Duckstation/src/core/memory_card.cpp
Connor McLaughlin b6f871d2b9
JIT optimizations and refactoring (#675)
* CPU/Recompiler: Use rel32 call where possible for no-args

* JitCodeBuffer: Support using preallocated buffer

* CPU/Recompiler/AArch64: Use bl instead of blr for short branches

* CPU/CodeCache: Allocate recompiler buffer in program space

This means we don't need 64-bit moves for every call out of the
recompiler.

* GTE: Don't store as u16 and load as u32

* CPU/Recompiler: Add methods to emit global load/stores

* GTE: Convert class to namespace

* CPU/Recompiler: Call GTE functions directly

* Settings: Turn into a global variable

* GPU: Replace local pointers with global

* InterruptController: Turn into a global pointer

* System: Replace local pointers with global

* Timers: Turn into a global instance

* DMA: Turn into a global instance

* SPU: Turn into a global instance

* CDROM: Turn into a global instance

* MDEC: Turn into a global instance

* Pad: Turn into a global instance

* SIO: Turn into a global instance

* CDROM: Move audio FIFO to the heap

* CPU/Recompiler: Drop ASMFunctions

No longer needed since we have code in the same 4GB window.

* CPUCodeCache: Turn class into namespace

* Bus: Local pointer -> global pointers

* CPU: Turn class into namespace

* Bus: Turn into namespace

* GTE: Store registers in CPU state struct

Allows relative addressing on ARM.

* CPU/Recompiler: Align code storage to page size

* CPU/Recompiler: Fix relative branches on A64

* HostInterface: Local references to global

* System: Turn into a namespace, move events out

* Add guard pages

* Android: Fix build
2020-07-31 17:09:18 +10:00

403 lines
12 KiB
C++

#include "memory_card.h"
#include "common/byte_stream.h"
#include "common/file_system.h"
#include "common/log.h"
#include "common/state_wrapper.h"
#include "common/string_util.h"
#include "host_interface.h"
#include "system.h"
#include <cstdio>
Log_SetChannel(MemoryCard);
MemoryCard::MemoryCard()
{
m_FLAG.no_write_yet = true;
m_save_event =
TimingEvents::CreateTimingEvent("Memory Card Host Flush", SAVE_DELAY_IN_SYSCLK_TICKS, SAVE_DELAY_IN_SYSCLK_TICKS,
std::bind(&MemoryCard::SaveIfChanged, this, true), false);
}
MemoryCard::~MemoryCard()
{
SaveIfChanged(false);
}
void MemoryCard::Reset()
{
ResetTransferState();
SaveIfChanged(true);
m_FLAG.no_write_yet = true;
}
bool MemoryCard::DoState(StateWrapper& sw)
{
if (sw.IsReading())
SaveIfChanged(true);
sw.Do(&m_state);
sw.Do(&m_FLAG.bits);
sw.Do(&m_address);
sw.Do(&m_sector_offset);
sw.Do(&m_checksum);
sw.Do(&m_last_byte);
sw.Do(&m_data);
sw.Do(&m_changed);
return !sw.HasError();
}
void MemoryCard::ResetTransferState()
{
m_state = State::Idle;
m_address = 0;
m_sector_offset = 0;
m_checksum = 0;
m_last_byte = 0;
}
bool MemoryCard::Transfer(const u8 data_in, u8* data_out)
{
bool ack = false;
const State old_state = m_state;
switch (m_state)
{
#define FIXED_REPLY_STATE(state, reply, ack_value, next_state) \
case state: \
{ \
*data_out = reply; \
ack = ack_value; \
m_state = next_state; \
} \
break;
#define ADDRESS_STATE_MSB(state, next_state) \
case state: \
{ \
*data_out = 0x00; \
ack = true; \
m_address = ((m_address & u16(0x00FF)) | (ZeroExtend16(data_in) << 8)) & 0x3FF; \
m_state = next_state; \
} \
break;
#define ADDRESS_STATE_LSB(state, next_state) \
case state: \
{ \
*data_out = m_last_byte; \
ack = true; \
m_address = ((m_address & u16(0xFF00)) | ZeroExtend16(data_in)) & 0x3FF; \
m_sector_offset = 0; \
m_state = next_state; \
} \
break;
// read state
FIXED_REPLY_STATE(State::ReadCardID1, 0x5A, true, State::ReadCardID2);
FIXED_REPLY_STATE(State::ReadCardID2, 0x5D, true, State::ReadAddressMSB);
ADDRESS_STATE_MSB(State::ReadAddressMSB, State::ReadAddressLSB);
ADDRESS_STATE_LSB(State::ReadAddressLSB, State::ReadACK1);
FIXED_REPLY_STATE(State::ReadACK1, 0x5C, true, State::ReadACK2);
FIXED_REPLY_STATE(State::ReadACK2, 0x5D, true, State::ReadConfirmAddressMSB);
FIXED_REPLY_STATE(State::ReadConfirmAddressMSB, Truncate8(m_address >> 8), true, State::ReadConfirmAddressLSB);
FIXED_REPLY_STATE(State::ReadConfirmAddressLSB, Truncate8(m_address), true, State::ReadData);
case State::ReadData:
{
const u8 bits = m_data[ZeroExtend32(m_address) * SECTOR_SIZE + m_sector_offset];
if (m_sector_offset == 0)
{
Log_DevPrintf("Reading memory card sector %u", ZeroExtend32(m_address));
m_checksum = Truncate8(m_address >> 8) ^ Truncate8(m_address) ^ bits;
}
else
{
m_checksum ^= bits;
}
*data_out = bits;
ack = true;
m_sector_offset++;
if (m_sector_offset == SECTOR_SIZE)
{
m_state = State::ReadChecksum;
m_sector_offset = 0;
}
}
break;
FIXED_REPLY_STATE(State::ReadChecksum, m_checksum, true, State::ReadEnd);
FIXED_REPLY_STATE(State::ReadEnd, 0x47, true, State::Idle);
// write state
FIXED_REPLY_STATE(State::WriteCardID1, 0x5A, true, State::WriteCardID2);
FIXED_REPLY_STATE(State::WriteCardID2, 0x5D, true, State::WriteAddressMSB);
ADDRESS_STATE_MSB(State::WriteAddressMSB, State::WriteAddressLSB);
ADDRESS_STATE_LSB(State::WriteAddressLSB, State::WriteData);
case State::WriteData:
{
if (m_sector_offset == 0)
{
Log_InfoPrintf("Writing memory card sector %u", ZeroExtend32(m_address));
m_checksum = Truncate8(m_address >> 8) ^ Truncate8(m_address) ^ data_in;
m_FLAG.no_write_yet = false;
}
else
{
m_checksum ^= data_in;
}
const u32 offset = ZeroExtend32(m_address) * SECTOR_SIZE + m_sector_offset;
m_changed |= (m_data[offset] != data_in);
m_data[offset] = data_in;
*data_out = m_last_byte;
ack = true;
m_sector_offset++;
if (m_sector_offset == SECTOR_SIZE)
{
m_state = State::WriteChecksum;
m_sector_offset = 0;
if (m_changed)
QueueFileSave();
}
}
break;
FIXED_REPLY_STATE(State::WriteChecksum, m_checksum, true, State::WriteACK1);
FIXED_REPLY_STATE(State::WriteACK1, 0x5C, true, State::WriteACK2);
FIXED_REPLY_STATE(State::WriteACK2, 0x5D, true, State::WriteEnd);
FIXED_REPLY_STATE(State::WriteEnd, 0x47, false, State::Idle);
// new command
case State::Idle:
{
// select device
if (data_in == 0x81)
{
*data_out = 0xFF;
ack = true;
m_state = State::Command;
}
}
break;
case State::Command:
{
switch (data_in)
{
case 0x52: // read data
{
*data_out = m_FLAG.bits;
ack = true;
m_state = State::ReadCardID1;
}
break;
case 0x57: // write data
{
*data_out = m_FLAG.bits;
ack = true;
m_state = State::WriteCardID1;
}
break;
case 0x53: // get id
{
Panic("implement me");
}
break;
default:
{
Log_ErrorPrintf("Invalid command 0x%02X", ZeroExtend32(data_in));
*data_out = m_FLAG.bits;
ack = false;
m_state = State::Idle;
}
}
}
break;
default:
UnreachableCode();
break;
}
Log_DebugPrintf("Transfer, old_state=%u, new_state=%u, data_in=0x%02X, data_out=0x%02X, ack=%s",
static_cast<u32>(old_state), static_cast<u32>(m_state), data_in, *data_out, ack ? "true" : "false");
m_last_byte = data_in;
return ack;
}
std::unique_ptr<MemoryCard> MemoryCard::Create()
{
std::unique_ptr<MemoryCard> mc = std::make_unique<MemoryCard>();
mc->Format();
return mc;
}
std::unique_ptr<MemoryCard> MemoryCard::Open(std::string_view filename)
{
std::unique_ptr<MemoryCard> mc = std::make_unique<MemoryCard>();
mc->m_filename = filename;
if (!mc->LoadFromFile())
{
SmallString message;
message.AppendString("Memory card at '");
message.AppendString(filename.data(), static_cast<u32>(filename.length()));
message.AppendString("' could not be read, formatting.");
Log_ErrorPrint(message);
g_host_interface->AddOSDMessage(message.GetCharArray(), 5.0f);
mc->Format();
}
return mc;
}
u8 MemoryCard::ChecksumFrame(const u8* fptr)
{
u8 value = 0;
for (u32 i = 0; i < SECTOR_SIZE - 1; i++)
value ^= fptr[i];
return value;
}
void MemoryCard::Format()
{
// fill everything with FF
m_data.fill(u8(0xFF));
// header
{
u8* fptr = GetSectorPtr(0);
std::fill_n(fptr, SECTOR_SIZE, u8(0));
fptr[0] = 'M';
fptr[1] = 'C';
fptr[0x7F] = ChecksumFrame(fptr);
}
// directory
for (u32 frame = 1; frame < 16; frame++)
{
u8* fptr = GetSectorPtr(frame);
std::fill_n(fptr, SECTOR_SIZE, u8(0));
fptr[0] = 0xA0; // free
fptr[8] = 0xFF; // pointer to next file
fptr[9] = 0xFF; // pointer to next file
fptr[0x7F] = ChecksumFrame(fptr); // checksum
}
// broken sector list
for (u32 frame = 16; frame < 36; frame++)
{
u8* fptr = GetSectorPtr(frame);
std::fill_n(fptr, SECTOR_SIZE, u8(0));
fptr[0] = 0xFF;
fptr[1] = 0xFF;
fptr[2] = 0xFF;
fptr[3] = 0xFF;
fptr[8] = 0xFF; // pointer to next file
fptr[9] = 0xFF; // pointer to next file
fptr[0x7F] = ChecksumFrame(fptr); // checksum
}
// broken sector replacement data
for (u32 frame = 36; frame < 56; frame++)
{
u8* fptr = GetSectorPtr(frame);
std::fill_n(fptr, SECTOR_SIZE, u8(0x00));
}
// unused frames
for (u32 frame = 56; frame < 63; frame++)
{
u8* fptr = GetSectorPtr(frame);
std::fill_n(fptr, SECTOR_SIZE, u8(0x00));
}
// write test frame
std::memcpy(GetSectorPtr(63), GetSectorPtr(0), SECTOR_SIZE);
m_changed = true;
}
u8* MemoryCard::GetSectorPtr(u32 sector)
{
Assert(sector < NUM_SECTORS);
return &m_data[sector * SECTOR_SIZE];
}
bool MemoryCard::LoadFromFile()
{
std::unique_ptr<ByteStream> stream =
FileSystem::OpenFile(m_filename.c_str(), BYTESTREAM_OPEN_READ | BYTESTREAM_OPEN_STREAMED);
if (!stream)
return false;
const size_t num_read = stream->Read(m_data.data(), SECTOR_SIZE * NUM_SECTORS);
if (num_read != (SECTOR_SIZE * NUM_SECTORS))
{
Log_ErrorPrintf("Only read %zu of %u sectors from '%s'", num_read / SECTOR_SIZE, NUM_SECTORS, m_filename.c_str());
return false;
}
Log_InfoPrintf("Loaded memory card from %s", m_filename.c_str());
return true;
}
bool MemoryCard::SaveIfChanged(bool display_osd_message)
{
m_save_event->Deactivate();
if (!m_changed)
return true;
m_changed = false;
if (m_filename.empty())
return false;
std::unique_ptr<ByteStream> stream =
FileSystem::OpenFile(m_filename.c_str(), BYTESTREAM_OPEN_CREATE | BYTESTREAM_OPEN_TRUNCATE | BYTESTREAM_OPEN_WRITE |
BYTESTREAM_OPEN_ATOMIC_UPDATE | BYTESTREAM_OPEN_STREAMED);
if (!stream)
{
Log_ErrorPrintf("Failed to open '%s' for writing.", m_filename.c_str());
return false;
}
if (!stream->Write2(m_data.data(), SECTOR_SIZE * NUM_SECTORS) || !stream->Commit())
{
Log_ErrorPrintf("Failed to write sectors to '%s'", m_filename.c_str());
stream->Discard();
return false;
}
Log_InfoPrintf("Saved memory card to '%s'", m_filename.c_str());
if (display_osd_message)
{
g_host_interface->AddOSDMessage(StringUtil::StdStringFromFormat("Saved memory card to '%s'", m_filename.c_str()));
}
return true;
}
void MemoryCard::QueueFileSave()
{
// skip if the event is already pending, or we don't have a backing file
if (m_save_event->IsActive() || m_filename.empty())
return;
// save in one second, that should be long enough for everything to finish writing
m_save_event->Schedule(SAVE_DELAY_IN_SYSCLK_TICKS);
}