Duckstation/src/core/system.cpp
2020-05-08 15:32:39 +10:00

1123 lines
31 KiB
C++

#include "system.h"
#include "bios.h"
#include "bus.h"
#include "cdrom.h"
#include "common/audio_stream.h"
#include "common/log.h"
#include "common/state_wrapper.h"
#include "common/string_util.h"
#include "controller.h"
#include "cpu_code_cache.h"
#include "cpu_core.h"
#include "dma.h"
#include "game_list.h"
#include "gpu.h"
#include "host_display.h"
#include "host_interface.h"
#include "interrupt_controller.h"
#include "mdec.h"
#include "memory_card.h"
#include "pad.h"
#include "psf_loader.h"
#include "save_state_version.h"
#include "sio.h"
#include "spu.h"
#include "timers.h"
#include <cstdio>
#include <imgui.h>
Log_SetChannel(System);
#ifdef WIN32
#include "common/windows_headers.h"
#else
#include <time.h>
#endif
SystemBootParameters::SystemBootParameters() = default;
SystemBootParameters::SystemBootParameters(std::string filename_) : filename(filename_) {}
SystemBootParameters::~SystemBootParameters() = default;
System::System(HostInterface* host_interface) : m_host_interface(host_interface)
{
m_cpu = std::make_unique<CPU::Core>();
m_cpu_code_cache = std::make_unique<CPU::CodeCache>();
m_bus = std::make_unique<Bus>();
m_dma = std::make_unique<DMA>();
m_interrupt_controller = std::make_unique<InterruptController>();
m_cdrom = std::make_unique<CDROM>();
m_pad = std::make_unique<Pad>();
m_timers = std::make_unique<Timers>();
m_spu = std::make_unique<SPU>();
m_mdec = std::make_unique<MDEC>();
m_sio = std::make_unique<SIO>();
m_region = host_interface->m_settings.region;
m_cpu_execution_mode = host_interface->m_settings.cpu_execution_mode;
}
System::~System()
{
// we have to explicitly destroy components because they can deregister events
DestroyComponents();
}
ConsoleRegion System::GetConsoleRegionForDiscRegion(DiscRegion region)
{
switch (region)
{
case DiscRegion::NTSC_J:
return ConsoleRegion::NTSC_J;
case DiscRegion::NTSC_U:
case DiscRegion::Other:
default:
return ConsoleRegion::NTSC_U;
case DiscRegion::PAL:
return ConsoleRegion::PAL;
}
}
std::unique_ptr<System> System::Create(HostInterface* host_interface)
{
std::unique_ptr<System> system(new System(host_interface));
if (!system->CreateGPU(host_interface->m_settings.gpu_renderer))
return {};
return system;
}
bool System::RecreateGPU(GPURenderer renderer)
{
// save current state
std::unique_ptr<ByteStream> state_stream = ByteStream_CreateGrowableMemoryStream();
StateWrapper sw(state_stream.get(), StateWrapper::Mode::Write);
const bool state_valid = m_gpu->DoState(sw) && DoEventsState(sw);
if (!state_valid)
Log_ErrorPrintf("Failed to save old GPU state when switching renderers");
// create new renderer
m_gpu.reset();
if (!CreateGPU(renderer))
{
Panic("Failed to recreate GPU");
return false;
}
if (state_valid)
{
state_stream->SeekAbsolute(0);
sw.SetMode(StateWrapper::Mode::Read);
m_gpu->DoState(sw);
DoEventsState(sw);
}
return true;
}
void System::UpdateGPUSettings()
{
m_gpu->UpdateSettings();
}
void System::SetCPUExecutionMode(CPUExecutionMode mode)
{
m_cpu_execution_mode = mode;
m_cpu_code_cache->Flush();
m_cpu_code_cache->SetUseRecompiler(mode == CPUExecutionMode::Recompiler);
}
bool System::Boot(const SystemBootParameters& params)
{
// Load CD image up and detect region.
std::unique_ptr<CDImage> media;
bool exe_boot = false;
bool psf_boot = false;
if (!params.filename.empty())
{
exe_boot = GameList::IsExeFileName(params.filename.c_str());
psf_boot = (!exe_boot && GameList::IsPsfFileName(params.filename.c_str()));
if (exe_boot || psf_boot)
{
// TODO: Pull region from PSF
if (m_region == ConsoleRegion::Auto)
{
Log_InfoPrintf("Defaulting to NTSC-U region for executable.");
m_region = ConsoleRegion::NTSC_U;
}
}
else
{
Log_InfoPrintf("Loading CD image '%s'...", params.filename.c_str());
media = CDImage::Open(params.filename.c_str());
if (!media)
{
m_host_interface->ReportFormattedError("Failed to load CD image '%s'", params.filename.c_str());
return false;
}
if (m_region == ConsoleRegion::Auto)
{
const DiscRegion disc_region = GameList::GetRegionForImage(media.get());
if (disc_region != DiscRegion::Other)
{
m_region = GetConsoleRegionForDiscRegion(disc_region);
Log_InfoPrintf("Auto-detected console %s region for '%s' (region %s)",
Settings::GetConsoleRegionName(m_region), params.filename.c_str(),
Settings::GetDiscRegionName(disc_region));
}
else
{
m_region = ConsoleRegion::NTSC_U;
Log_WarningPrintf("Could not determine console region for disc region %s. Defaulting to %s.",
Settings::GetDiscRegionName(disc_region), Settings::GetConsoleRegionName(m_region));
}
}
}
}
else
{
// Default to NTSC for BIOS boot.
if (m_region == ConsoleRegion::Auto)
m_region = ConsoleRegion::NTSC_U;
}
// Load BIOS image.
std::optional<BIOS::Image> bios_image = m_host_interface->GetBIOSImage(m_region);
if (!bios_image)
{
m_host_interface->ReportFormattedError("Failed to load %s BIOS", Settings::GetConsoleRegionName(m_region));
return false;
}
// Notify change of disc.
UpdateRunningGame(params.filename.c_str(), media.get());
// Component setup.
InitializeComponents();
UpdateControllers();
UpdateMemoryCards();
Reset();
// Enable tty by patching bios.
const BIOS::Hash bios_hash = BIOS::GetHash(*bios_image);
if (GetSettings().bios_patch_tty_enable)
BIOS::PatchBIOSEnableTTY(*bios_image, bios_hash);
// Load EXE late after BIOS.
if (exe_boot && !LoadEXE(params.filename.c_str(), *bios_image))
{
m_host_interface->ReportFormattedError("Failed to load EXE file '%s'", params.filename.c_str());
return false;
}
else if (psf_boot && !LoadPSF(params.filename.c_str(), *bios_image))
{
m_host_interface->ReportFormattedError("Failed to load EXE file '%s'", params.filename.c_str());
return false;
}
// Insert CD, and apply fastboot patch if enabled.
if (media)
m_cdrom->InsertMedia(std::move(media));
if (m_cdrom->HasMedia() &&
(params.override_fast_boot.has_value() ? params.override_fast_boot.value() : GetSettings().bios_patch_fast_boot))
{
BIOS::PatchBIOSFastBoot(*bios_image, bios_hash);
}
// Load the patched BIOS up.
m_bus->SetBIOS(*bios_image);
// Good to go.
return true;
}
void System::InitializeComponents()
{
m_cpu->Initialize(m_bus.get());
m_cpu_code_cache->Initialize(this, m_cpu.get(), m_bus.get(), m_cpu_execution_mode == CPUExecutionMode::Recompiler);
m_bus->Initialize(m_cpu.get(), m_cpu_code_cache.get(), m_dma.get(), m_interrupt_controller.get(), m_gpu.get(),
m_cdrom.get(), m_pad.get(), m_timers.get(), m_spu.get(), m_mdec.get(), m_sio.get());
m_dma->Initialize(this, m_bus.get(), m_interrupt_controller.get(), m_gpu.get(), m_cdrom.get(), m_spu.get(),
m_mdec.get());
m_interrupt_controller->Initialize(m_cpu.get());
m_cdrom->Initialize(this, m_dma.get(), m_interrupt_controller.get(), m_spu.get());
m_pad->Initialize(this, m_interrupt_controller.get());
m_timers->Initialize(this, m_interrupt_controller.get(), m_gpu.get());
m_spu->Initialize(this, m_dma.get(), m_interrupt_controller.get());
m_mdec->Initialize(this, m_dma.get());
UpdateThrottlePeriod();
}
void System::DestroyComponents()
{
m_mdec.reset();
m_spu.reset();
m_timers.reset();
m_pad.reset();
m_cdrom.reset();
m_gpu.reset();
m_interrupt_controller.reset();
m_dma.reset();
m_cpu_code_cache.reset();
m_bus.reset();
m_cpu.reset();
}
bool System::CreateGPU(GPURenderer renderer)
{
switch (renderer)
{
case GPURenderer::HardwareOpenGL:
m_gpu = GPU::CreateHardwareOpenGLRenderer();
break;
#ifdef WIN32
case GPURenderer::HardwareD3D11:
m_gpu = GPU::CreateHardwareD3D11Renderer();
break;
#endif
case GPURenderer::Software:
default:
m_gpu = GPU::CreateSoftwareRenderer();
break;
}
if (!m_gpu || !m_gpu->Initialize(m_host_interface->GetDisplay(), this, m_dma.get(), m_interrupt_controller.get(),
m_timers.get()))
{
Log_ErrorPrintf("Failed to initialize GPU, falling back to software");
m_gpu.reset();
m_gpu = GPU::CreateSoftwareRenderer();
if (!m_gpu->Initialize(m_host_interface->GetDisplay(), this, m_dma.get(), m_interrupt_controller.get(),
m_timers.get()))
{
return false;
}
}
m_bus->SetGPU(m_gpu.get());
m_dma->SetGPU(m_gpu.get());
m_timers->SetGPU(m_gpu.get());
return true;
}
bool System::DoState(StateWrapper& sw)
{
if (!sw.DoMarker("System"))
return false;
sw.Do(&m_region);
sw.Do(&m_frame_number);
sw.Do(&m_internal_frame_number);
sw.Do(&m_global_tick_counter);
std::string media_filename = m_cdrom->GetMediaFileName();
sw.Do(&media_filename);
bool media_is_bad = false;
if (sw.IsReading())
{
std::unique_ptr<CDImage> media;
if (!media_filename.empty())
{
media = CDImage::Open(media_filename.c_str());
if (!media)
{
Log_ErrorPrintf("Failed to open CD image from save state: '%s'. Disc will be removed.", media_filename.c_str());
media_is_bad = true;
}
}
UpdateRunningGame(media_filename.c_str(), media.get());
m_cdrom->Reset();
if (media)
m_cdrom->InsertMedia(std::move(media));
else
m_cdrom->RemoveMedia();
}
if (!sw.DoMarker("CPU") || !m_cpu->DoState(sw))
return false;
if (sw.IsReading())
m_cpu_code_cache->Flush();
if (!sw.DoMarker("Bus") || !m_bus->DoState(sw))
return false;
if (!sw.DoMarker("DMA") || !m_dma->DoState(sw))
return false;
if (!sw.DoMarker("InterruptController") || !m_interrupt_controller->DoState(sw))
return false;
if (!sw.DoMarker("GPU") || !m_gpu->DoState(sw))
return false;
if (!sw.DoMarker("CDROM") || !m_cdrom->DoState(sw))
return false;
if (!sw.DoMarker("Pad") || !m_pad->DoState(sw))
return false;
if (!sw.DoMarker("Timers") || !m_timers->DoState(sw))
return false;
if (!sw.DoMarker("SPU") || !m_spu->DoState(sw))
return false;
if (!sw.DoMarker("MDEC") || !m_mdec->DoState(sw))
return false;
if (!sw.DoMarker("SIO") || !m_sio->DoState(sw))
return false;
if (!sw.DoMarker("Events") || !DoEventsState(sw))
return false;
if (media_is_bad)
m_cdrom->RemoveMedia(true);
return !sw.HasError();
}
void System::Reset()
{
m_cpu->Reset();
m_cpu_code_cache->Flush();
m_bus->Reset();
m_dma->Reset();
m_interrupt_controller->Reset();
m_gpu->Reset();
m_cdrom->Reset();
m_pad->Reset();
m_timers->Reset();
m_spu->Reset();
m_mdec->Reset();
m_sio->Reset();
m_frame_number = 1;
m_internal_frame_number = 0;
m_global_tick_counter = 0;
m_last_event_run_time = 0;
ResetPerformanceCounters();
}
bool System::LoadState(ByteStream* state)
{
SAVE_STATE_HEADER header;
if (!state->Read2(&header, sizeof(header)))
return false;
if (header.magic != SAVE_STATE_MAGIC)
return false;
if (header.version != SAVE_STATE_VERSION)
{
m_host_interface->ReportFormattedError("Save state is incompatible: expecting version %u but state is version %u.",
SAVE_STATE_VERSION, header.version);
return false;
}
if (header.data_compression_type != 0)
{
m_host_interface->ReportFormattedError("Unknown save state compression type %u", header.data_compression_type);
return false;
}
if (!state->SeekAbsolute(header.offset_to_data))
return false;
StateWrapper sw(state, StateWrapper::Mode::Read);
return DoState(sw);
}
bool System::SaveState(ByteStream* state)
{
SAVE_STATE_HEADER header = {};
const u64 header_position = state->GetPosition();
if (!state->Write2(&header, sizeof(header)))
return false;
// fill in header
header.magic = SAVE_STATE_MAGIC;
header.version = SAVE_STATE_VERSION;
StringUtil::Strlcpy(header.title, m_running_game_title.c_str(), sizeof(header.title));
StringUtil::Strlcpy(header.game_code, m_running_game_code.c_str(), sizeof(header.game_code));
// save screenshot
{
const u32 screenshot_width = 128;
const u32 screenshot_height = 128;
std::vector<u32> screenshot_buffer;
if (m_host_interface->GetDisplay()->WriteDisplayTextureToBuffer(&screenshot_buffer, screenshot_width,
screenshot_height) &&
!screenshot_buffer.empty())
{
header.offset_to_screenshot = static_cast<u32>(state->GetPosition());
header.screenshot_width = screenshot_width;
header.screenshot_height = screenshot_height;
header.screenshot_size = static_cast<u32>(screenshot_buffer.size() * sizeof(u32));
if (!state->Write2(screenshot_buffer.data(), header.screenshot_size))
return false;
}
}
// write data
{
header.offset_to_data = static_cast<u32>(state->GetPosition());
StateWrapper sw(state, StateWrapper::Mode::Write);
if (!DoState(sw))
return false;
header.data_compression_type = 0;
header.data_uncompressed_size = static_cast<u32>(state->GetPosition() - header.offset_to_data);
}
// re-write header
const u64 end_position = state->GetPosition();
if (!state->SeekAbsolute(header_position) || !state->Write2(&header, sizeof(header)) ||
!state->SeekAbsolute(end_position))
{
return false;
}
return true;
}
void System::RunFrame()
{
m_frame_timer.Reset();
m_frame_done = false;
// Duplicated to avoid branch in the while loop, as the downcount can be quite low at times.
if (m_cpu_execution_mode == CPUExecutionMode::Interpreter)
{
do
{
UpdateCPUDowncount();
m_cpu->Execute();
RunEvents();
} while (!m_frame_done);
}
else
{
do
{
UpdateCPUDowncount();
m_cpu_code_cache->Execute();
RunEvents();
} while (!m_frame_done);
}
// Generate any pending samples from the SPU before sleeping, this way we reduce the chances of underruns.
m_spu->GeneratePendingSamples();
}
void System::SetThrottleFrequency(float frequency)
{
m_throttle_frequency = frequency;
UpdateThrottlePeriod();
}
void System::UpdateThrottlePeriod()
{
m_throttle_period = static_cast<s32>(1000000000.0 / static_cast<double>(m_throttle_frequency) /
static_cast<double>(GetSettings().emulation_speed));
}
void System::Throttle()
{
// Allow variance of up to 40ms either way.
constexpr s64 MAX_VARIANCE_TIME = INT64_C(40000000);
// Don't sleep for <1ms or >=period.
constexpr s64 MINIMUM_SLEEP_TIME = INT64_C(1000000);
// Use unsigned for defined overflow/wrap-around.
const u64 time = static_cast<u64>(m_throttle_timer.GetTimeNanoseconds());
const s64 sleep_time = static_cast<s64>(m_last_throttle_time - time);
if (sleep_time < -MAX_VARIANCE_TIME)
{
#ifndef _DEBUG
// Don't display the slow messages in debug, it'll always be slow...
// Limit how often the messages are displayed.
if (m_speed_lost_time_timestamp.GetTimeSeconds() >= 1.0f)
{
Log_WarningPrintf("System too slow, lost %.2f ms",
static_cast<double>(-sleep_time - MAX_VARIANCE_TIME) / 1000000.0);
m_speed_lost_time_timestamp.Reset();
}
#endif
m_last_throttle_time = 0;
m_throttle_timer.Reset();
}
else if (sleep_time >= MINIMUM_SLEEP_TIME && sleep_time <= m_throttle_period)
{
#ifdef WIN32
Sleep(static_cast<u32>(sleep_time / 1000000));
#else
const struct timespec ts = {0, static_cast<long>(sleep_time)};
nanosleep(&ts, nullptr);
#endif
}
m_last_throttle_time += m_throttle_period;
}
void System::UpdatePerformanceCounters()
{
const float frame_time = static_cast<float>(m_frame_timer.GetTimeMilliseconds());
m_average_frame_time_accumulator += frame_time;
m_worst_frame_time_accumulator = std::max(m_worst_frame_time_accumulator, frame_time);
// update fps counter
const float time = static_cast<float>(m_fps_timer.GetTimeSeconds());
if (time < 1.0f)
return;
const float frames_presented = static_cast<float>(m_frame_number - m_last_frame_number);
m_worst_frame_time = m_worst_frame_time_accumulator;
m_worst_frame_time_accumulator = 0.0f;
m_average_frame_time = m_average_frame_time_accumulator / frames_presented;
m_average_frame_time_accumulator = 0.0f;
m_vps = static_cast<float>(frames_presented / time);
m_last_frame_number = m_frame_number;
m_fps = static_cast<float>(m_internal_frame_number - m_last_internal_frame_number) / time;
m_last_internal_frame_number = m_internal_frame_number;
m_speed = static_cast<float>(static_cast<double>(m_global_tick_counter - m_last_global_tick_counter) /
(static_cast<double>(MASTER_CLOCK) * time)) *
100.0f;
m_last_global_tick_counter = m_global_tick_counter;
m_fps_timer.Reset();
m_host_interface->OnSystemPerformanceCountersUpdated();
}
void System::ResetPerformanceCounters()
{
m_last_frame_number = m_frame_number;
m_last_internal_frame_number = m_internal_frame_number;
m_last_global_tick_counter = m_global_tick_counter;
m_average_frame_time_accumulator = 0.0f;
m_worst_frame_time_accumulator = 0.0f;
m_fps_timer.Reset();
m_throttle_timer.Reset();
m_last_throttle_time = 0;
}
bool System::LoadEXE(const char* filename, std::vector<u8>& bios_image)
{
std::FILE* fp = std::fopen(filename, "rb");
if (!fp)
return false;
std::fseek(fp, 0, SEEK_END);
const u32 file_size = static_cast<u32>(std::ftell(fp));
std::fseek(fp, 0, SEEK_SET);
BIOS::PSEXEHeader header;
if (std::fread(&header, sizeof(header), 1, fp) != 1 || !BIOS::IsValidPSExeHeader(header, file_size))
{
std::fclose(fp);
return false;
}
if (header.memfill_size > 0)
{
const u32 words_to_write = header.memfill_size / 4;
u32 address = header.memfill_start & ~UINT32_C(3);
for (u32 i = 0; i < words_to_write; i++)
{
m_cpu->SafeWriteMemoryWord(address, 0);
address += sizeof(u32);
}
}
if (header.file_size >= 4)
{
std::vector<u32> data_words((header.file_size + 3) / 4);
if (std::fread(data_words.data(), header.file_size, 1, fp) != 1)
{
std::fclose(fp);
return false;
}
const u32 num_words = header.file_size / 4;
u32 address = header.load_address;
for (u32 i = 0; i < num_words; i++)
{
m_cpu->SafeWriteMemoryWord(address, data_words[i]);
address += sizeof(u32);
}
}
std::fclose(fp);
// patch the BIOS to jump to the executable directly
const u32 r_pc = header.initial_pc;
const u32 r_gp = header.initial_gp;
const u32 r_sp = header.initial_sp_base + header.initial_sp_offset;
const u32 r_fp = header.initial_sp_base + header.initial_sp_offset;
return BIOS::PatchBIOSForEXE(bios_image, r_pc, r_gp, r_sp, r_fp);
}
bool System::LoadEXEFromBuffer(const void* buffer, u32 buffer_size, std::vector<u8>& bios_image)
{
const u8* buffer_ptr = static_cast<const u8*>(buffer);
const u8* buffer_end = static_cast<const u8*>(buffer) + buffer_size;
BIOS::PSEXEHeader header;
if (buffer_size < sizeof(header))
return false;
std::memcpy(&header, buffer_ptr, sizeof(header));
buffer_ptr += sizeof(header);
if (!BIOS::IsValidPSExeHeader(header, static_cast<u32>(buffer_end - buffer_ptr)))
return false;
if (header.memfill_size > 0)
{
const u32 words_to_write = header.memfill_size / 4;
u32 address = header.memfill_start & ~UINT32_C(3);
for (u32 i = 0; i < words_to_write; i++)
{
m_cpu->SafeWriteMemoryWord(address, 0);
address += sizeof(u32);
}
}
if (header.file_size >= 4)
{
std::vector<u32> data_words((header.file_size + 3) / 4);
if ((buffer_end - buffer_ptr) < header.file_size)
return false;
std::memcpy(data_words.data(), buffer_ptr, header.file_size);
const u32 num_words = header.file_size / 4;
u32 address = header.load_address;
for (u32 i = 0; i < num_words; i++)
{
m_cpu->SafeWriteMemoryWord(address, data_words[i]);
address += sizeof(u32);
}
}
// patch the BIOS to jump to the executable directly
const u32 r_pc = header.initial_pc;
const u32 r_gp = header.initial_gp;
const u32 r_sp = header.initial_sp_base + header.initial_sp_offset;
const u32 r_fp = header.initial_sp_base + header.initial_sp_offset;
return BIOS::PatchBIOSForEXE(bios_image, r_pc, r_gp, r_sp, r_fp);
}
bool System::LoadPSF(const char* filename, std::vector<u8>& bios_image)
{
Log_InfoPrintf("Loading PSF file from '%s'", filename);
PSFLoader::File psf;
if (!psf.Load(filename))
return false;
const std::vector<u8>& exe_data = psf.GetProgramData();
return LoadEXEFromBuffer(exe_data.data(), static_cast<u32>(exe_data.size()), bios_image);
}
bool System::SetExpansionROM(const char* filename)
{
std::FILE* fp = std::fopen(filename, "rb");
if (!fp)
{
Log_ErrorPrintf("Failed to open '%s'", filename);
return false;
}
std::fseek(fp, 0, SEEK_END);
const u32 size = static_cast<u32>(std::ftell(fp));
std::fseek(fp, 0, SEEK_SET);
std::vector<u8> data(size);
if (std::fread(data.data(), size, 1, fp) != 1)
{
Log_ErrorPrintf("Failed to read ROM data from '%s'", filename);
std::fclose(fp);
return false;
}
std::fclose(fp);
Log_InfoPrintf("Loaded expansion ROM from '%s': %u bytes", filename, size);
m_bus->SetExpansionROM(std::move(data));
return true;
}
void System::StallCPU(TickCount ticks)
{
m_cpu->AddPendingTicks(ticks);
#if 0
if (m_cpu->GetPendingTicks() >= m_cpu->GetDowncount() && !m_running_events)
RunEvents();
#endif
}
Controller* System::GetController(u32 slot) const
{
return m_pad->GetController(slot);
}
void System::UpdateControllers()
{
const Settings& settings = m_host_interface->GetSettings();
for (u32 i = 0; i < NUM_CONTROLLER_AND_CARD_PORTS; i++)
{
m_pad->SetController(i, nullptr);
const ControllerType type = settings.controller_types[i];
if (type != ControllerType::None)
{
std::unique_ptr<Controller> controller = Controller::Create(this, type, i);
if (controller)
m_pad->SetController(i, std::move(controller));
}
}
}
void System::UpdateMemoryCards()
{
const Settings& settings = m_host_interface->GetSettings();
for (u32 i = 0; i < NUM_CONTROLLER_AND_CARD_PORTS; i++)
{
m_pad->SetMemoryCard(i, nullptr);
const MemoryCardType type = settings.memory_card_types[i];
std::unique_ptr<MemoryCard> card;
switch (settings.memory_card_types[i])
{
case MemoryCardType::None:
continue;
case MemoryCardType::PerGame:
{
if (m_running_game_code.empty())
{
m_host_interface->AddFormattedOSDMessage(5.0f,
"Per-game memory card cannot be used for slot %u as the running "
"game has no code. Using shared card instead.",
i + 1u);
card = MemoryCard::Open(this, m_host_interface->GetSharedMemoryCardPath(i));
}
else
{
card = MemoryCard::Open(this, m_host_interface->GetGameMemoryCardPath(m_running_game_code.c_str(), i));
}
}
break;
case MemoryCardType::PerGameTitle:
{
if (m_running_game_title.empty())
{
m_host_interface->AddFormattedOSDMessage(5.0f,
"Per-game memory card cannot be used for slot %u as the running "
"game has no title. Using shared card instead.",
i + 1u);
card = MemoryCard::Open(this, m_host_interface->GetSharedMemoryCardPath(i));
}
else
{
card = MemoryCard::Open(this, m_host_interface->GetGameMemoryCardPath(m_running_game_title.c_str(), i));
}
}
break;
case MemoryCardType::Shared:
{
if (settings.memory_card_paths[i].empty())
{
m_host_interface->AddFormattedOSDMessage(2.0f, "Memory card path for slot %u is missing, using default.",
i + 1u);
card = MemoryCard::Open(this, m_host_interface->GetSharedMemoryCardPath(i));
}
else
{
card = MemoryCard::Open(this, settings.memory_card_paths[i]);
}
}
break;
}
if (card)
m_pad->SetMemoryCard(i, std::move(card));
}
}
bool System::HasMedia() const
{
return m_cdrom->HasMedia();
}
bool System::InsertMedia(const char* path)
{
std::unique_ptr<CDImage> image = CDImage::Open(path);
if (!image)
return false;
UpdateRunningGame(path, image.get());
m_cdrom->InsertMedia(std::move(image));
if (GetSettings().HasAnyPerGameMemoryCards())
{
m_host_interface->AddOSDMessage("Game changed, reloading memory cards.", 2.0f);
UpdateMemoryCards();
}
return true;
}
void System::RemoveMedia()
{
m_cdrom->RemoveMedia();
}
std::unique_ptr<TimingEvent> System::CreateTimingEvent(std::string name, TickCount period, TickCount interval,
TimingEventCallback callback, bool activate)
{
std::unique_ptr<TimingEvent> event =
std::make_unique<TimingEvent>(this, std::move(name), period, interval, std::move(callback));
if (activate)
event->Activate();
return event;
}
static bool CompareEvents(const TimingEvent* lhs, const TimingEvent* rhs)
{
return lhs->GetDowncount() > rhs->GetDowncount();
}
void System::AddActiveEvent(TimingEvent* event)
{
m_events.push_back(event);
if (!m_running_events)
{
std::push_heap(m_events.begin(), m_events.end(), CompareEvents);
if (!m_frame_done)
UpdateCPUDowncount();
}
else
{
m_events_need_sorting = true;
}
}
void System::RemoveActiveEvent(TimingEvent* event)
{
auto iter = std::find_if(m_events.begin(), m_events.end(), [event](const auto& it) { return event == it; });
if (iter == m_events.end())
{
Panic("Attempt to remove inactive event");
return;
}
m_events.erase(iter);
if (!m_running_events)
{
std::make_heap(m_events.begin(), m_events.end(), CompareEvents);
if (!m_events.empty() && !m_frame_done)
UpdateCPUDowncount();
}
else
{
m_events_need_sorting = true;
}
}
void System::SortEvents()
{
if (!m_running_events)
{
std::make_heap(m_events.begin(), m_events.end(), CompareEvents);
if (!m_frame_done)
UpdateCPUDowncount();
}
else
{
m_events_need_sorting = true;
}
}
void System::RunEvents()
{
DebugAssert(!m_running_events && !m_events.empty());
const TickCount pending_ticks = m_cpu->GetPendingTicks();
m_global_tick_counter += static_cast<u32>(pending_ticks);
m_cpu->ResetPendingTicks();
TickCount time = static_cast<TickCount>(m_global_tick_counter - m_last_event_run_time);
m_running_events = true;
m_last_event_run_time = m_global_tick_counter;
// Apply downcount to all events.
// This will result in a negative downcount for those events which are late.
for (TimingEvent* evt : m_events)
{
evt->m_downcount -= time;
evt->m_time_since_last_run += time;
}
// Now we can actually run the callbacks.
while (m_events.front()->GetDowncount() <= 0)
{
TimingEvent* evt = m_events.front();
const TickCount ticks_late = -evt->m_downcount;
std::pop_heap(m_events.begin(), m_events.end(), CompareEvents);
// Factor late time into the time for the next invocation.
const TickCount ticks_to_execute = evt->m_time_since_last_run;
evt->m_downcount += evt->m_interval;
evt->m_time_since_last_run = 0;
// The cycles_late is only an indicator, it doesn't modify the cycles to execute.
evt->m_callback(ticks_to_execute, ticks_late);
// Place it in the appropriate position in the queue.
if (m_events_need_sorting)
{
// Another event may have been changed by this event, or the interval/downcount changed.
std::make_heap(m_events.begin(), m_events.end(), CompareEvents);
m_events_need_sorting = false;
}
else
{
// Keep the event list in a heap. The event we just serviced will be in the last place,
// so we can use push_here instead of make_heap, which should be faster.
std::push_heap(m_events.begin(), m_events.end(), CompareEvents);
}
}
m_running_events = false;
m_cpu->SetDowncount(m_events.front()->GetDowncount());
}
void System::UpdateCPUDowncount()
{
m_cpu->SetDowncount(m_events[0]->GetDowncount());
}
bool System::DoEventsState(StateWrapper& sw)
{
if (sw.IsReading())
{
// Load timestamps for the clock events.
// Any oneshot events should be recreated by the load state method, so we can fix up their times here.
u32 event_count = 0;
sw.Do(&event_count);
for (u32 i = 0; i < event_count; i++)
{
std::string event_name;
TickCount downcount, time_since_last_run, period, interval;
sw.Do(&event_name);
sw.Do(&downcount);
sw.Do(&time_since_last_run);
sw.Do(&period);
sw.Do(&interval);
if (sw.HasError())
return false;
TimingEvent* event = FindActiveEvent(event_name.c_str());
if (!event)
{
Log_WarningPrintf("Save state has event '%s', but couldn't find this event when loading.", event_name.c_str());
continue;
}
// Using reschedule is safe here since we call sort afterwards.
event->m_downcount = downcount;
event->m_time_since_last_run = time_since_last_run;
event->m_period = period;
event->m_interval = interval;
}
sw.Do(&m_last_event_run_time);
Log_DevPrintf("Loaded %u events from save state.", event_count);
SortEvents();
}
else
{
u32 event_count = static_cast<u32>(m_events.size());
sw.Do(&event_count);
for (TimingEvent* evt : m_events)
{
sw.Do(&evt->m_name);
sw.Do(&evt->m_downcount);
sw.Do(&evt->m_time_since_last_run);
sw.Do(&evt->m_period);
sw.Do(&evt->m_interval);
}
sw.Do(&m_last_event_run_time);
Log_DevPrintf("Wrote %u events to save state.", event_count);
}
return !sw.HasError();
}
TimingEvent* System::FindActiveEvent(const char* name)
{
auto iter =
std::find_if(m_events.begin(), m_events.end(), [&name](auto& ev) { return ev->GetName().compare(name) == 0; });
return (iter != m_events.end()) ? *iter : nullptr;
}
void System::UpdateRunningGame(const char* path, CDImage* image)
{
m_running_game_path.clear();
m_running_game_code.clear();
m_running_game_title.clear();
if (path && std::strlen(path) > 0)
{
m_running_game_path = path;
const GameListEntry* list_entry = m_host_interface->GetGameList()->GetEntryForPath(path);
if (list_entry)
{
m_running_game_code = list_entry->code;
m_running_game_title = list_entry->title;
}
else
{
if (image)
m_running_game_code = GameList::GetGameCodeForImage(image);
const GameListDatabaseEntry* db_entry =
(!m_running_game_code.empty()) ? m_host_interface->GetGameList()->GetDatabaseEntryForCode(m_running_game_code) :
nullptr;
if (db_entry)
m_running_game_title = db_entry->title;
else
m_running_game_title = GameList::GetTitleForPath(path);
}
}
m_host_interface->OnRunningGameChanged();
}