeof(BatchVertex), reinterpret_cast<void*>(offsetof(BatchVertex, u)));
glVertexAttribIPointer(3, 1, GL_UNSIGNED_INT, sizeof(BatchVertex),
reinterpret_cast<void*>(offsetof(BatchVertex, texpage)));
glVertexAttribPointer(4, 4, GL_UNSIGNED_BYTE, true, sizeof(BatchVertex),
reinterpret_cast<void*>(offsetof(BatchVertex, uv_limits)));
glBindVertexArray(0);
glGenVertexArrays(1, &m_attributeless_vao_id);
return true;
}
bool GPU_HW_OpenGL::CreateUniformBuffer()
{
m_uniform_stream_buffer = GL::StreamBuffer::Create(GL_UNIFORM_BUFFER, UNIFORM_BUFFER_SIZE);
if (!m_uniform_stream_buffer)
return false;
return true;
}
bool GPU_HW_OpenGL::CreateTextureBuffer()
{
const GLenum target =
(m_use_ssbo_for_vram_writes ? GL_SHADER_STORAGE_BUFFER :
(m_use_texture_buffer_for_vram_writes ? GL_TEXTURE_BUFFER : GL_PIXEL_UNPACK_BUFFER));
m_texture_stream_buffer = GL::StreamBuffer::Create(target, m_texture_stream_buffer_size);
if (!m_texture_stream_buffer)
return false;
if (m_use_texture_buffer_for_vram_writes)
{
glGenTextures(1, &m_texture_buffer_r16ui_texture);
glBindTexture(GL_TEXTURE_BUFFER, m_texture_buffer_r16ui_texture);
glTexBuffer(GL_TEXTURE_BUFFER, GL_R16UI, m_texture_stream_buffer->GetGLBufferId());
}
m_texture_stream_buffer->Unbind();
return true;
}
bool GPU_HW_OpenGL::CompilePrograms()
{
GL::ShaderCache shader_cache;
shader_cache.Open(IsGLES(), g_host_interface->GetShaderCacheBasePath(), SHADER_CACHE_VERSION);
const bool use_binding_layout = GPU_HW_ShaderGen::UseGLSLBindingLayout();
GPU_HW_ShaderGen shadergen(m_host_display->GetRenderAPI(), m_resolution_scale, m_multisamples, m_per_sample_shading,
m_true_color, m_scaled_dithering, m_texture_filtering, m_using_uv_limits,
m_pgxp_depth_buffer, m_supports_dual_source_blend);
Common::Timer compile_time;
const int progress_total = (4 * 9 * 2 * 2) + (2 * 3) + 1 + 1 + 1 + 1 + 1 + 1;
int progress_value = 0;
#define UPDATE_PROGRESS() \
do \
{ \
progress_value++; \
if (System::IsStartupCancelled()) \
{ \
return false; \
} \
if (compile_time.GetTimeSeconds() >= 1.0f) \
{ \
compile_time.Reset(); \
g_host_interface->DisplayLoadingScreen("Compiling Shaders", 0, progress_total, progress_value); \
} \
} while (0)
for (u32 render_mode = 0; render_mode < 4; render_mode++)
{
for (u32 texture_mode = 0; texture_mode < 9; texture_mode++)
{
for (u8 dithering = 0; dithering < 2; dithering++)
{
for (u8 interlacing = 0; interlacing < 2; interlacing++)
{
const bool textured = (static_cast<GPUTextureMode>(texture_mode) != GPUTextureMode::Disabled);
const std::string batch_vs = shadergen.GenerateBatchVertexShader(textured);
const std::string fs = shadergen.GenerateBatchFragmentShader(
static_cast<BatchRenderMode>(render_mode), static_cast<GPUTextureMode>(texture_mode),
ConvertToBoolUnchecked(dithering), ConvertToBoolUnchecked(interlacing));
const auto link_callback = [this, textured, use_binding_layout](GL::Program& prog) {
if (!use_binding_layout)
{
prog.BindAttribute(0, "a_pos");
prog.BindAttribute(1, "a_col0");
if (textured)
{
prog.BindAttribute(2, "a_texcoord");
prog.BindAttribute(3, "a_texpage");
prog.BindAttribute(4, "a_uv_limits");
}
if (!IsGLES() || m_supports_dual_source_blend)
{
if (m_supports_dual_source_blend)
{
prog.BindFragDataIndexed(0, "o_col0");
prog.BindFragDataIndexed(1, "o_col1");
}
else
{
prog.BindFragData(0, "o_col0");
}
}
}
};
std::optional<GL::Program> prog = shader_cache.GetProgram(batch_vs, {}, fs, link_callback);
if (!prog)
return false;
if (!use_binding_layout)
{
prog->BindUniformBlock("UBOBlock", 1);
if (textured)
{
prog->Bind();
prog->Uniform1i("samp0", 0);
}
}
m_render_programs[render_mode][texture_mode][dithering][interlacing] = std::move(*prog);
UPDATE_PROGRESS();
}
}
}
}
for (u8 depth_24bit = 0; depth_24bit < 2; depth_24bit++)
{
for (u8 interlaced = 0; interlaced < 3; interlaced++)
{
const std::string vs = shadergen.GenerateScreenQuadVertexShader();
const std::string fs = shadergen.GenerateDisplayFragmentShader(
ConvertToBoolUnchecked(depth_24bit), static_cast<InterlacedRenderMode>(interlaced), m_chroma_smoothing);
std::optional<GL::Program> prog =
shader_cache.GetProgram(vs, {}, fs, [this, use_binding_layout](GL::Program& prog) {
if (!IsGLES() && !use_binding_layout)
prog.BindFragData(0, "o_col0");
});
if (!prog)
return false;
if (!use_binding_layout)
{
prog->BindUniformBlock("UBOBlock", 1);
prog->Bind();
prog->Uniform1i("samp0", 0);
}
m_display_programs[depth_24bit][interlaced] = std::move(*prog);
UPDATE_PROGRESS();
}
}
std::optional<GL::Program> prog = shader_cache.GetProgram(shadergen.GenerateScreenQuadVertexShader(), {},
shadergen.GenerateInterlacedFillFragmentShader(),
[this, use_binding_layout](GL::Program& prog) {
if (!IsGLES() && !use_binding_layout)
prog.BindFragData(0, "o_col0");
});
if (!prog)
return false;
if (!use_binding_layout)
prog->BindUniformBlock("UBOBlock", 1);
m_vram_interlaced_fill_program = std::move(*prog);
UPDATE_PROGRESS();
prog =
shader_cache.GetProgram(shadergen.GenerateScreenQuadVertexShader(), {}, shadergen.GenerateVRAMReadFragmentShader(),
[this, use_binding_layout](GL::Program& prog) {
if (!IsGLES() && !use_binding_layout)
prog.BindFragData(0, "o_col0");
});
if (!prog)
return false;
if (!use_binding_layout)
{
prog->BindUniformBlock("UBOBlock", 1);
prog->Bind();
prog->Uniform1i("samp0", 0);
}
m_vram_read_program = std::move(*prog);
UPDATE_PROGRESS();
prog =
shader_cache.GetProgram(shadergen.GenerateScreenQuadVertexShader(), {}, shadergen.GenerateVRAMCopyFragmentShader(),
[this, use_binding_layout](GL::Program& prog) {
if (!IsGLES() && !use_binding_layout)
prog.BindFragData(0, "o_col0");
});
if (!prog)
return false;
if (!use_binding_layout)
{
prog->BindUniformBlock("UBOBlock", 1);
prog->Bind();
prog->Uniform1i("samp0", 0);
}
m_vram_copy_program = std::move(*prog);
UPDATE_PROGRESS();
prog = shader_cache.GetProgram(shadergen.GenerateScreenQuadVertexShader(), {},
shadergen.GenerateVRAMUpdateDepthFragmentShader());
if (!prog)
return false;
prog->Bind();
prog->Uniform1i("samp0", 0);
m_vram_update_depth_program = std::move(*prog);
UPDATE_PROGRESS();
if (m_use_texture_buffer_for_vram_writes || m_use_ssbo_for_vram_writes)
{
prog = shader_cache.GetProgram(shadergen.GenerateScreenQuadVertexShader(), {},
shadergen.GenerateVRAMWriteFragmentShader(m_use_ssbo_for_vram_writes),
[this, use_binding_layout](GL::Program& prog) {
if (!IsGLES() && !use_binding_layout)
prog.BindFragData(0, "o_col0");
});
if (!prog)
return false;
if (!use_binding_layout)
{
prog->BindUniformBlock("UBOBlock", 1);
prog->Bind();
prog->Uniform1i("samp0", 0);
}
m_vram_write_program = std::move(*prog);
}
UPDATE_PROGRESS();
if (m_downsample_mode == GPUDownsampleMode::Box)
{
prog = shader_cache.GetProgram(shadergen.GenerateScreenQuadVertexShader(), {},
shadergen.GenerateBoxSampleDownsampleFragmentShader(),
[this, use_binding_layout](GL::Program& prog) {
if (!IsGLES() && !use_binding_layout)
prog.BindFragData(0, "o_col0");
});
if (!prog)
return false;
if (!use_binding_layout)
{
prog->Bind();
prog->Uniform1i("samp0", 0);
}
m_downsample_program = std::move(*prog);
}
UPDATE_PROGRESS();
#undef UPDATE_PROGRESS
return true;
}
void GPU_HW_OpenGL::DrawBatchVertices(BatchRenderMode render_mode, u32 base_vertex, u32 num_vertices)
{
const GL::Program& prog = m_render_programs[static_cast<u8>(render_mode)][static_cast<u8>(m_batch.texture_mode)]
[BoolToUInt8(m_batch.dithering)][BoolToUInt8(m_batch.interlacing)];
prog.Bind();
if (m_current_transparency_mode != m_batch.transparency_mode || m_current_render_mode != render_mode)
{
m_current_transparency_mode = m_batch.transparency_mode;
m_current_render_mode = render_mode;
SetBlendMode();
}
SetDepthFunc();
glDrawArrays(GL_TRIANGLES, m_batch_base_vertex, num_vertices);
}
void GPU_HW_OpenGL::SetBlendMode()
{
if (UseAlphaBlending(m_current_transparency_mode, m_current_render_mode))
{
glEnable(GL_BLEND);
glBlendEquationSeparate(m_current_transparency_mode == GPUTransparencyMode::BackgroundMinusForeground ?
GL_FUNC_REVERSE_SUBTRACT :
GL_FUNC_ADD,
GL_FUNC_ADD);
if (m_supports_dual_source_blend)
{
glBlendFuncSeparate(GL_ONE, m_supports_dual_source_blend ? GL_SRC1_ALPHA : GL_SRC_ALPHA, GL_ONE, GL_ZERO);
}
else
{
const float factor =
(m_current_transparency_mode == GPUTransparencyMode::HalfBackgroundPlusHalfForeground) ? 0.5f : 1.0f;
glBlendFuncSeparate(GL_ONE, GL_CONSTANT_ALPHA, GL_ONE, GL_ZERO);
glBlendColor(0.0f, 0.0f, 0.0f, factor);
}
}
else
{
glDisable(GL_BLEND);
}
}
bool GPU_HW_OpenGL::BlitVRAMReplacementTexture(const TextureReplacementTexture* tex, u32 dst_x, u32 dst_y, u32 width,
u32 height)
{
if (!m_vram_write_replacement_texture.IsValid())
{
if (!m_vram_write_replacement_texture.Create(tex->GetWidth(), tex->GetHeight(), 1, GL_RGBA, GL_RGBA,
GL_UNSIGNED_BYTE, tex->GetPixels()) ||
!m_vram_write_replacement_texture.CreateFramebuffer())
{
m_vram_write_replacement_texture.Destroy();
return false;
}
}
else
{
m_vram_write_replacement_texture.Replace(tex->GetWidth(), tex->GetHeight(), GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE,
tex->GetPixels());
}
glDisable(GL_SCISSOR_TEST);
m_vram_write_replacement_texture.BindFramebuffer(GL_READ_FRAMEBUFFER);
dst_y = m_vram_texture.GetHeight() - dst_y - height;
glBlitFramebuffer(0, tex->GetHeight(), tex->GetWidth(), 0, dst_x, dst_y, dst_x + width, dst_y + height,
GL_COLOR_BUFFER_BIT, GL_LINEAR);
m_vram_read_texture.Bind();
glEnable(GL_SCISSOR_TEST);
return true;
}
void GPU_HW_OpenGL::SetDepthFunc()
{
SetDepthFunc(m_batch.use_depth_buffer ? GL_LEQUAL : (m_batch.check_mask_before_draw ? GL_GEQUAL : GL_ALWAYS));
}
void GPU_HW_OpenGL::SetDepthFunc(GLenum func)
{
if (m_current_depth_test == func)
return;
glDepthFunc(func);
m_current_depth_test = func;
}
void GPU_HW_OpenGL::SetScissorFromDrawingArea()
{
int left, top, right, bottom;
CalcScissorRect(&left, &top, &right, &bottom);
const int width = right - left;
const int height = bottom - top;
const int x = left;
const int y = m_vram_texture.GetHeight() - bottom;
Log_DebugPrintf("SetScissor: (%d-%d, %d-%d)", x, x + width, y, y + height);
glScissor(x, y, width, height);
}
void GPU_HW_OpenGL::UploadUniformBuffer(const void* data, u32 data_size)
{
const GL::StreamBuffer::MappingResult res = m_uniform_stream_buffer->Map(m_uniform_buffer_alignment, data_size);
std::memcpy(res.pointer, data, data_size);
m_uniform_stream_buffer->Unmap(data_size);
glBindBufferRange(GL_UNIFORM_BUFFER, 1, m_uniform_stream_buffer->GetGLBufferId(), res.buffer_offset, data_size);
m_renderer_stats.num_uniform_buffer_updates++;
}
void GPU_HW_OpenGL::ClearDisplay()
{
GPU_HW::ClearDisplay();
m_display_texture.BindFramebuffer(GL_DRAW_FRAMEBUFFER);
glDisable(GL_SCISSOR_TEST);
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT);
glEnable(GL_SCISSOR_TEST);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, m_vram_fbo_id);
}
void GPU_HW_OpenGL::UpdateDisplay()
{
GPU_HW::UpdateDisplay();
if (g_settings.debugging.show_vram)
{
if (IsUsingMultisampling())
{
UpdateVRAMReadTexture();
m_host_display->SetDisplayTexture(reinterpret_cast<void*>(static_cast<uintptr_t>(m_vram_read_texture.GetGLId())),
HostDisplayPixelFormat::RGBA8, m_vram_read_texture.GetWidth(),
static_cast<s32>(m_vram_read_texture.GetHeight()), 0,
m_vram_read_texture.GetHeight(), m_vram_read_texture.GetWidth(),
-static_cast<s32>(m_vram_read_texture.GetHeight()));
}
else
{
m_host_display->SetDisplayTexture(reinterpret_cast<void*>(static_cast<uintptr_t>(m_vram_texture.GetGLId())),
HostDisplayPixelFormat::RGBA8, m_vram_texture.GetWidth(),
static_cast<s32>(m_vram_texture.GetHeight()), 0, m_vram_texture.GetHeight(),
m_vram_texture.GetWidth(), -static_cast<s32>(m_vram_texture.GetHeight()));
}
m_host_display->SetDisplayParameters(VRAM_WIDTH, VRAM_HEIGHT, 0, 0, VRAM_WIDTH, VRAM_HEIGHT,
static_cast<float>(VRAM_WIDTH) / static_cast<float>(VRAM_HEIGHT));
}
else
{
const u32 resolution_scale = m_GPUSTAT.display_area_color_depth_24 ? 1 : m_resolution_scale;
const u32 vram_offset_x = m_crtc_state.display_vram_left;
const u32 vram_offset_y = m_crtc_state.display_vram_top;
const u32 scaled_vram_offset_x = vram_offset_x * resolution_scale;
const u32 scaled_vram_offset_y = vram_offset_y * resolution_scale;
const u32 display_width = m_crtc_state.display_vram_width;
const u32 display_height = m_crtc_state.display_vram_height;
const u32 scaled_display_width = display_width * resolution_scale;
const u32 scaled_display_height = display_height * resolution_scale;
const InterlacedRenderMode interlaced = GetInterlacedRenderMode();
if (IsDisplayDisabled())
{
m_host_display->ClearDisplayTexture();
}
else if (!m_GPUSTAT.display_area_color_depth_24 && interlaced == GPU_HW::InterlacedRenderMode::None &&
!IsUsingMultisampling() && (scaled_vram_offset_x + scaled_display_width) <= m_vram_texture.GetWidth() &&
(scaled_vram_offset_y + scaled_display_height) <= m_vram_texture.GetHeight())
{
if (IsUsingDownsampling())
{
DownsampleFramebuffer(m_vram_texture, scaled_vram_offset_x, scaled_vram_offset_y, scaled_display_width,
scaled_display_height);
}
else
{
m_host_display->SetDisplayTexture(reinterpret_cast<void*>(static_cast<uintptr_t>(m_vram_texture.GetGLId())),
HostDisplayPixelFormat::RGBA8, m_vram_texture.GetWidth(),
m_vram_texture.GetHeight(), scaled_vram_offset_x,
m_vram_texture.GetHeight() - scaled_vram_offset_y, scaled_display_width,
-static_cast<s32>(scaled_display_height));
}
}
else
{
glDisable(GL_BLEND);
glDisable(GL_SCISSOR_TEST);
glDisable(GL_DEPTH_TEST);
m_display_programs[BoolToUInt8(m_GPUSTAT.display_area_color_depth_24)][static_cast<u8>(interlaced)].Bind();
m_display_texture.BindFramebuffer(GL_DRAW_FRAMEBUFFER);
m_vram_texture.Bind();
if (interlaced == InterlacedRenderMode::None && (GLAD_GL_VERSION_4_3 || GLAD_GL_ES_VERSION_3_0))
{
static constexpr std::array<GLenum, 1> attachments = {GL_COLOR_ATTACHMENT0};
glInvalidateFramebuffer(GL_DRAW_FRAMEBUFFER, static_cast<GLsizei>(attachments.size()), attachments.data());
}
const u8 height_div2 = BoolToUInt8(interlaced == GPU_HW::InterlacedRenderMode::SeparateFields);
const u32 reinterpret_field_offset = (interlaced != InterlacedRenderMode::None) ? GetInterlacedDisplayField() : 0;
const u32 scaled_flipped_vram_offset_y = m_vram_texture.GetHeight() - scaled_vram_offset_y -
reinterpret_field_offset - (scaled_display_height >> height_div2);
const u32 reinterpret_start_x = m_crtc_state.regs.X * resolution_scale;
const u32 reinterpret_crop_left = (m_crtc_state.display_vram_left - m_crtc_state.regs.X) * resolution_scale;
const u32 uniforms[4] = {reinterpret_start_x, scaled_flipped_vram_offset_y, reinterpret_crop_left,
reinterpret_field_offset};
UploadUniformBuffer(uniforms, sizeof(uniforms));
m_batch_ubo_dirty = true;
Assert(scaled_display_width <= m_display_texture.GetWidth() &&
scaled_display_height <= m_display_texture.GetHeight());
glViewport(0, 0, scaled_display_width, scaled_display_height);
glBindVertexArray(m_attributeless_vao_id);
glDrawArrays(GL_TRIANGLES, 0, 3);
if (IsUsingDownsampling())
{
DownsampleFramebuffer(m_display_texture, 0, 0, scaled_display_width, scaled_display_height);
}
else
{
m_host_display->SetDisplayTexture(reinterpret_cast<void*>(static_cast<uintptr_t>(m_display_texture.GetGLId())),
HostDisplayPixelFormat::RGBA8, m_display_texture.GetWidth(),
m_display_texture.GetHeight(), 0, scaled_display_height, scaled_display_width,
-static_cast<s32>(scaled_display_height));
}
// restore state
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, m_vram_fbo_id);
glBindVertexArray(m_vao_id);
glViewport(0, 0, m_vram_texture.GetWidth(), m_vram_texture.GetHeight());
glEnable(GL_DEPTH_TEST);
glEnable(GL_SCISSOR_TEST);
m_vram_read_texture.Bind();
SetBlendMode();
SetDepthFunc();
}
m_host_display->SetDisplayParameters(m_crtc_state.display_width, m_crtc_state.display_height,
m_crtc_state.display_origin_left, m_crtc_state.display_origin_top,
m_crtc_state.display_vram_width, m_crtc_state.display_vram_height,
GetDisplayAspectRatio());
}
}
void GPU_HW_OpenGL::ReadVRAM(u32 x, u32 y, u32 width, u32 height)
{
if (IsUsingSoftwareRendererForReadbacks())
{
ReadSoftwareRendererVRAM(x, y, width, height);
return;
}
// Get bounds with wrap-around handled.
const Common::Rectangle<u32> copy_rect = GetVRAMTransferBounds(x, y, width, height);
const u32 encoded_width = (copy_rect.GetWidth() + 1) / 2;
const u32 encoded_height = copy_rect.GetHeight();
// Encode the 24-bit texture as 16-bit.
const u32 uniforms[4] = {copy_rect.left, VRAM_HEIGHT - copy_rect.top - copy_rect.GetHeight(), copy_rect.GetWidth(),
copy_rect.GetHeight()};
m_vram_encoding_texture.BindFramebuffer(GL_DRAW_FRAMEBUFFER);
m_vram_texture.Bind();
m_vram_read_program.Bind();
UploadUniformBuffer(uniforms, sizeof(uniforms));
glDisable(GL_BLEND);
glDisable(GL_SCISSOR_TEST);
glViewport(0, 0, encoded_width, encoded_height);
glBindVertexArray(m_attributeless_vao_id);
glDrawArrays(GL_TRIANGLES, 0, 3);
// Readback encoded texture.
m_vram_encoding_texture.BindFramebuffer(GL_READ_FRAMEBUFFER);
glPixelStorei(GL_PACK_ALIGNMENT, 2);
glPixelStorei(GL_PACK_ROW_LENGTH, VRAM_WIDTH / 2);
glReadPixels(0, 0, encoded_width, encoded_height, GL_RGBA, GL_UNSIGNED_BYTE,
&m_vram_shadow[copy_rect.top * VRAM_WIDTH + copy_rect.left]);
glPixelStorei(GL_PACK_ALIGNMENT, 4);
glPixelStorei(GL_PACK_ROW_LENGTH, 0);
RestoreGraphicsAPIState();
}
void GPU_HW_OpenGL::FillVRAM(u32 x, u32 y, u32 width, u32 height, u32 color)
{
if (IsUsingSoftwareRendererForReadbacks())
FillSoftwareRendererVRAM(x, y, width, height, color);
if ((x + width) > VRAM_WIDTH || (y + height) > VRAM_HEIGHT)
{
// CPU round trip if oversized for now.
Log_WarningPrintf("Oversized VRAM fill (%u-%u, %u-%u), CPU round trip", x, x + width, y, y + height);
ReadVRAM(0, 0, VRAM_WIDTH, VRAM_HEIGHT);
GPU::FillVRAM(x, y, width, height, color);
UpdateVRAM(0, 0, VRAM_WIDTH, VRAM_HEIGHT, m_vram_ptr, false, false);
return;
}
GPU_HW::FillVRAM(x, y, width, height, color);
// scale coordinates
x *= m_resolution_scale;
y *= m_resolution_scale;
width *= m_resolution_scale;
height *= m_resolution_scale;
glScissor(x, m_vram_texture.GetHeight() - y - height, width, height);
// fast path when not using interlaced rendering
if (!IsInterlacedRenderingEnabled())
{
const auto [r, g, b, a] =
RGBA8ToFloat(m_true_color ? color : VRAMRGBA5551ToRGBA8888(VRAMRGBA8888ToRGBA5551(color)));
glClearColor(r, g, b, a);
IsGLES() ? glClearDepthf(a) : glClearDepth(a);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
SetScissorFromDrawingArea();
}
else
{
const VRAMFillUBOData uniforms = GetVRAMFillUBOData(x, y, width, height, color);
m_vram_interlaced_fill_program.Bind();
UploadUniformBuffer(&uniforms, sizeof(uniforms));
glDisable(GL_BLEND);
SetDepthFunc(GL_ALWAYS);
glBindVertexArray(m_attributeless_vao_id);
glDrawArrays(GL_TRIANGLES, 0, 3);
RestoreGraphicsAPIState();
}
}
void GPU_HW_OpenGL::UpdateVRAM(u32 x, u32 y, u32 width, u32 height, const void* data, bool set_mask, bool check_mask)
{
if (IsUsingSoftwareRendererForReadbacks())
UpdateSoftwareRendererVRAM(x, y, width, height, data, set_mask, check_mask);
const Common::Rectangle<u32> bounds = GetVRAMTransferBounds(x, y, width, height);
GPU_HW::UpdateVRAM(bounds.left, bounds.top, bounds.GetWidth(), bounds.GetHeight(), data, set_mask, check_mask);
if (!check_mask)
{
const TextureReplacementTexture* rtex = g_texture_replacements.GetVRAMWriteReplacement(width, height, data);
if (rtex && BlitVRAMReplacementTexture(rtex, x * m_resolution_scale, y * m_resolution_scale,
width * m_resolution_scale, height * m_resolution_scale))
{
return;
}
}
const u32 num_pixels = width * height;
if (m_use_texture_buffer_for_vram_writes || m_use_ssbo_for_vram_writes)
{
const auto map_result = m_texture_stream_buffer->Map(sizeof(u16), num_pixels * sizeof(u16));
std::memcpy(map_result.pointer, data, num_pixels * sizeof(u16));
m_texture_stream_buffer->Unmap(num_pixels * sizeof(u16));
m_texture_stream_buffer->Unbind();
glDisable(GL_BLEND);
SetDepthFunc((check_mask && !m_pgxp_depth_buffer) ? GL_GEQUAL : GL_ALWAYS);
m_vram_write_program.Bind();
if (m_use_ssbo_for_vram_writes)
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 0, m_texture_stream_buffer->GetGLBufferId());
else
glBindTexture(GL_TEXTURE_BUFFER, m_texture_buffer_r16ui_texture);
const VRAMWriteUBOData uniforms =
GetVRAMWriteUBOData(x, y, width, height, map_result.index_aligned, set_mask, check_mask);
UploadUniformBuffer(&uniforms, sizeof(uniforms));
// the viewport should already be set to the full vram, so just adjust the scissor
const Common::Rectangle<u32> scaled_bounds = bounds * m_resolution_scale;
glScissor(scaled_bounds.left, m_vram_texture.GetHeight() - scaled_bounds.top - scaled_bounds.GetHeight(),
scaled_bounds.GetWidth(), scaled_bounds.GetHeight());
glBindVertexArray(m_attributeless_vao_id);
glDrawArrays(GL_TRIANGLES, 0, 3);
RestoreGraphicsAPIState();
}
else
{
if ((x + width) > VRAM_WIDTH || (y + height) > VRAM_HEIGHT || check_mask)
{
// CPU round trip if oversized for now.
Log_WarningPrintf("Oversized/masked VRAM update (%u-%u, %u-%u), CPU round trip", x, x + width, y, y + height);
ReadVRAM(0, 0, VRAM_WIDTH, VRAM_HEIGHT);
GPU::UpdateVRAM(x, y, width, height, data, set_mask, check_mask);
UpdateVRAM(0, 0, VRAM_WIDTH, VRAM_HEIGHT, m_vram_shadow.data(), false, false);
return;
}
GPU_HW::UpdateVRAM(x, y, width, height, data, set_mask, check_mask);
const auto map_result = m_texture_stream_buffer->Map(sizeof(u32), num_pixels * sizeof(u32));
// reverse copy the rows so it matches opengl's lower-left origin
const u32 source_stride = width * sizeof(u16);
const u8* source_ptr = static_cast<const u8*>(data) + (source_stride * (height - 1));
const u16 mask_or = set_mask ? 0x8000 : 0x0000;
u32* dest_ptr = static_cast<u32*>(map_result.pointer);
for (u32 row = 0; row < height; row++)
{
const u8* source_row_ptr = source_ptr;
for (u32 col = 0; col < width; col++)
{
u16 src_col;
std::memcpy(&src_col, source_row_ptr, sizeof(src_col));
source_row_ptr += sizeof(src_col);
*(dest_ptr++) = VRAMRGBA5551ToRGBA8888(src_col | mask_or);
}
source_ptr -= source_stride;
}
m_texture_stream_buffer->Unmap(num_pixels * sizeof(u32));
m_texture_stream_buffer->Bind();
// have to write to the 1x texture first
if (m_resolution_scale > 1)
m_vram_encoding_texture.Bind();
else
m_vram_texture.Bind();
// lower-left origin flip happens here
const u32 flipped_y = VRAM_HEIGHT - y - height;
// update texture data
glTexSubImage2D(m_vram_texture.GetGLTarget(), 0, x, flipped_y, width, height, GL_RGBA, GL_UNSIGNED_BYTE,
reinterpret_cast<void*>(static_cast<uintptr_t>(map_result.buffer_offset)));
m_texture_stream_buffer->Unbind();
if (m_resolution_scale > 1)
{
// scale to internal resolution
const u32 scaled_width = width * m_resolution_scale;
const u32 scaled_height = height * m_resolution_scale;
const u32 scaled_x = x * m_resolution_scale;
const u32 scaled_y = y * m_resolution_scale;
const u32 scaled_flipped_y = m_vram_texture.GetHeight() - scaled_y - scaled_height;
glDisable(GL_SCISSOR_TEST);
m_vram_encoding_texture.BindFramebuffer(GL_READ_FRAMEBUFFER);
glBlitFramebuffer(x, flipped_y, x + width, flipped_y + height, scaled_x, scaled_flipped_y,
scaled_x + scaled_width, scaled_flipped_y + scaled_height, GL_COLOR_BUFFER_BIT, GL_NEAREST);
glEnable(GL_SCISSOR_TEST);
}
}
}
void GPU_HW_OpenGL::CopyVRAM(u32 src_x, u32 src_y, u32 dst_x, u32 dst_y, u32 width, u32 height)
{
if (IsUsingSoftwareRendererForReadbacks())
CopySoftwareRendererVRAM(src_x, src_y, dst_x, dst_y, width, height);
const Common::Rectangle<u32> dst_bounds = GetVRAMTransferBounds(dst_x, dst_y, width, height);
const Common::Rectangle<u32> src_bounds = GetVRAMTransferBounds(src_x, src_y, width, height);
const bool src_dirty = m_vram_dirty_rect.Intersects(src_bounds);
if (UseVRAMCopyShader(src_x, src_y, dst_x, dst_y, width, height))
{
if (src_dirty)
UpdateVRAMReadTexture();
IncludeVRAMDirtyRectangle(dst_bounds);
VRAMCopyUBOData uniforms = GetVRAMCopyUBOData(src_x, src_y, dst_x, dst_y, width, height);
uniforms.u_src_y = m_vram_texture.GetHeight() - uniforms.u_src_y - uniforms.u_height;
uniforms.u_dst_y = m_vram_texture.GetHeight() - uniforms.u_dst_y - uniforms.u_height;
UploadUniformBuffer(&uniforms, sizeof(uniforms));
glDisable(GL_SCISSOR_TEST);
glDisable(GL_BLEND);
SetDepthFunc((m_GPUSTAT.check_mask_before_draw && !m_pgxp_depth_buffer) ? GL_GEQUAL : GL_ALWAYS);
const Common::Rectangle<u32> dst_bounds_scaled(dst_bounds * m_resolution_scale);
glViewport(dst_bounds_scaled.left,
m_vram_texture.GetHeight() - dst_bounds_scaled.top - dst_bounds_scaled.GetHeight(),
dst_bounds_scaled.GetWidth(), dst_bounds_scaled.GetHeight());
m_vram_read_texture.Bind();
m_vram_copy_program.Bind();
glBindVertexArray(m_attributeless_vao_id);
glDrawArrays(GL_TRIANGLES, 0, 3);
RestoreGraphicsAPIState();
if (m_GPUSTAT.check_mask_before_draw)
m_current_depth++;
return;
}
GPU_HW::CopyVRAM(src_x, src_y, dst_x, dst_y, width, height);
src_x *= m_resolution_scale;
src_y *= m_resolution_scale;
dst_x *= m_resolution_scale;
dst_y *= m_resolution_scale;
width *= m_resolution_scale;
height *= m_resolution_scale;
// lower-left origin flip
src_y = m_vram_texture.GetHeight() - src_y - height;
dst_y = m_vram_texture.GetHeight() - dst_y - height;
if (GLAD_GL_VERSION_4_3)
{
glCopyImageSubData(m_vram_texture.GetGLId(), m_vram_texture.GetGLTarget(), 0, src_x, src_y, 0,
m_vram_texture.GetGLId(), m_vram_texture.GetGLTarget(), 0, dst_x, dst_y, 0, width, height, 1);
}
else if (GLAD_GL_EXT_copy_image)
{
glCopyImageSubDataEXT(m_vram_texture.GetGLId(), m_vram_texture.GetGLTarget(), 0, src_x, src_y, 0,
m_vram_texture.GetGLId(), m_vram_texture.GetGLTarget(), 0, dst_x, dst_y, 0, width, height, 1);
}
else if (GLAD_GL_OES_copy_image)
{
glCopyImageSubDataOES(m_vram_texture.GetGLId(), m_vram_texture.GetGLTarget(), 0, src_x, src_y, 0,
m_vram_texture.GetGLId(), m_vram_texture.GetGLTarget(), 0, dst_x, dst_y, 0, width, height, 1);
}
else
{
// glBlitFramebufer with same source/destination should be legal, but on Mali (at least Bifrost) it breaks.
// So, blit from the shadow texture, like in the other renderers.
if (src_dirty)
UpdateVRAMReadTexture();
glDisable(GL_SCISSOR_TEST);
m_vram_read_texture.BindFramebuffer(GL_READ_FRAMEBUFFER);
glBlitFramebuffer(src_x, src_y, src_x + width, src_y + height, dst_x, dst_y, dst_x + width, dst_y + height,
GL_COLOR_BUFFER_BIT, GL_NEAREST);
glEnable(GL_SCISSOR_TEST);
}
IncludeVRAMDirtyRectangle(dst_bounds);
}
void GPU_HW_OpenGL::UpdateVRAMReadTexture()
{
const auto scaled_rect = m_vram_dirty_rect * m_resolution_scale;
const u32 width = scaled_rect.GetWidth();
const u32 height = scaled_rect.GetHeight();
const u32 x = scaled_rect.left;
const u32 y = m_vram_texture.GetHeight() - scaled_rect.top - height;
const bool multisampled = m_vram_texture.IsMultisampled();
if (!multisampled && GLAD_GL_VERSION_4_3)
{
glCopyImageSubData(m_vram_texture.GetGLId(), m_vram_texture.GetGLTarget(), 0, x, y, 0,
m_vram_read_texture.GetGLId(), m_vram_texture.GetGLTarget(), 0, x, y, 0, width, height, 1);
}
else if (!multisampled && GLAD_GL_EXT_copy_image)
{
glCopyImageSubDataEXT(m_vram_texture.GetGLId(), m_vram_texture.GetGLTarget(), 0, x, y, 0,
m_vram_read_texture.GetGLId(), m_vram_texture.GetGLTarget(), 0, x, y, 0, width, height, 1);
}
else if (!multisampled && GLAD_GL_OES_copy_image)
{
glCopyImageSubDataOES(m_vram_texture.GetGLId(), m_vram_texture.GetGLTarget(), 0, x, y, 0,
m_vram_read_texture.GetGLId(), m_vram_texture.GetGLTarget(), 0, x, y, 0, width, height, 1);
}
else
{
m_vram_read_texture.BindFramebuffer(GL_DRAW_FRAMEBUFFER);
glBindFramebuffer(GL_READ_FRAMEBUFFER, m_vram_fbo_id);
glDisable(GL_SCISSOR_TEST);
glBlitFramebuffer(x, y, x + width, y + height, x, y, x + width, y + height, GL_COLOR_BUFFER_BIT, GL_NEAREST);
glEnable(GL_SCISSOR_TEST);
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, m_vram_fbo_id);
}
GPU_HW::UpdateVRAMReadTexture();
}
void GPU_HW_OpenGL::UpdateDepthBufferFromMaskBit()
{
if (m_pgxp_depth_buffer)
return;
glDisable(GL_SCISSOR_TEST);
glDisable(GL_BLEND);
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
glDepthFunc(GL_ALWAYS);
m_vram_texture.Bind();
m_vram_update_depth_program.Bind();
glBindVertexArray(m_attributeless_vao_id);
glDrawArrays(GL_TRIANGLES, 0, 3);
glBindVertexArray(m_vao_id);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glEnable(GL_SCISSOR_TEST);
m_vram_read_texture.Bind();
}
void GPU_HW_OpenGL::ClearDepthBuffer()
{
glDisable(GL_SCISSOR_TEST);
IsGLES() ? glClearDepthf(1.0f) : glClearDepth(1.0f);
glClear(GL_DEPTH_BUFFER_BIT);
glEnable(GL_SCISSOR_TEST);
m_last_depth_z = 1.0f;
}
void GPU_HW_OpenGL::DownsampleFramebuffer(GL::Texture& source, u32 left, u32 top, u32 width, u32 height)
{
DebugAssert(m_downsample_mode != GPUDownsampleMode::Adaptive);
DownsampleFramebufferBoxFilter(source, left, top, width, height);
}
void GPU_HW_OpenGL::DownsampleFramebufferBoxFilter(GL::Texture& source, u32 left, u32 top, u32 width, u32 height)
{
const u32 ds_left = left / m_resolution_scale;
const u32 ds_top = top / m_resolution_scale;
const u32 ds_width = width / m_resolution_scale;
const u32 ds_height = height / m_resolution_scale;
glDisable(GL_BLEND);
glDisable(GL_DEPTH_TEST);
glDisable(GL_SCISSOR_TEST);
glViewport(ds_left, m_downsample_texture.GetHeight() - ds_top - ds_height, ds_width, ds_height);
glBindVertexArray(m_attributeless_vao_id);
source.Bind();
m_downsample_texture.BindFramebuffer(GL_DRAW_FRAMEBUFFER);
m_downsample_program.Bind();
glDrawArrays(GL_TRIANGLES, 0, 3);
RestoreGraphicsAPIState();
m_host_display->SetDisplayTexture(reinterpret_cast<void*>(static_cast<uintptr_t>(m_downsample_texture.GetGLId())),
HostDisplayPixelFormat::RGBA8, m_downsample_texture.GetWidth(),
m_downsample_texture.GetHeight(), ds_left,
m_downsample_texture.GetHeight() - ds_top, ds_width, -static_cast<s32>(ds_height));
}
std::unique_ptr<GPU> GPU::CreateHardwareOpenGLRenderer()
{
return std::make_unique<GPU_HW_OpenGL>();
}