mirror of
				https://github.com/RetroDECK/Duckstation.git
				synced 2025-04-10 19:15:14 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1860 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1860 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) Yann Collet, Facebook, Inc.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * This source code is licensed under both the BSD-style license (found in the
 | |
|  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
 | |
|  * in the COPYING file in the root directory of this source tree).
 | |
|  * You may select, at your option, one of the above-listed licenses.
 | |
|  */
 | |
| 
 | |
| 
 | |
| /* ======   Compiler specifics   ====== */
 | |
| #if defined(_MSC_VER)
 | |
| #  pragma warning(disable : 4204)   /* disable: C4204: non-constant aggregate initializer */
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* ======   Constants   ====== */
 | |
| #define ZSTDMT_OVERLAPLOG_DEFAULT 0
 | |
| 
 | |
| 
 | |
| /* ======   Dependencies   ====== */
 | |
| #include "../common/zstd_deps.h"   /* ZSTD_memcpy, ZSTD_memset, INT_MAX, UINT_MAX */
 | |
| #include "../common/mem.h"         /* MEM_STATIC */
 | |
| #include "../common/pool.h"        /* threadpool */
 | |
| #include "../common/threading.h"   /* mutex */
 | |
| #include "zstd_compress_internal.h"  /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */
 | |
| #include "zstd_ldm.h"
 | |
| #include "zstdmt_compress.h"
 | |
| 
 | |
| /* Guards code to support resizing the SeqPool.
 | |
|  * We will want to resize the SeqPool to save memory in the future.
 | |
|  * Until then, comment the code out since it is unused.
 | |
|  */
 | |
| #define ZSTD_RESIZE_SEQPOOL 0
 | |
| 
 | |
| /* ======   Debug   ====== */
 | |
| #if defined(DEBUGLEVEL) && (DEBUGLEVEL>=2) \
 | |
|     && !defined(_MSC_VER) \
 | |
|     && !defined(__MINGW32__)
 | |
| 
 | |
| #  include <stdio.h>
 | |
| #  include <unistd.h>
 | |
| #  include <sys/times.h>
 | |
| 
 | |
| #  define DEBUG_PRINTHEX(l,p,n) {            \
 | |
|     unsigned debug_u;                        \
 | |
|     for (debug_u=0; debug_u<(n); debug_u++)  \
 | |
|         RAWLOG(l, "%02X ", ((const unsigned char*)(p))[debug_u]); \
 | |
|     RAWLOG(l, " \n");                        \
 | |
| }
 | |
| 
 | |
| static unsigned long long GetCurrentClockTimeMicroseconds(void)
 | |
| {
 | |
|    static clock_t _ticksPerSecond = 0;
 | |
|    if (_ticksPerSecond <= 0) _ticksPerSecond = sysconf(_SC_CLK_TCK);
 | |
| 
 | |
|    {   struct tms junk; clock_t newTicks = (clock_t) times(&junk);
 | |
|        return ((((unsigned long long)newTicks)*(1000000))/_ticksPerSecond);
 | |
| }  }
 | |
| 
 | |
| #define MUTEX_WAIT_TIME_DLEVEL 6
 | |
| #define ZSTD_PTHREAD_MUTEX_LOCK(mutex) {          \
 | |
|     if (DEBUGLEVEL >= MUTEX_WAIT_TIME_DLEVEL) {   \
 | |
|         unsigned long long const beforeTime = GetCurrentClockTimeMicroseconds(); \
 | |
|         ZSTD_pthread_mutex_lock(mutex);           \
 | |
|         {   unsigned long long const afterTime = GetCurrentClockTimeMicroseconds(); \
 | |
|             unsigned long long const elapsedTime = (afterTime-beforeTime); \
 | |
|             if (elapsedTime > 1000) {  /* or whatever threshold you like; I'm using 1 millisecond here */ \
 | |
|                 DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL, "Thread took %llu microseconds to acquire mutex %s \n", \
 | |
|                    elapsedTime, #mutex);          \
 | |
|         }   }                                     \
 | |
|     } else {                                      \
 | |
|         ZSTD_pthread_mutex_lock(mutex);           \
 | |
|     }                                             \
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| #  define ZSTD_PTHREAD_MUTEX_LOCK(m) ZSTD_pthread_mutex_lock(m)
 | |
| #  define DEBUG_PRINTHEX(l,p,n) {}
 | |
| 
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* =====   Buffer Pool   ===== */
 | |
| /* a single Buffer Pool can be invoked from multiple threads in parallel */
 | |
| 
 | |
| typedef struct buffer_s {
 | |
|     void* start;
 | |
|     size_t capacity;
 | |
| } buffer_t;
 | |
| 
 | |
| static const buffer_t g_nullBuffer = { NULL, 0 };
 | |
| 
 | |
| typedef struct ZSTDMT_bufferPool_s {
 | |
|     ZSTD_pthread_mutex_t poolMutex;
 | |
|     size_t bufferSize;
 | |
|     unsigned totalBuffers;
 | |
|     unsigned nbBuffers;
 | |
|     ZSTD_customMem cMem;
 | |
|     buffer_t bTable[1];   /* variable size */
 | |
| } ZSTDMT_bufferPool;
 | |
| 
 | |
| static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned maxNbBuffers, ZSTD_customMem cMem)
 | |
| {
 | |
|     ZSTDMT_bufferPool* const bufPool = (ZSTDMT_bufferPool*)ZSTD_customCalloc(
 | |
|         sizeof(ZSTDMT_bufferPool) + (maxNbBuffers-1) * sizeof(buffer_t), cMem);
 | |
|     if (bufPool==NULL) return NULL;
 | |
|     if (ZSTD_pthread_mutex_init(&bufPool->poolMutex, NULL)) {
 | |
|         ZSTD_customFree(bufPool, cMem);
 | |
|         return NULL;
 | |
|     }
 | |
|     bufPool->bufferSize = 64 KB;
 | |
|     bufPool->totalBuffers = maxNbBuffers;
 | |
|     bufPool->nbBuffers = 0;
 | |
|     bufPool->cMem = cMem;
 | |
|     return bufPool;
 | |
| }
 | |
| 
 | |
| static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool)
 | |
| {
 | |
|     unsigned u;
 | |
|     DEBUGLOG(3, "ZSTDMT_freeBufferPool (address:%08X)", (U32)(size_t)bufPool);
 | |
|     if (!bufPool) return;   /* compatibility with free on NULL */
 | |
|     for (u=0; u<bufPool->totalBuffers; u++) {
 | |
|         DEBUGLOG(4, "free buffer %2u (address:%08X)", u, (U32)(size_t)bufPool->bTable[u].start);
 | |
|         ZSTD_customFree(bufPool->bTable[u].start, bufPool->cMem);
 | |
|     }
 | |
|     ZSTD_pthread_mutex_destroy(&bufPool->poolMutex);
 | |
|     ZSTD_customFree(bufPool, bufPool->cMem);
 | |
| }
 | |
| 
 | |
| /* only works at initialization, not during compression */
 | |
| static size_t ZSTDMT_sizeof_bufferPool(ZSTDMT_bufferPool* bufPool)
 | |
| {
 | |
|     size_t const poolSize = sizeof(*bufPool)
 | |
|                           + (bufPool->totalBuffers - 1) * sizeof(buffer_t);
 | |
|     unsigned u;
 | |
|     size_t totalBufferSize = 0;
 | |
|     ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
 | |
|     for (u=0; u<bufPool->totalBuffers; u++)
 | |
|         totalBufferSize += bufPool->bTable[u].capacity;
 | |
|     ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
 | |
| 
 | |
|     return poolSize + totalBufferSize;
 | |
| }
 | |
| 
 | |
| /* ZSTDMT_setBufferSize() :
 | |
|  * all future buffers provided by this buffer pool will have _at least_ this size
 | |
|  * note : it's better for all buffers to have same size,
 | |
|  * as they become freely interchangeable, reducing malloc/free usages and memory fragmentation */
 | |
| static void ZSTDMT_setBufferSize(ZSTDMT_bufferPool* const bufPool, size_t const bSize)
 | |
| {
 | |
|     ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
 | |
|     DEBUGLOG(4, "ZSTDMT_setBufferSize: bSize = %u", (U32)bSize);
 | |
|     bufPool->bufferSize = bSize;
 | |
|     ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
 | |
| }
 | |
| 
 | |
| 
 | |
| static ZSTDMT_bufferPool* ZSTDMT_expandBufferPool(ZSTDMT_bufferPool* srcBufPool, unsigned maxNbBuffers)
 | |
| {
 | |
|     if (srcBufPool==NULL) return NULL;
 | |
|     if (srcBufPool->totalBuffers >= maxNbBuffers) /* good enough */
 | |
|         return srcBufPool;
 | |
|     /* need a larger buffer pool */
 | |
|     {   ZSTD_customMem const cMem = srcBufPool->cMem;
 | |
|         size_t const bSize = srcBufPool->bufferSize;   /* forward parameters */
 | |
|         ZSTDMT_bufferPool* newBufPool;
 | |
|         ZSTDMT_freeBufferPool(srcBufPool);
 | |
|         newBufPool = ZSTDMT_createBufferPool(maxNbBuffers, cMem);
 | |
|         if (newBufPool==NULL) return newBufPool;
 | |
|         ZSTDMT_setBufferSize(newBufPool, bSize);
 | |
|         return newBufPool;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /** ZSTDMT_getBuffer() :
 | |
|  *  assumption : bufPool must be valid
 | |
|  * @return : a buffer, with start pointer and size
 | |
|  *  note: allocation may fail, in this case, start==NULL and size==0 */
 | |
| static buffer_t ZSTDMT_getBuffer(ZSTDMT_bufferPool* bufPool)
 | |
| {
 | |
|     size_t const bSize = bufPool->bufferSize;
 | |
|     DEBUGLOG(5, "ZSTDMT_getBuffer: bSize = %u", (U32)bufPool->bufferSize);
 | |
|     ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
 | |
|     if (bufPool->nbBuffers) {   /* try to use an existing buffer */
 | |
|         buffer_t const buf = bufPool->bTable[--(bufPool->nbBuffers)];
 | |
|         size_t const availBufferSize = buf.capacity;
 | |
|         bufPool->bTable[bufPool->nbBuffers] = g_nullBuffer;
 | |
|         if ((availBufferSize >= bSize) & ((availBufferSize>>3) <= bSize)) {
 | |
|             /* large enough, but not too much */
 | |
|             DEBUGLOG(5, "ZSTDMT_getBuffer: provide buffer %u of size %u",
 | |
|                         bufPool->nbBuffers, (U32)buf.capacity);
 | |
|             ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
 | |
|             return buf;
 | |
|         }
 | |
|         /* size conditions not respected : scratch this buffer, create new one */
 | |
|         DEBUGLOG(5, "ZSTDMT_getBuffer: existing buffer does not meet size conditions => freeing");
 | |
|         ZSTD_customFree(buf.start, bufPool->cMem);
 | |
|     }
 | |
|     ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
 | |
|     /* create new buffer */
 | |
|     DEBUGLOG(5, "ZSTDMT_getBuffer: create a new buffer");
 | |
|     {   buffer_t buffer;
 | |
|         void* const start = ZSTD_customMalloc(bSize, bufPool->cMem);
 | |
|         buffer.start = start;   /* note : start can be NULL if malloc fails ! */
 | |
|         buffer.capacity = (start==NULL) ? 0 : bSize;
 | |
|         if (start==NULL) {
 | |
|             DEBUGLOG(5, "ZSTDMT_getBuffer: buffer allocation failure !!");
 | |
|         } else {
 | |
|             DEBUGLOG(5, "ZSTDMT_getBuffer: created buffer of size %u", (U32)bSize);
 | |
|         }
 | |
|         return buffer;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if ZSTD_RESIZE_SEQPOOL
 | |
| /** ZSTDMT_resizeBuffer() :
 | |
|  * assumption : bufPool must be valid
 | |
|  * @return : a buffer that is at least the buffer pool buffer size.
 | |
|  *           If a reallocation happens, the data in the input buffer is copied.
 | |
|  */
 | |
| static buffer_t ZSTDMT_resizeBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buffer)
 | |
| {
 | |
|     size_t const bSize = bufPool->bufferSize;
 | |
|     if (buffer.capacity < bSize) {
 | |
|         void* const start = ZSTD_customMalloc(bSize, bufPool->cMem);
 | |
|         buffer_t newBuffer;
 | |
|         newBuffer.start = start;
 | |
|         newBuffer.capacity = start == NULL ? 0 : bSize;
 | |
|         if (start != NULL) {
 | |
|             assert(newBuffer.capacity >= buffer.capacity);
 | |
|             ZSTD_memcpy(newBuffer.start, buffer.start, buffer.capacity);
 | |
|             DEBUGLOG(5, "ZSTDMT_resizeBuffer: created buffer of size %u", (U32)bSize);
 | |
|             return newBuffer;
 | |
|         }
 | |
|         DEBUGLOG(5, "ZSTDMT_resizeBuffer: buffer allocation failure !!");
 | |
|     }
 | |
|     return buffer;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* store buffer for later re-use, up to pool capacity */
 | |
| static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buf)
 | |
| {
 | |
|     DEBUGLOG(5, "ZSTDMT_releaseBuffer");
 | |
|     if (buf.start == NULL) return;   /* compatible with release on NULL */
 | |
|     ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
 | |
|     if (bufPool->nbBuffers < bufPool->totalBuffers) {
 | |
|         bufPool->bTable[bufPool->nbBuffers++] = buf;  /* stored for later use */
 | |
|         DEBUGLOG(5, "ZSTDMT_releaseBuffer: stored buffer of size %u in slot %u",
 | |
|                     (U32)buf.capacity, (U32)(bufPool->nbBuffers-1));
 | |
|         ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
 | |
|         return;
 | |
|     }
 | |
|     ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
 | |
|     /* Reached bufferPool capacity (should not happen) */
 | |
|     DEBUGLOG(5, "ZSTDMT_releaseBuffer: pool capacity reached => freeing ");
 | |
|     ZSTD_customFree(buf.start, bufPool->cMem);
 | |
| }
 | |
| 
 | |
| /* We need 2 output buffers per worker since each dstBuff must be flushed after it is released.
 | |
|  * The 3 additional buffers are as follows:
 | |
|  *   1 buffer for input loading
 | |
|  *   1 buffer for "next input" when submitting current one
 | |
|  *   1 buffer stuck in queue */
 | |
| #define BUF_POOL_MAX_NB_BUFFERS(nbWorkers) 2*nbWorkers + 3
 | |
| 
 | |
| /* After a worker releases its rawSeqStore, it is immediately ready for reuse.
 | |
|  * So we only need one seq buffer per worker. */
 | |
| #define SEQ_POOL_MAX_NB_BUFFERS(nbWorkers) nbWorkers
 | |
| 
 | |
| /* =====   Seq Pool Wrapper   ====== */
 | |
| 
 | |
| typedef ZSTDMT_bufferPool ZSTDMT_seqPool;
 | |
| 
 | |
| static size_t ZSTDMT_sizeof_seqPool(ZSTDMT_seqPool* seqPool)
 | |
| {
 | |
|     return ZSTDMT_sizeof_bufferPool(seqPool);
 | |
| }
 | |
| 
 | |
| static rawSeqStore_t bufferToSeq(buffer_t buffer)
 | |
| {
 | |
|     rawSeqStore_t seq = kNullRawSeqStore;
 | |
|     seq.seq = (rawSeq*)buffer.start;
 | |
|     seq.capacity = buffer.capacity / sizeof(rawSeq);
 | |
|     return seq;
 | |
| }
 | |
| 
 | |
| static buffer_t seqToBuffer(rawSeqStore_t seq)
 | |
| {
 | |
|     buffer_t buffer;
 | |
|     buffer.start = seq.seq;
 | |
|     buffer.capacity = seq.capacity * sizeof(rawSeq);
 | |
|     return buffer;
 | |
| }
 | |
| 
 | |
| static rawSeqStore_t ZSTDMT_getSeq(ZSTDMT_seqPool* seqPool)
 | |
| {
 | |
|     if (seqPool->bufferSize == 0) {
 | |
|         return kNullRawSeqStore;
 | |
|     }
 | |
|     return bufferToSeq(ZSTDMT_getBuffer(seqPool));
 | |
| }
 | |
| 
 | |
| #if ZSTD_RESIZE_SEQPOOL
 | |
| static rawSeqStore_t ZSTDMT_resizeSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq)
 | |
| {
 | |
|   return bufferToSeq(ZSTDMT_resizeBuffer(seqPool, seqToBuffer(seq)));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void ZSTDMT_releaseSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq)
 | |
| {
 | |
|   ZSTDMT_releaseBuffer(seqPool, seqToBuffer(seq));
 | |
| }
 | |
| 
 | |
| static void ZSTDMT_setNbSeq(ZSTDMT_seqPool* const seqPool, size_t const nbSeq)
 | |
| {
 | |
|   ZSTDMT_setBufferSize(seqPool, nbSeq * sizeof(rawSeq));
 | |
| }
 | |
| 
 | |
| static ZSTDMT_seqPool* ZSTDMT_createSeqPool(unsigned nbWorkers, ZSTD_customMem cMem)
 | |
| {
 | |
|     ZSTDMT_seqPool* const seqPool = ZSTDMT_createBufferPool(SEQ_POOL_MAX_NB_BUFFERS(nbWorkers), cMem);
 | |
|     if (seqPool == NULL) return NULL;
 | |
|     ZSTDMT_setNbSeq(seqPool, 0);
 | |
|     return seqPool;
 | |
| }
 | |
| 
 | |
| static void ZSTDMT_freeSeqPool(ZSTDMT_seqPool* seqPool)
 | |
| {
 | |
|     ZSTDMT_freeBufferPool(seqPool);
 | |
| }
 | |
| 
 | |
| static ZSTDMT_seqPool* ZSTDMT_expandSeqPool(ZSTDMT_seqPool* pool, U32 nbWorkers)
 | |
| {
 | |
|     return ZSTDMT_expandBufferPool(pool, SEQ_POOL_MAX_NB_BUFFERS(nbWorkers));
 | |
| }
 | |
| 
 | |
| 
 | |
| /* =====   CCtx Pool   ===== */
 | |
| /* a single CCtx Pool can be invoked from multiple threads in parallel */
 | |
| 
 | |
| typedef struct {
 | |
|     ZSTD_pthread_mutex_t poolMutex;
 | |
|     int totalCCtx;
 | |
|     int availCCtx;
 | |
|     ZSTD_customMem cMem;
 | |
|     ZSTD_CCtx* cctx[1];   /* variable size */
 | |
| } ZSTDMT_CCtxPool;
 | |
| 
 | |
| /* note : all CCtx borrowed from the pool should be released back to the pool _before_ freeing the pool */
 | |
| static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool)
 | |
| {
 | |
|     int cid;
 | |
|     for (cid=0; cid<pool->totalCCtx; cid++)
 | |
|         ZSTD_freeCCtx(pool->cctx[cid]);  /* note : compatible with free on NULL */
 | |
|     ZSTD_pthread_mutex_destroy(&pool->poolMutex);
 | |
|     ZSTD_customFree(pool, pool->cMem);
 | |
| }
 | |
| 
 | |
| /* ZSTDMT_createCCtxPool() :
 | |
|  * implies nbWorkers >= 1 , checked by caller ZSTDMT_createCCtx() */
 | |
| static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(int nbWorkers,
 | |
|                                               ZSTD_customMem cMem)
 | |
| {
 | |
|     ZSTDMT_CCtxPool* const cctxPool = (ZSTDMT_CCtxPool*) ZSTD_customCalloc(
 | |
|         sizeof(ZSTDMT_CCtxPool) + (nbWorkers-1)*sizeof(ZSTD_CCtx*), cMem);
 | |
|     assert(nbWorkers > 0);
 | |
|     if (!cctxPool) return NULL;
 | |
|     if (ZSTD_pthread_mutex_init(&cctxPool->poolMutex, NULL)) {
 | |
|         ZSTD_customFree(cctxPool, cMem);
 | |
|         return NULL;
 | |
|     }
 | |
|     cctxPool->cMem = cMem;
 | |
|     cctxPool->totalCCtx = nbWorkers;
 | |
|     cctxPool->availCCtx = 1;   /* at least one cctx for single-thread mode */
 | |
|     cctxPool->cctx[0] = ZSTD_createCCtx_advanced(cMem);
 | |
|     if (!cctxPool->cctx[0]) { ZSTDMT_freeCCtxPool(cctxPool); return NULL; }
 | |
|     DEBUGLOG(3, "cctxPool created, with %u workers", nbWorkers);
 | |
|     return cctxPool;
 | |
| }
 | |
| 
 | |
| static ZSTDMT_CCtxPool* ZSTDMT_expandCCtxPool(ZSTDMT_CCtxPool* srcPool,
 | |
|                                               int nbWorkers)
 | |
| {
 | |
|     if (srcPool==NULL) return NULL;
 | |
|     if (nbWorkers <= srcPool->totalCCtx) return srcPool;   /* good enough */
 | |
|     /* need a larger cctx pool */
 | |
|     {   ZSTD_customMem const cMem = srcPool->cMem;
 | |
|         ZSTDMT_freeCCtxPool(srcPool);
 | |
|         return ZSTDMT_createCCtxPool(nbWorkers, cMem);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* only works during initialization phase, not during compression */
 | |
| static size_t ZSTDMT_sizeof_CCtxPool(ZSTDMT_CCtxPool* cctxPool)
 | |
| {
 | |
|     ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
 | |
|     {   unsigned const nbWorkers = cctxPool->totalCCtx;
 | |
|         size_t const poolSize = sizeof(*cctxPool)
 | |
|                                 + (nbWorkers-1) * sizeof(ZSTD_CCtx*);
 | |
|         unsigned u;
 | |
|         size_t totalCCtxSize = 0;
 | |
|         for (u=0; u<nbWorkers; u++) {
 | |
|             totalCCtxSize += ZSTD_sizeof_CCtx(cctxPool->cctx[u]);
 | |
|         }
 | |
|         ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
 | |
|         assert(nbWorkers > 0);
 | |
|         return poolSize + totalCCtxSize;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* cctxPool)
 | |
| {
 | |
|     DEBUGLOG(5, "ZSTDMT_getCCtx");
 | |
|     ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
 | |
|     if (cctxPool->availCCtx) {
 | |
|         cctxPool->availCCtx--;
 | |
|         {   ZSTD_CCtx* const cctx = cctxPool->cctx[cctxPool->availCCtx];
 | |
|             ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
 | |
|             return cctx;
 | |
|     }   }
 | |
|     ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
 | |
|     DEBUGLOG(5, "create one more CCtx");
 | |
|     return ZSTD_createCCtx_advanced(cctxPool->cMem);   /* note : can be NULL, when creation fails ! */
 | |
| }
 | |
| 
 | |
| static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx)
 | |
| {
 | |
|     if (cctx==NULL) return;   /* compatibility with release on NULL */
 | |
|     ZSTD_pthread_mutex_lock(&pool->poolMutex);
 | |
|     if (pool->availCCtx < pool->totalCCtx)
 | |
|         pool->cctx[pool->availCCtx++] = cctx;
 | |
|     else {
 | |
|         /* pool overflow : should not happen, since totalCCtx==nbWorkers */
 | |
|         DEBUGLOG(4, "CCtx pool overflow : free cctx");
 | |
|         ZSTD_freeCCtx(cctx);
 | |
|     }
 | |
|     ZSTD_pthread_mutex_unlock(&pool->poolMutex);
 | |
| }
 | |
| 
 | |
| /* ====   Serial State   ==== */
 | |
| 
 | |
| typedef struct {
 | |
|     void const* start;
 | |
|     size_t size;
 | |
| } range_t;
 | |
| 
 | |
| typedef struct {
 | |
|     /* All variables in the struct are protected by mutex. */
 | |
|     ZSTD_pthread_mutex_t mutex;
 | |
|     ZSTD_pthread_cond_t cond;
 | |
|     ZSTD_CCtx_params params;
 | |
|     ldmState_t ldmState;
 | |
|     XXH64_state_t xxhState;
 | |
|     unsigned nextJobID;
 | |
|     /* Protects ldmWindow.
 | |
|      * Must be acquired after the main mutex when acquiring both.
 | |
|      */
 | |
|     ZSTD_pthread_mutex_t ldmWindowMutex;
 | |
|     ZSTD_pthread_cond_t ldmWindowCond;  /* Signaled when ldmWindow is updated */
 | |
|     ZSTD_window_t ldmWindow;  /* A thread-safe copy of ldmState.window */
 | |
| } serialState_t;
 | |
| 
 | |
| static int
 | |
| ZSTDMT_serialState_reset(serialState_t* serialState,
 | |
|                          ZSTDMT_seqPool* seqPool,
 | |
|                          ZSTD_CCtx_params params,
 | |
|                          size_t jobSize,
 | |
|                          const void* dict, size_t const dictSize,
 | |
|                          ZSTD_dictContentType_e dictContentType)
 | |
| {
 | |
|     /* Adjust parameters */
 | |
|     if (params.ldmParams.enableLdm == ZSTD_ps_enable) {
 | |
|         DEBUGLOG(4, "LDM window size = %u KB", (1U << params.cParams.windowLog) >> 10);
 | |
|         ZSTD_ldm_adjustParameters(¶ms.ldmParams, ¶ms.cParams);
 | |
|         assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog);
 | |
|         assert(params.ldmParams.hashRateLog < 32);
 | |
|     } else {
 | |
|         ZSTD_memset(¶ms.ldmParams, 0, sizeof(params.ldmParams));
 | |
|     }
 | |
|     serialState->nextJobID = 0;
 | |
|     if (params.fParams.checksumFlag)
 | |
|         XXH64_reset(&serialState->xxhState, 0);
 | |
|     if (params.ldmParams.enableLdm == ZSTD_ps_enable) {
 | |
|         ZSTD_customMem cMem = params.customMem;
 | |
|         unsigned const hashLog = params.ldmParams.hashLog;
 | |
|         size_t const hashSize = ((size_t)1 << hashLog) * sizeof(ldmEntry_t);
 | |
|         unsigned const bucketLog =
 | |
|             params.ldmParams.hashLog - params.ldmParams.bucketSizeLog;
 | |
|         unsigned const prevBucketLog =
 | |
|             serialState->params.ldmParams.hashLog -
 | |
|             serialState->params.ldmParams.bucketSizeLog;
 | |
|         size_t const numBuckets = (size_t)1 << bucketLog;
 | |
|         /* Size the seq pool tables */
 | |
|         ZSTDMT_setNbSeq(seqPool, ZSTD_ldm_getMaxNbSeq(params.ldmParams, jobSize));
 | |
|         /* Reset the window */
 | |
|         ZSTD_window_init(&serialState->ldmState.window);
 | |
|         /* Resize tables and output space if necessary. */
 | |
|         if (serialState->ldmState.hashTable == NULL || serialState->params.ldmParams.hashLog < hashLog) {
 | |
|             ZSTD_customFree(serialState->ldmState.hashTable, cMem);
 | |
|             serialState->ldmState.hashTable = (ldmEntry_t*)ZSTD_customMalloc(hashSize, cMem);
 | |
|         }
 | |
|         if (serialState->ldmState.bucketOffsets == NULL || prevBucketLog < bucketLog) {
 | |
|             ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem);
 | |
|             serialState->ldmState.bucketOffsets = (BYTE*)ZSTD_customMalloc(numBuckets, cMem);
 | |
|         }
 | |
|         if (!serialState->ldmState.hashTable || !serialState->ldmState.bucketOffsets)
 | |
|             return 1;
 | |
|         /* Zero the tables */
 | |
|         ZSTD_memset(serialState->ldmState.hashTable, 0, hashSize);
 | |
|         ZSTD_memset(serialState->ldmState.bucketOffsets, 0, numBuckets);
 | |
| 
 | |
|         /* Update window state and fill hash table with dict */
 | |
|         serialState->ldmState.loadedDictEnd = 0;
 | |
|         if (dictSize > 0) {
 | |
|             if (dictContentType == ZSTD_dct_rawContent) {
 | |
|                 BYTE const* const dictEnd = (const BYTE*)dict + dictSize;
 | |
|                 ZSTD_window_update(&serialState->ldmState.window, dict, dictSize, /* forceNonContiguous */ 0);
 | |
|                 ZSTD_ldm_fillHashTable(&serialState->ldmState, (const BYTE*)dict, dictEnd, ¶ms.ldmParams);
 | |
|                 serialState->ldmState.loadedDictEnd = params.forceWindow ? 0 : (U32)(dictEnd - serialState->ldmState.window.base);
 | |
|             } else {
 | |
|                 /* don't even load anything */
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* Initialize serialState's copy of ldmWindow. */
 | |
|         serialState->ldmWindow = serialState->ldmState.window;
 | |
|     }
 | |
| 
 | |
|     serialState->params = params;
 | |
|     serialState->params.jobSize = (U32)jobSize;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int ZSTDMT_serialState_init(serialState_t* serialState)
 | |
| {
 | |
|     int initError = 0;
 | |
|     ZSTD_memset(serialState, 0, sizeof(*serialState));
 | |
|     initError |= ZSTD_pthread_mutex_init(&serialState->mutex, NULL);
 | |
|     initError |= ZSTD_pthread_cond_init(&serialState->cond, NULL);
 | |
|     initError |= ZSTD_pthread_mutex_init(&serialState->ldmWindowMutex, NULL);
 | |
|     initError |= ZSTD_pthread_cond_init(&serialState->ldmWindowCond, NULL);
 | |
|     return initError;
 | |
| }
 | |
| 
 | |
| static void ZSTDMT_serialState_free(serialState_t* serialState)
 | |
| {
 | |
|     ZSTD_customMem cMem = serialState->params.customMem;
 | |
|     ZSTD_pthread_mutex_destroy(&serialState->mutex);
 | |
|     ZSTD_pthread_cond_destroy(&serialState->cond);
 | |
|     ZSTD_pthread_mutex_destroy(&serialState->ldmWindowMutex);
 | |
|     ZSTD_pthread_cond_destroy(&serialState->ldmWindowCond);
 | |
|     ZSTD_customFree(serialState->ldmState.hashTable, cMem);
 | |
|     ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem);
 | |
| }
 | |
| 
 | |
| static void ZSTDMT_serialState_update(serialState_t* serialState,
 | |
|                                       ZSTD_CCtx* jobCCtx, rawSeqStore_t seqStore,
 | |
|                                       range_t src, unsigned jobID)
 | |
| {
 | |
|     /* Wait for our turn */
 | |
|     ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex);
 | |
|     while (serialState->nextJobID < jobID) {
 | |
|         DEBUGLOG(5, "wait for serialState->cond");
 | |
|         ZSTD_pthread_cond_wait(&serialState->cond, &serialState->mutex);
 | |
|     }
 | |
|     /* A future job may error and skip our job */
 | |
|     if (serialState->nextJobID == jobID) {
 | |
|         /* It is now our turn, do any processing necessary */
 | |
|         if (serialState->params.ldmParams.enableLdm == ZSTD_ps_enable) {
 | |
|             size_t error;
 | |
|             assert(seqStore.seq != NULL && seqStore.pos == 0 &&
 | |
|                    seqStore.size == 0 && seqStore.capacity > 0);
 | |
|             assert(src.size <= serialState->params.jobSize);
 | |
|             ZSTD_window_update(&serialState->ldmState.window, src.start, src.size, /* forceNonContiguous */ 0);
 | |
|             error = ZSTD_ldm_generateSequences(
 | |
|                 &serialState->ldmState, &seqStore,
 | |
|                 &serialState->params.ldmParams, src.start, src.size);
 | |
|             /* We provide a large enough buffer to never fail. */
 | |
|             assert(!ZSTD_isError(error)); (void)error;
 | |
|             /* Update ldmWindow to match the ldmState.window and signal the main
 | |
|              * thread if it is waiting for a buffer.
 | |
|              */
 | |
|             ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex);
 | |
|             serialState->ldmWindow = serialState->ldmState.window;
 | |
|             ZSTD_pthread_cond_signal(&serialState->ldmWindowCond);
 | |
|             ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex);
 | |
|         }
 | |
|         if (serialState->params.fParams.checksumFlag && src.size > 0)
 | |
|             XXH64_update(&serialState->xxhState, src.start, src.size);
 | |
|     }
 | |
|     /* Now it is the next jobs turn */
 | |
|     serialState->nextJobID++;
 | |
|     ZSTD_pthread_cond_broadcast(&serialState->cond);
 | |
|     ZSTD_pthread_mutex_unlock(&serialState->mutex);
 | |
| 
 | |
|     if (seqStore.size > 0) {
 | |
|         size_t const err = ZSTD_referenceExternalSequences(
 | |
|             jobCCtx, seqStore.seq, seqStore.size);
 | |
|         assert(serialState->params.ldmParams.enableLdm == ZSTD_ps_enable);
 | |
|         assert(!ZSTD_isError(err));
 | |
|         (void)err;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ZSTDMT_serialState_ensureFinished(serialState_t* serialState,
 | |
|                                               unsigned jobID, size_t cSize)
 | |
| {
 | |
|     ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex);
 | |
|     if (serialState->nextJobID <= jobID) {
 | |
|         assert(ZSTD_isError(cSize)); (void)cSize;
 | |
|         DEBUGLOG(5, "Skipping past job %u because of error", jobID);
 | |
|         serialState->nextJobID = jobID + 1;
 | |
|         ZSTD_pthread_cond_broadcast(&serialState->cond);
 | |
| 
 | |
|         ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex);
 | |
|         ZSTD_window_clear(&serialState->ldmWindow);
 | |
|         ZSTD_pthread_cond_signal(&serialState->ldmWindowCond);
 | |
|         ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex);
 | |
|     }
 | |
|     ZSTD_pthread_mutex_unlock(&serialState->mutex);
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ------------------------------------------ */
 | |
| /* =====          Worker thread         ===== */
 | |
| /* ------------------------------------------ */
 | |
| 
 | |
| static const range_t kNullRange = { NULL, 0 };
 | |
| 
 | |
| typedef struct {
 | |
|     size_t   consumed;                   /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx */
 | |
|     size_t   cSize;                      /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx, then set0 by mtctx */
 | |
|     ZSTD_pthread_mutex_t job_mutex;      /* Thread-safe - used by mtctx and worker */
 | |
|     ZSTD_pthread_cond_t job_cond;        /* Thread-safe - used by mtctx and worker */
 | |
|     ZSTDMT_CCtxPool* cctxPool;           /* Thread-safe - used by mtctx and (all) workers */
 | |
|     ZSTDMT_bufferPool* bufPool;          /* Thread-safe - used by mtctx and (all) workers */
 | |
|     ZSTDMT_seqPool* seqPool;             /* Thread-safe - used by mtctx and (all) workers */
 | |
|     serialState_t* serial;               /* Thread-safe - used by mtctx and (all) workers */
 | |
|     buffer_t dstBuff;                    /* set by worker (or mtctx), then read by worker & mtctx, then modified by mtctx => no barrier */
 | |
|     range_t prefix;                      /* set by mtctx, then read by worker & mtctx => no barrier */
 | |
|     range_t src;                         /* set by mtctx, then read by worker & mtctx => no barrier */
 | |
|     unsigned jobID;                      /* set by mtctx, then read by worker => no barrier */
 | |
|     unsigned firstJob;                   /* set by mtctx, then read by worker => no barrier */
 | |
|     unsigned lastJob;                    /* set by mtctx, then read by worker => no barrier */
 | |
|     ZSTD_CCtx_params params;             /* set by mtctx, then read by worker => no barrier */
 | |
|     const ZSTD_CDict* cdict;             /* set by mtctx, then read by worker => no barrier */
 | |
|     unsigned long long fullFrameSize;    /* set by mtctx, then read by worker => no barrier */
 | |
|     size_t   dstFlushed;                 /* used only by mtctx */
 | |
|     unsigned frameChecksumNeeded;        /* used only by mtctx */
 | |
| } ZSTDMT_jobDescription;
 | |
| 
 | |
| #define JOB_ERROR(e) {                          \
 | |
|     ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);   \
 | |
|     job->cSize = e;                             \
 | |
|     ZSTD_pthread_mutex_unlock(&job->job_mutex); \
 | |
|     goto _endJob;                               \
 | |
| }
 | |
| 
 | |
| /* ZSTDMT_compressionJob() is a POOL_function type */
 | |
| static void ZSTDMT_compressionJob(void* jobDescription)
 | |
| {
 | |
|     ZSTDMT_jobDescription* const job = (ZSTDMT_jobDescription*)jobDescription;
 | |
|     ZSTD_CCtx_params jobParams = job->params;   /* do not modify job->params ! copy it, modify the copy */
 | |
|     ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(job->cctxPool);
 | |
|     rawSeqStore_t rawSeqStore = ZSTDMT_getSeq(job->seqPool);
 | |
|     buffer_t dstBuff = job->dstBuff;
 | |
|     size_t lastCBlockSize = 0;
 | |
| 
 | |
|     /* resources */
 | |
|     if (cctx==NULL) JOB_ERROR(ERROR(memory_allocation));
 | |
|     if (dstBuff.start == NULL) {   /* streaming job : doesn't provide a dstBuffer */
 | |
|         dstBuff = ZSTDMT_getBuffer(job->bufPool);
 | |
|         if (dstBuff.start==NULL) JOB_ERROR(ERROR(memory_allocation));
 | |
|         job->dstBuff = dstBuff;   /* this value can be read in ZSTDMT_flush, when it copies the whole job */
 | |
|     }
 | |
|     if (jobParams.ldmParams.enableLdm == ZSTD_ps_enable && rawSeqStore.seq == NULL)
 | |
|         JOB_ERROR(ERROR(memory_allocation));
 | |
| 
 | |
|     /* Don't compute the checksum for chunks, since we compute it externally,
 | |
|      * but write it in the header.
 | |
|      */
 | |
|     if (job->jobID != 0) jobParams.fParams.checksumFlag = 0;
 | |
|     /* Don't run LDM for the chunks, since we handle it externally */
 | |
|     jobParams.ldmParams.enableLdm = ZSTD_ps_disable;
 | |
|     /* Correct nbWorkers to 0. */
 | |
|     jobParams.nbWorkers = 0;
 | |
| 
 | |
| 
 | |
|     /* init */
 | |
|     if (job->cdict) {
 | |
|         size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast, job->cdict, &jobParams, job->fullFrameSize);
 | |
|         assert(job->firstJob);  /* only allowed for first job */
 | |
|         if (ZSTD_isError(initError)) JOB_ERROR(initError);
 | |
|     } else {  /* srcStart points at reloaded section */
 | |
|         U64 const pledgedSrcSize = job->firstJob ? job->fullFrameSize : job->src.size;
 | |
|         {   size_t const forceWindowError = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_forceMaxWindow, !job->firstJob);
 | |
|             if (ZSTD_isError(forceWindowError)) JOB_ERROR(forceWindowError);
 | |
|         }
 | |
|         if (!job->firstJob) {
 | |
|             size_t const err = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_deterministicRefPrefix, 0);
 | |
|             if (ZSTD_isError(err)) JOB_ERROR(err);
 | |
|         }
 | |
|         {   size_t const initError = ZSTD_compressBegin_advanced_internal(cctx,
 | |
|                                         job->prefix.start, job->prefix.size, ZSTD_dct_rawContent, /* load dictionary in "content-only" mode (no header analysis) */
 | |
|                                         ZSTD_dtlm_fast,
 | |
|                                         NULL, /*cdict*/
 | |
|                                         &jobParams, pledgedSrcSize);
 | |
|             if (ZSTD_isError(initError)) JOB_ERROR(initError);
 | |
|     }   }
 | |
| 
 | |
|     /* Perform serial step as early as possible, but after CCtx initialization */
 | |
|     ZSTDMT_serialState_update(job->serial, cctx, rawSeqStore, job->src, job->jobID);
 | |
| 
 | |
|     if (!job->firstJob) {  /* flush and overwrite frame header when it's not first job */
 | |
|         size_t const hSize = ZSTD_compressContinue(cctx, dstBuff.start, dstBuff.capacity, job->src.start, 0);
 | |
|         if (ZSTD_isError(hSize)) JOB_ERROR(hSize);
 | |
|         DEBUGLOG(5, "ZSTDMT_compressionJob: flush and overwrite %u bytes of frame header (not first job)", (U32)hSize);
 | |
|         ZSTD_invalidateRepCodes(cctx);
 | |
|     }
 | |
| 
 | |
|     /* compress */
 | |
|     {   size_t const chunkSize = 4*ZSTD_BLOCKSIZE_MAX;
 | |
|         int const nbChunks = (int)((job->src.size + (chunkSize-1)) / chunkSize);
 | |
|         const BYTE* ip = (const BYTE*) job->src.start;
 | |
|         BYTE* const ostart = (BYTE*)dstBuff.start;
 | |
|         BYTE* op = ostart;
 | |
|         BYTE* oend = op + dstBuff.capacity;
 | |
|         int chunkNb;
 | |
|         if (sizeof(size_t) > sizeof(int)) assert(job->src.size < ((size_t)INT_MAX) * chunkSize);   /* check overflow */
 | |
|         DEBUGLOG(5, "ZSTDMT_compressionJob: compress %u bytes in %i blocks", (U32)job->src.size, nbChunks);
 | |
|         assert(job->cSize == 0);
 | |
|         for (chunkNb = 1; chunkNb < nbChunks; chunkNb++) {
 | |
|             size_t const cSize = ZSTD_compressContinue(cctx, op, oend-op, ip, chunkSize);
 | |
|             if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
 | |
|             ip += chunkSize;
 | |
|             op += cSize; assert(op < oend);
 | |
|             /* stats */
 | |
|             ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);
 | |
|             job->cSize += cSize;
 | |
|             job->consumed = chunkSize * chunkNb;
 | |
|             DEBUGLOG(5, "ZSTDMT_compressionJob: compress new block : cSize==%u bytes (total: %u)",
 | |
|                         (U32)cSize, (U32)job->cSize);
 | |
|             ZSTD_pthread_cond_signal(&job->job_cond);   /* warns some more data is ready to be flushed */
 | |
|             ZSTD_pthread_mutex_unlock(&job->job_mutex);
 | |
|         }
 | |
|         /* last block */
 | |
|         assert(chunkSize > 0);
 | |
|         assert((chunkSize & (chunkSize - 1)) == 0);  /* chunkSize must be power of 2 for mask==(chunkSize-1) to work */
 | |
|         if ((nbChunks > 0) | job->lastJob /*must output a "last block" flag*/ ) {
 | |
|             size_t const lastBlockSize1 = job->src.size & (chunkSize-1);
 | |
|             size_t const lastBlockSize = ((lastBlockSize1==0) & (job->src.size>=chunkSize)) ? chunkSize : lastBlockSize1;
 | |
|             size_t const cSize = (job->lastJob) ?
 | |
|                  ZSTD_compressEnd     (cctx, op, oend-op, ip, lastBlockSize) :
 | |
|                  ZSTD_compressContinue(cctx, op, oend-op, ip, lastBlockSize);
 | |
|             if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
 | |
|             lastCBlockSize = cSize;
 | |
|     }   }
 | |
|     if (!job->firstJob) {
 | |
|         /* Double check that we don't have an ext-dict, because then our
 | |
|          * repcode invalidation doesn't work.
 | |
|          */
 | |
|         assert(!ZSTD_window_hasExtDict(cctx->blockState.matchState.window));
 | |
|     }
 | |
|     ZSTD_CCtx_trace(cctx, 0);
 | |
| 
 | |
| _endJob:
 | |
|     ZSTDMT_serialState_ensureFinished(job->serial, job->jobID, job->cSize);
 | |
|     if (job->prefix.size > 0)
 | |
|         DEBUGLOG(5, "Finished with prefix: %zx", (size_t)job->prefix.start);
 | |
|     DEBUGLOG(5, "Finished with source: %zx", (size_t)job->src.start);
 | |
|     /* release resources */
 | |
|     ZSTDMT_releaseSeq(job->seqPool, rawSeqStore);
 | |
|     ZSTDMT_releaseCCtx(job->cctxPool, cctx);
 | |
|     /* report */
 | |
|     ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);
 | |
|     if (ZSTD_isError(job->cSize)) assert(lastCBlockSize == 0);
 | |
|     job->cSize += lastCBlockSize;
 | |
|     job->consumed = job->src.size;  /* when job->consumed == job->src.size , compression job is presumed completed */
 | |
|     ZSTD_pthread_cond_signal(&job->job_cond);
 | |
|     ZSTD_pthread_mutex_unlock(&job->job_mutex);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ------------------------------------------ */
 | |
| /* =====   Multi-threaded compression   ===== */
 | |
| /* ------------------------------------------ */
 | |
| 
 | |
| typedef struct {
 | |
|     range_t prefix;         /* read-only non-owned prefix buffer */
 | |
|     buffer_t buffer;
 | |
|     size_t filled;
 | |
| } inBuff_t;
 | |
| 
 | |
| typedef struct {
 | |
|   BYTE* buffer;     /* The round input buffer. All jobs get references
 | |
|                      * to pieces of the buffer. ZSTDMT_tryGetInputRange()
 | |
|                      * handles handing out job input buffers, and makes
 | |
|                      * sure it doesn't overlap with any pieces still in use.
 | |
|                      */
 | |
|   size_t capacity;  /* The capacity of buffer. */
 | |
|   size_t pos;       /* The position of the current inBuff in the round
 | |
|                      * buffer. Updated past the end if the inBuff once
 | |
|                      * the inBuff is sent to the worker thread.
 | |
|                      * pos <= capacity.
 | |
|                      */
 | |
| } roundBuff_t;
 | |
| 
 | |
| static const roundBuff_t kNullRoundBuff = {NULL, 0, 0};
 | |
| 
 | |
| #define RSYNC_LENGTH 32
 | |
| /* Don't create chunks smaller than the zstd block size.
 | |
|  * This stops us from regressing compression ratio too much,
 | |
|  * and ensures our output fits in ZSTD_compressBound().
 | |
|  *
 | |
|  * If this is shrunk < ZSTD_BLOCKSIZELOG_MIN then
 | |
|  * ZSTD_COMPRESSBOUND() will need to be updated.
 | |
|  */
 | |
| #define RSYNC_MIN_BLOCK_LOG ZSTD_BLOCKSIZELOG_MAX
 | |
| #define RSYNC_MIN_BLOCK_SIZE (1<<RSYNC_MIN_BLOCK_LOG)
 | |
| 
 | |
| typedef struct {
 | |
|   U64 hash;
 | |
|   U64 hitMask;
 | |
|   U64 primePower;
 | |
| } rsyncState_t;
 | |
| 
 | |
| struct ZSTDMT_CCtx_s {
 | |
|     POOL_ctx* factory;
 | |
|     ZSTDMT_jobDescription* jobs;
 | |
|     ZSTDMT_bufferPool* bufPool;
 | |
|     ZSTDMT_CCtxPool* cctxPool;
 | |
|     ZSTDMT_seqPool* seqPool;
 | |
|     ZSTD_CCtx_params params;
 | |
|     size_t targetSectionSize;
 | |
|     size_t targetPrefixSize;
 | |
|     int jobReady;        /* 1 => one job is already prepared, but pool has shortage of workers. Don't create a new job. */
 | |
|     inBuff_t inBuff;
 | |
|     roundBuff_t roundBuff;
 | |
|     serialState_t serial;
 | |
|     rsyncState_t rsync;
 | |
|     unsigned jobIDMask;
 | |
|     unsigned doneJobID;
 | |
|     unsigned nextJobID;
 | |
|     unsigned frameEnded;
 | |
|     unsigned allJobsCompleted;
 | |
|     unsigned long long frameContentSize;
 | |
|     unsigned long long consumed;
 | |
|     unsigned long long produced;
 | |
|     ZSTD_customMem cMem;
 | |
|     ZSTD_CDict* cdictLocal;
 | |
|     const ZSTD_CDict* cdict;
 | |
|     unsigned providedFactory: 1;
 | |
| };
 | |
| 
 | |
| static void ZSTDMT_freeJobsTable(ZSTDMT_jobDescription* jobTable, U32 nbJobs, ZSTD_customMem cMem)
 | |
| {
 | |
|     U32 jobNb;
 | |
|     if (jobTable == NULL) return;
 | |
|     for (jobNb=0; jobNb<nbJobs; jobNb++) {
 | |
|         ZSTD_pthread_mutex_destroy(&jobTable[jobNb].job_mutex);
 | |
|         ZSTD_pthread_cond_destroy(&jobTable[jobNb].job_cond);
 | |
|     }
 | |
|     ZSTD_customFree(jobTable, cMem);
 | |
| }
 | |
| 
 | |
| /* ZSTDMT_allocJobsTable()
 | |
|  * allocate and init a job table.
 | |
|  * update *nbJobsPtr to next power of 2 value, as size of table */
 | |
| static ZSTDMT_jobDescription* ZSTDMT_createJobsTable(U32* nbJobsPtr, ZSTD_customMem cMem)
 | |
| {
 | |
|     U32 const nbJobsLog2 = ZSTD_highbit32(*nbJobsPtr) + 1;
 | |
|     U32 const nbJobs = 1 << nbJobsLog2;
 | |
|     U32 jobNb;
 | |
|     ZSTDMT_jobDescription* const jobTable = (ZSTDMT_jobDescription*)
 | |
|                 ZSTD_customCalloc(nbJobs * sizeof(ZSTDMT_jobDescription), cMem);
 | |
|     int initError = 0;
 | |
|     if (jobTable==NULL) return NULL;
 | |
|     *nbJobsPtr = nbJobs;
 | |
|     for (jobNb=0; jobNb<nbJobs; jobNb++) {
 | |
|         initError |= ZSTD_pthread_mutex_init(&jobTable[jobNb].job_mutex, NULL);
 | |
|         initError |= ZSTD_pthread_cond_init(&jobTable[jobNb].job_cond, NULL);
 | |
|     }
 | |
|     if (initError != 0) {
 | |
|         ZSTDMT_freeJobsTable(jobTable, nbJobs, cMem);
 | |
|         return NULL;
 | |
|     }
 | |
|     return jobTable;
 | |
| }
 | |
| 
 | |
| static size_t ZSTDMT_expandJobsTable (ZSTDMT_CCtx* mtctx, U32 nbWorkers) {
 | |
|     U32 nbJobs = nbWorkers + 2;
 | |
|     if (nbJobs > mtctx->jobIDMask+1) {  /* need more job capacity */
 | |
|         ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem);
 | |
|         mtctx->jobIDMask = 0;
 | |
|         mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, mtctx->cMem);
 | |
|         if (mtctx->jobs==NULL) return ERROR(memory_allocation);
 | |
|         assert((nbJobs != 0) && ((nbJobs & (nbJobs - 1)) == 0));  /* ensure nbJobs is a power of 2 */
 | |
|         mtctx->jobIDMask = nbJobs - 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ZSTDMT_CCtxParam_setNbWorkers():
 | |
|  * Internal use only */
 | |
| static size_t ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params* params, unsigned nbWorkers)
 | |
| {
 | |
|     return ZSTD_CCtxParams_setParameter(params, ZSTD_c_nbWorkers, (int)nbWorkers);
 | |
| }
 | |
| 
 | |
| MEM_STATIC ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced_internal(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool)
 | |
| {
 | |
|     ZSTDMT_CCtx* mtctx;
 | |
|     U32 nbJobs = nbWorkers + 2;
 | |
|     int initError;
 | |
|     DEBUGLOG(3, "ZSTDMT_createCCtx_advanced (nbWorkers = %u)", nbWorkers);
 | |
| 
 | |
|     if (nbWorkers < 1) return NULL;
 | |
|     nbWorkers = MIN(nbWorkers , ZSTDMT_NBWORKERS_MAX);
 | |
|     if ((cMem.customAlloc!=NULL) ^ (cMem.customFree!=NULL))
 | |
|         /* invalid custom allocator */
 | |
|         return NULL;
 | |
| 
 | |
|     mtctx = (ZSTDMT_CCtx*) ZSTD_customCalloc(sizeof(ZSTDMT_CCtx), cMem);
 | |
|     if (!mtctx) return NULL;
 | |
|     ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers);
 | |
|     mtctx->cMem = cMem;
 | |
|     mtctx->allJobsCompleted = 1;
 | |
|     if (pool != NULL) {
 | |
|       mtctx->factory = pool;
 | |
|       mtctx->providedFactory = 1;
 | |
|     }
 | |
|     else {
 | |
|       mtctx->factory = POOL_create_advanced(nbWorkers, 0, cMem);
 | |
|       mtctx->providedFactory = 0;
 | |
|     }
 | |
|     mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, cMem);
 | |
|     assert(nbJobs > 0); assert((nbJobs & (nbJobs - 1)) == 0);  /* ensure nbJobs is a power of 2 */
 | |
|     mtctx->jobIDMask = nbJobs - 1;
 | |
|     mtctx->bufPool = ZSTDMT_createBufferPool(BUF_POOL_MAX_NB_BUFFERS(nbWorkers), cMem);
 | |
|     mtctx->cctxPool = ZSTDMT_createCCtxPool(nbWorkers, cMem);
 | |
|     mtctx->seqPool = ZSTDMT_createSeqPool(nbWorkers, cMem);
 | |
|     initError = ZSTDMT_serialState_init(&mtctx->serial);
 | |
|     mtctx->roundBuff = kNullRoundBuff;
 | |
|     if (!mtctx->factory | !mtctx->jobs | !mtctx->bufPool | !mtctx->cctxPool | !mtctx->seqPool | initError) {
 | |
|         ZSTDMT_freeCCtx(mtctx);
 | |
|         return NULL;
 | |
|     }
 | |
|     DEBUGLOG(3, "mt_cctx created, for %u threads", nbWorkers);
 | |
|     return mtctx;
 | |
| }
 | |
| 
 | |
| ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool)
 | |
| {
 | |
| #ifdef ZSTD_MULTITHREAD
 | |
|     return ZSTDMT_createCCtx_advanced_internal(nbWorkers, cMem, pool);
 | |
| #else
 | |
|     (void)nbWorkers;
 | |
|     (void)cMem;
 | |
|     (void)pool;
 | |
|     return NULL;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ZSTDMT_releaseAllJobResources() :
 | |
|  * note : ensure all workers are killed first ! */
 | |
| static void ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx* mtctx)
 | |
| {
 | |
|     unsigned jobID;
 | |
|     DEBUGLOG(3, "ZSTDMT_releaseAllJobResources");
 | |
|     for (jobID=0; jobID <= mtctx->jobIDMask; jobID++) {
 | |
|         /* Copy the mutex/cond out */
 | |
|         ZSTD_pthread_mutex_t const mutex = mtctx->jobs[jobID].job_mutex;
 | |
|         ZSTD_pthread_cond_t const cond = mtctx->jobs[jobID].job_cond;
 | |
| 
 | |
|         DEBUGLOG(4, "job%02u: release dst address %08X", jobID, (U32)(size_t)mtctx->jobs[jobID].dstBuff.start);
 | |
|         ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff);
 | |
| 
 | |
|         /* Clear the job description, but keep the mutex/cond */
 | |
|         ZSTD_memset(&mtctx->jobs[jobID], 0, sizeof(mtctx->jobs[jobID]));
 | |
|         mtctx->jobs[jobID].job_mutex = mutex;
 | |
|         mtctx->jobs[jobID].job_cond = cond;
 | |
|     }
 | |
|     mtctx->inBuff.buffer = g_nullBuffer;
 | |
|     mtctx->inBuff.filled = 0;
 | |
|     mtctx->allJobsCompleted = 1;
 | |
| }
 | |
| 
 | |
| static void ZSTDMT_waitForAllJobsCompleted(ZSTDMT_CCtx* mtctx)
 | |
| {
 | |
|     DEBUGLOG(4, "ZSTDMT_waitForAllJobsCompleted");
 | |
|     while (mtctx->doneJobID < mtctx->nextJobID) {
 | |
|         unsigned const jobID = mtctx->doneJobID & mtctx->jobIDMask;
 | |
|         ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[jobID].job_mutex);
 | |
|         while (mtctx->jobs[jobID].consumed < mtctx->jobs[jobID].src.size) {
 | |
|             DEBUGLOG(4, "waiting for jobCompleted signal from job %u", mtctx->doneJobID);   /* we want to block when waiting for data to flush */
 | |
|             ZSTD_pthread_cond_wait(&mtctx->jobs[jobID].job_cond, &mtctx->jobs[jobID].job_mutex);
 | |
|         }
 | |
|         ZSTD_pthread_mutex_unlock(&mtctx->jobs[jobID].job_mutex);
 | |
|         mtctx->doneJobID++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx)
 | |
| {
 | |
|     if (mtctx==NULL) return 0;   /* compatible with free on NULL */
 | |
|     if (!mtctx->providedFactory)
 | |
|         POOL_free(mtctx->factory);   /* stop and free worker threads */
 | |
|     ZSTDMT_releaseAllJobResources(mtctx);  /* release job resources into pools first */
 | |
|     ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem);
 | |
|     ZSTDMT_freeBufferPool(mtctx->bufPool);
 | |
|     ZSTDMT_freeCCtxPool(mtctx->cctxPool);
 | |
|     ZSTDMT_freeSeqPool(mtctx->seqPool);
 | |
|     ZSTDMT_serialState_free(&mtctx->serial);
 | |
|     ZSTD_freeCDict(mtctx->cdictLocal);
 | |
|     if (mtctx->roundBuff.buffer)
 | |
|         ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem);
 | |
|     ZSTD_customFree(mtctx, mtctx->cMem);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx)
 | |
| {
 | |
|     if (mtctx == NULL) return 0;   /* supports sizeof NULL */
 | |
|     return sizeof(*mtctx)
 | |
|             + POOL_sizeof(mtctx->factory)
 | |
|             + ZSTDMT_sizeof_bufferPool(mtctx->bufPool)
 | |
|             + (mtctx->jobIDMask+1) * sizeof(ZSTDMT_jobDescription)
 | |
|             + ZSTDMT_sizeof_CCtxPool(mtctx->cctxPool)
 | |
|             + ZSTDMT_sizeof_seqPool(mtctx->seqPool)
 | |
|             + ZSTD_sizeof_CDict(mtctx->cdictLocal)
 | |
|             + mtctx->roundBuff.capacity;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ZSTDMT_resize() :
 | |
|  * @return : error code if fails, 0 on success */
 | |
| static size_t ZSTDMT_resize(ZSTDMT_CCtx* mtctx, unsigned nbWorkers)
 | |
| {
 | |
|     if (POOL_resize(mtctx->factory, nbWorkers)) return ERROR(memory_allocation);
 | |
|     FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbWorkers) , "");
 | |
|     mtctx->bufPool = ZSTDMT_expandBufferPool(mtctx->bufPool, BUF_POOL_MAX_NB_BUFFERS(nbWorkers));
 | |
|     if (mtctx->bufPool == NULL) return ERROR(memory_allocation);
 | |
|     mtctx->cctxPool = ZSTDMT_expandCCtxPool(mtctx->cctxPool, nbWorkers);
 | |
|     if (mtctx->cctxPool == NULL) return ERROR(memory_allocation);
 | |
|     mtctx->seqPool = ZSTDMT_expandSeqPool(mtctx->seqPool, nbWorkers);
 | |
|     if (mtctx->seqPool == NULL) return ERROR(memory_allocation);
 | |
|     ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*! ZSTDMT_updateCParams_whileCompressing() :
 | |
|  *  Updates a selected set of compression parameters, remaining compatible with currently active frame.
 | |
|  *  New parameters will be applied to next compression job. */
 | |
| void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams)
 | |
| {
 | |
|     U32 const saved_wlog = mtctx->params.cParams.windowLog;   /* Do not modify windowLog while compressing */
 | |
|     int const compressionLevel = cctxParams->compressionLevel;
 | |
|     DEBUGLOG(5, "ZSTDMT_updateCParams_whileCompressing (level:%i)",
 | |
|                 compressionLevel);
 | |
|     mtctx->params.compressionLevel = compressionLevel;
 | |
|     {   ZSTD_compressionParameters cParams = ZSTD_getCParamsFromCCtxParams(cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict);
 | |
|         cParams.windowLog = saved_wlog;
 | |
|         mtctx->params.cParams = cParams;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* ZSTDMT_getFrameProgression():
 | |
|  * tells how much data has been consumed (input) and produced (output) for current frame.
 | |
|  * able to count progression inside worker threads.
 | |
|  * Note : mutex will be acquired during statistics collection inside workers. */
 | |
| ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx)
 | |
| {
 | |
|     ZSTD_frameProgression fps;
 | |
|     DEBUGLOG(5, "ZSTDMT_getFrameProgression");
 | |
|     fps.ingested = mtctx->consumed + mtctx->inBuff.filled;
 | |
|     fps.consumed = mtctx->consumed;
 | |
|     fps.produced = fps.flushed = mtctx->produced;
 | |
|     fps.currentJobID = mtctx->nextJobID;
 | |
|     fps.nbActiveWorkers = 0;
 | |
|     {   unsigned jobNb;
 | |
|         unsigned lastJobNb = mtctx->nextJobID + mtctx->jobReady; assert(mtctx->jobReady <= 1);
 | |
|         DEBUGLOG(6, "ZSTDMT_getFrameProgression: jobs: from %u to <%u (jobReady:%u)",
 | |
|                     mtctx->doneJobID, lastJobNb, mtctx->jobReady)
 | |
|         for (jobNb = mtctx->doneJobID ; jobNb < lastJobNb ; jobNb++) {
 | |
|             unsigned const wJobID = jobNb & mtctx->jobIDMask;
 | |
|             ZSTDMT_jobDescription* jobPtr = &mtctx->jobs[wJobID];
 | |
|             ZSTD_pthread_mutex_lock(&jobPtr->job_mutex);
 | |
|             {   size_t const cResult = jobPtr->cSize;
 | |
|                 size_t const produced = ZSTD_isError(cResult) ? 0 : cResult;
 | |
|                 size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed;
 | |
|                 assert(flushed <= produced);
 | |
|                 fps.ingested += jobPtr->src.size;
 | |
|                 fps.consumed += jobPtr->consumed;
 | |
|                 fps.produced += produced;
 | |
|                 fps.flushed  += flushed;
 | |
|                 fps.nbActiveWorkers += (jobPtr->consumed < jobPtr->src.size);
 | |
|             }
 | |
|             ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
 | |
|         }
 | |
|     }
 | |
|     return fps;
 | |
| }
 | |
| 
 | |
| 
 | |
| size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx)
 | |
| {
 | |
|     size_t toFlush;
 | |
|     unsigned const jobID = mtctx->doneJobID;
 | |
|     assert(jobID <= mtctx->nextJobID);
 | |
|     if (jobID == mtctx->nextJobID) return 0;   /* no active job => nothing to flush */
 | |
| 
 | |
|     /* look into oldest non-fully-flushed job */
 | |
|     {   unsigned const wJobID = jobID & mtctx->jobIDMask;
 | |
|         ZSTDMT_jobDescription* const jobPtr = &mtctx->jobs[wJobID];
 | |
|         ZSTD_pthread_mutex_lock(&jobPtr->job_mutex);
 | |
|         {   size_t const cResult = jobPtr->cSize;
 | |
|             size_t const produced = ZSTD_isError(cResult) ? 0 : cResult;
 | |
|             size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed;
 | |
|             assert(flushed <= produced);
 | |
|             assert(jobPtr->consumed <= jobPtr->src.size);
 | |
|             toFlush = produced - flushed;
 | |
|             /* if toFlush==0, nothing is available to flush.
 | |
|              * However, jobID is expected to still be active:
 | |
|              * if jobID was already completed and fully flushed,
 | |
|              * ZSTDMT_flushProduced() should have already moved onto next job.
 | |
|              * Therefore, some input has not yet been consumed. */
 | |
|             if (toFlush==0) {
 | |
|                 assert(jobPtr->consumed < jobPtr->src.size);
 | |
|             }
 | |
|         }
 | |
|         ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
 | |
|     }
 | |
| 
 | |
|     return toFlush;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ------------------------------------------ */
 | |
| /* =====   Multi-threaded compression   ===== */
 | |
| /* ------------------------------------------ */
 | |
| 
 | |
| static unsigned ZSTDMT_computeTargetJobLog(const ZSTD_CCtx_params* params)
 | |
| {
 | |
|     unsigned jobLog;
 | |
|     if (params->ldmParams.enableLdm == ZSTD_ps_enable) {
 | |
|         /* In Long Range Mode, the windowLog is typically oversized.
 | |
|          * In which case, it's preferable to determine the jobSize
 | |
|          * based on cycleLog instead. */
 | |
|         jobLog = MAX(21, ZSTD_cycleLog(params->cParams.chainLog, params->cParams.strategy) + 3);
 | |
|     } else {
 | |
|         jobLog = MAX(20, params->cParams.windowLog + 2);
 | |
|     }
 | |
|     return MIN(jobLog, (unsigned)ZSTDMT_JOBLOG_MAX);
 | |
| }
 | |
| 
 | |
| static int ZSTDMT_overlapLog_default(ZSTD_strategy strat)
 | |
| {
 | |
|     switch(strat)
 | |
|     {
 | |
|         case ZSTD_btultra2:
 | |
|             return 9;
 | |
|         case ZSTD_btultra:
 | |
|         case ZSTD_btopt:
 | |
|             return 8;
 | |
|         case ZSTD_btlazy2:
 | |
|         case ZSTD_lazy2:
 | |
|             return 7;
 | |
|         case ZSTD_lazy:
 | |
|         case ZSTD_greedy:
 | |
|         case ZSTD_dfast:
 | |
|         case ZSTD_fast:
 | |
|         default:;
 | |
|     }
 | |
|     return 6;
 | |
| }
 | |
| 
 | |
| static int ZSTDMT_overlapLog(int ovlog, ZSTD_strategy strat)
 | |
| {
 | |
|     assert(0 <= ovlog && ovlog <= 9);
 | |
|     if (ovlog == 0) return ZSTDMT_overlapLog_default(strat);
 | |
|     return ovlog;
 | |
| }
 | |
| 
 | |
| static size_t ZSTDMT_computeOverlapSize(const ZSTD_CCtx_params* params)
 | |
| {
 | |
|     int const overlapRLog = 9 - ZSTDMT_overlapLog(params->overlapLog, params->cParams.strategy);
 | |
|     int ovLog = (overlapRLog >= 8) ? 0 : (params->cParams.windowLog - overlapRLog);
 | |
|     assert(0 <= overlapRLog && overlapRLog <= 8);
 | |
|     if (params->ldmParams.enableLdm == ZSTD_ps_enable) {
 | |
|         /* In Long Range Mode, the windowLog is typically oversized.
 | |
|          * In which case, it's preferable to determine the jobSize
 | |
|          * based on chainLog instead.
 | |
|          * Then, ovLog becomes a fraction of the jobSize, rather than windowSize */
 | |
|         ovLog = MIN(params->cParams.windowLog, ZSTDMT_computeTargetJobLog(params) - 2)
 | |
|                 - overlapRLog;
 | |
|     }
 | |
|     assert(0 <= ovLog && ovLog <= ZSTD_WINDOWLOG_MAX);
 | |
|     DEBUGLOG(4, "overlapLog : %i", params->overlapLog);
 | |
|     DEBUGLOG(4, "overlap size : %i", 1 << ovLog);
 | |
|     return (ovLog==0) ? 0 : (size_t)1 << ovLog;
 | |
| }
 | |
| 
 | |
| /* ====================================== */
 | |
| /* =======      Streaming API     ======= */
 | |
| /* ====================================== */
 | |
| 
 | |
| size_t ZSTDMT_initCStream_internal(
 | |
|         ZSTDMT_CCtx* mtctx,
 | |
|         const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType,
 | |
|         const ZSTD_CDict* cdict, ZSTD_CCtx_params params,
 | |
|         unsigned long long pledgedSrcSize)
 | |
| {
 | |
|     DEBUGLOG(4, "ZSTDMT_initCStream_internal (pledgedSrcSize=%u, nbWorkers=%u, cctxPool=%u)",
 | |
|                 (U32)pledgedSrcSize, params.nbWorkers, mtctx->cctxPool->totalCCtx);
 | |
| 
 | |
|     /* params supposed partially fully validated at this point */
 | |
|     assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
 | |
|     assert(!((dict) && (cdict)));  /* either dict or cdict, not both */
 | |
| 
 | |
|     /* init */
 | |
|     if (params.nbWorkers != mtctx->params.nbWorkers)
 | |
|         FORWARD_IF_ERROR( ZSTDMT_resize(mtctx, params.nbWorkers) , "");
 | |
| 
 | |
|     if (params.jobSize != 0 && params.jobSize < ZSTDMT_JOBSIZE_MIN) params.jobSize = ZSTDMT_JOBSIZE_MIN;
 | |
|     if (params.jobSize > (size_t)ZSTDMT_JOBSIZE_MAX) params.jobSize = (size_t)ZSTDMT_JOBSIZE_MAX;
 | |
| 
 | |
|     DEBUGLOG(4, "ZSTDMT_initCStream_internal: %u workers", params.nbWorkers);
 | |
| 
 | |
|     if (mtctx->allJobsCompleted == 0) {   /* previous compression not correctly finished */
 | |
|         ZSTDMT_waitForAllJobsCompleted(mtctx);
 | |
|         ZSTDMT_releaseAllJobResources(mtctx);
 | |
|         mtctx->allJobsCompleted = 1;
 | |
|     }
 | |
| 
 | |
|     mtctx->params = params;
 | |
|     mtctx->frameContentSize = pledgedSrcSize;
 | |
|     if (dict) {
 | |
|         ZSTD_freeCDict(mtctx->cdictLocal);
 | |
|         mtctx->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize,
 | |
|                                                     ZSTD_dlm_byCopy, dictContentType, /* note : a loadPrefix becomes an internal CDict */
 | |
|                                                     params.cParams, mtctx->cMem);
 | |
|         mtctx->cdict = mtctx->cdictLocal;
 | |
|         if (mtctx->cdictLocal == NULL) return ERROR(memory_allocation);
 | |
|     } else {
 | |
|         ZSTD_freeCDict(mtctx->cdictLocal);
 | |
|         mtctx->cdictLocal = NULL;
 | |
|         mtctx->cdict = cdict;
 | |
|     }
 | |
| 
 | |
|     mtctx->targetPrefixSize = ZSTDMT_computeOverlapSize(¶ms);
 | |
|     DEBUGLOG(4, "overlapLog=%i => %u KB", params.overlapLog, (U32)(mtctx->targetPrefixSize>>10));
 | |
|     mtctx->targetSectionSize = params.jobSize;
 | |
|     if (mtctx->targetSectionSize == 0) {
 | |
|         mtctx->targetSectionSize = 1ULL << ZSTDMT_computeTargetJobLog(¶ms);
 | |
|     }
 | |
|     assert(mtctx->targetSectionSize <= (size_t)ZSTDMT_JOBSIZE_MAX);
 | |
| 
 | |
|     if (params.rsyncable) {
 | |
|         /* Aim for the targetsectionSize as the average job size. */
 | |
|         U32 const jobSizeKB = (U32)(mtctx->targetSectionSize >> 10);
 | |
|         U32 const rsyncBits = (assert(jobSizeKB >= 1), ZSTD_highbit32(jobSizeKB) + 10);
 | |
|         /* We refuse to create jobs < RSYNC_MIN_BLOCK_SIZE bytes, so make sure our
 | |
|          * expected job size is at least 4x larger. */
 | |
|         assert(rsyncBits >= RSYNC_MIN_BLOCK_LOG + 2);
 | |
|         DEBUGLOG(4, "rsyncLog = %u", rsyncBits);
 | |
|         mtctx->rsync.hash = 0;
 | |
|         mtctx->rsync.hitMask = (1ULL << rsyncBits) - 1;
 | |
|         mtctx->rsync.primePower = ZSTD_rollingHash_primePower(RSYNC_LENGTH);
 | |
|     }
 | |
|     if (mtctx->targetSectionSize < mtctx->targetPrefixSize) mtctx->targetSectionSize = mtctx->targetPrefixSize;  /* job size must be >= overlap size */
 | |
|     DEBUGLOG(4, "Job Size : %u KB (note : set to %u)", (U32)(mtctx->targetSectionSize>>10), (U32)params.jobSize);
 | |
|     DEBUGLOG(4, "inBuff Size : %u KB", (U32)(mtctx->targetSectionSize>>10));
 | |
|     ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(mtctx->targetSectionSize));
 | |
|     {
 | |
|         /* If ldm is enabled we need windowSize space. */
 | |
|         size_t const windowSize = mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable ? (1U << mtctx->params.cParams.windowLog) : 0;
 | |
|         /* Two buffers of slack, plus extra space for the overlap
 | |
|          * This is the minimum slack that LDM works with. One extra because
 | |
|          * flush might waste up to targetSectionSize-1 bytes. Another extra
 | |
|          * for the overlap (if > 0), then one to fill which doesn't overlap
 | |
|          * with the LDM window.
 | |
|          */
 | |
|         size_t const nbSlackBuffers = 2 + (mtctx->targetPrefixSize > 0);
 | |
|         size_t const slackSize = mtctx->targetSectionSize * nbSlackBuffers;
 | |
|         /* Compute the total size, and always have enough slack */
 | |
|         size_t const nbWorkers = MAX(mtctx->params.nbWorkers, 1);
 | |
|         size_t const sectionsSize = mtctx->targetSectionSize * nbWorkers;
 | |
|         size_t const capacity = MAX(windowSize, sectionsSize) + slackSize;
 | |
|         if (mtctx->roundBuff.capacity < capacity) {
 | |
|             if (mtctx->roundBuff.buffer)
 | |
|                 ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem);
 | |
|             mtctx->roundBuff.buffer = (BYTE*)ZSTD_customMalloc(capacity, mtctx->cMem);
 | |
|             if (mtctx->roundBuff.buffer == NULL) {
 | |
|                 mtctx->roundBuff.capacity = 0;
 | |
|                 return ERROR(memory_allocation);
 | |
|             }
 | |
|             mtctx->roundBuff.capacity = capacity;
 | |
|         }
 | |
|     }
 | |
|     DEBUGLOG(4, "roundBuff capacity : %u KB", (U32)(mtctx->roundBuff.capacity>>10));
 | |
|     mtctx->roundBuff.pos = 0;
 | |
|     mtctx->inBuff.buffer = g_nullBuffer;
 | |
|     mtctx->inBuff.filled = 0;
 | |
|     mtctx->inBuff.prefix = kNullRange;
 | |
|     mtctx->doneJobID = 0;
 | |
|     mtctx->nextJobID = 0;
 | |
|     mtctx->frameEnded = 0;
 | |
|     mtctx->allJobsCompleted = 0;
 | |
|     mtctx->consumed = 0;
 | |
|     mtctx->produced = 0;
 | |
|     if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, mtctx->targetSectionSize,
 | |
|                                  dict, dictSize, dictContentType))
 | |
|         return ERROR(memory_allocation);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ZSTDMT_writeLastEmptyBlock()
 | |
|  * Write a single empty block with an end-of-frame to finish a frame.
 | |
|  * Job must be created from streaming variant.
 | |
|  * This function is always successful if expected conditions are fulfilled.
 | |
|  */
 | |
| static void ZSTDMT_writeLastEmptyBlock(ZSTDMT_jobDescription* job)
 | |
| {
 | |
|     assert(job->lastJob == 1);
 | |
|     assert(job->src.size == 0);   /* last job is empty -> will be simplified into a last empty block */
 | |
|     assert(job->firstJob == 0);   /* cannot be first job, as it also needs to create frame header */
 | |
|     assert(job->dstBuff.start == NULL);   /* invoked from streaming variant only (otherwise, dstBuff might be user's output) */
 | |
|     job->dstBuff = ZSTDMT_getBuffer(job->bufPool);
 | |
|     if (job->dstBuff.start == NULL) {
 | |
|       job->cSize = ERROR(memory_allocation);
 | |
|       return;
 | |
|     }
 | |
|     assert(job->dstBuff.capacity >= ZSTD_blockHeaderSize);   /* no buffer should ever be that small */
 | |
|     job->src = kNullRange;
 | |
|     job->cSize = ZSTD_writeLastEmptyBlock(job->dstBuff.start, job->dstBuff.capacity);
 | |
|     assert(!ZSTD_isError(job->cSize));
 | |
|     assert(job->consumed == 0);
 | |
| }
 | |
| 
 | |
| static size_t ZSTDMT_createCompressionJob(ZSTDMT_CCtx* mtctx, size_t srcSize, ZSTD_EndDirective endOp)
 | |
| {
 | |
|     unsigned const jobID = mtctx->nextJobID & mtctx->jobIDMask;
 | |
|     int const endFrame = (endOp == ZSTD_e_end);
 | |
| 
 | |
|     if (mtctx->nextJobID > mtctx->doneJobID + mtctx->jobIDMask) {
 | |
|         DEBUGLOG(5, "ZSTDMT_createCompressionJob: will not create new job : table is full");
 | |
|         assert((mtctx->nextJobID & mtctx->jobIDMask) == (mtctx->doneJobID & mtctx->jobIDMask));
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (!mtctx->jobReady) {
 | |
|         BYTE const* src = (BYTE const*)mtctx->inBuff.buffer.start;
 | |
|         DEBUGLOG(5, "ZSTDMT_createCompressionJob: preparing job %u to compress %u bytes with %u preload ",
 | |
|                     mtctx->nextJobID, (U32)srcSize, (U32)mtctx->inBuff.prefix.size);
 | |
|         mtctx->jobs[jobID].src.start = src;
 | |
|         mtctx->jobs[jobID].src.size = srcSize;
 | |
|         assert(mtctx->inBuff.filled >= srcSize);
 | |
|         mtctx->jobs[jobID].prefix = mtctx->inBuff.prefix;
 | |
|         mtctx->jobs[jobID].consumed = 0;
 | |
|         mtctx->jobs[jobID].cSize = 0;
 | |
|         mtctx->jobs[jobID].params = mtctx->params;
 | |
|         mtctx->jobs[jobID].cdict = mtctx->nextJobID==0 ? mtctx->cdict : NULL;
 | |
|         mtctx->jobs[jobID].fullFrameSize = mtctx->frameContentSize;
 | |
|         mtctx->jobs[jobID].dstBuff = g_nullBuffer;
 | |
|         mtctx->jobs[jobID].cctxPool = mtctx->cctxPool;
 | |
|         mtctx->jobs[jobID].bufPool = mtctx->bufPool;
 | |
|         mtctx->jobs[jobID].seqPool = mtctx->seqPool;
 | |
|         mtctx->jobs[jobID].serial = &mtctx->serial;
 | |
|         mtctx->jobs[jobID].jobID = mtctx->nextJobID;
 | |
|         mtctx->jobs[jobID].firstJob = (mtctx->nextJobID==0);
 | |
|         mtctx->jobs[jobID].lastJob = endFrame;
 | |
|         mtctx->jobs[jobID].frameChecksumNeeded = mtctx->params.fParams.checksumFlag && endFrame && (mtctx->nextJobID>0);
 | |
|         mtctx->jobs[jobID].dstFlushed = 0;
 | |
| 
 | |
|         /* Update the round buffer pos and clear the input buffer to be reset */
 | |
|         mtctx->roundBuff.pos += srcSize;
 | |
|         mtctx->inBuff.buffer = g_nullBuffer;
 | |
|         mtctx->inBuff.filled = 0;
 | |
|         /* Set the prefix */
 | |
|         if (!endFrame) {
 | |
|             size_t const newPrefixSize = MIN(srcSize, mtctx->targetPrefixSize);
 | |
|             mtctx->inBuff.prefix.start = src + srcSize - newPrefixSize;
 | |
|             mtctx->inBuff.prefix.size = newPrefixSize;
 | |
|         } else {   /* endFrame==1 => no need for another input buffer */
 | |
|             mtctx->inBuff.prefix = kNullRange;
 | |
|             mtctx->frameEnded = endFrame;
 | |
|             if (mtctx->nextJobID == 0) {
 | |
|                 /* single job exception : checksum is already calculated directly within worker thread */
 | |
|                 mtctx->params.fParams.checksumFlag = 0;
 | |
|         }   }
 | |
| 
 | |
|         if ( (srcSize == 0)
 | |
|           && (mtctx->nextJobID>0)/*single job must also write frame header*/ ) {
 | |
|             DEBUGLOG(5, "ZSTDMT_createCompressionJob: creating a last empty block to end frame");
 | |
|             assert(endOp == ZSTD_e_end);  /* only possible case : need to end the frame with an empty last block */
 | |
|             ZSTDMT_writeLastEmptyBlock(mtctx->jobs + jobID);
 | |
|             mtctx->nextJobID++;
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     DEBUGLOG(5, "ZSTDMT_createCompressionJob: posting job %u : %u bytes  (end:%u, jobNb == %u (mod:%u))",
 | |
|                 mtctx->nextJobID,
 | |
|                 (U32)mtctx->jobs[jobID].src.size,
 | |
|                 mtctx->jobs[jobID].lastJob,
 | |
|                 mtctx->nextJobID,
 | |
|                 jobID);
 | |
|     if (POOL_tryAdd(mtctx->factory, ZSTDMT_compressionJob, &mtctx->jobs[jobID])) {
 | |
|         mtctx->nextJobID++;
 | |
|         mtctx->jobReady = 0;
 | |
|     } else {
 | |
|         DEBUGLOG(5, "ZSTDMT_createCompressionJob: no worker available for job %u", mtctx->nextJobID);
 | |
|         mtctx->jobReady = 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*! ZSTDMT_flushProduced() :
 | |
|  *  flush whatever data has been produced but not yet flushed in current job.
 | |
|  *  move to next job if current one is fully flushed.
 | |
|  * `output` : `pos` will be updated with amount of data flushed .
 | |
|  * `blockToFlush` : if >0, the function will block and wait if there is no data available to flush .
 | |
|  * @return : amount of data remaining within internal buffer, 0 if no more, 1 if unknown but > 0, or an error code */
 | |
| static size_t ZSTDMT_flushProduced(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, unsigned blockToFlush, ZSTD_EndDirective end)
 | |
| {
 | |
|     unsigned const wJobID = mtctx->doneJobID & mtctx->jobIDMask;
 | |
|     DEBUGLOG(5, "ZSTDMT_flushProduced (blocking:%u , job %u <= %u)",
 | |
|                 blockToFlush, mtctx->doneJobID, mtctx->nextJobID);
 | |
|     assert(output->size >= output->pos);
 | |
| 
 | |
|     ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex);
 | |
|     if (  blockToFlush
 | |
|       && (mtctx->doneJobID < mtctx->nextJobID) ) {
 | |
|         assert(mtctx->jobs[wJobID].dstFlushed <= mtctx->jobs[wJobID].cSize);
 | |
|         while (mtctx->jobs[wJobID].dstFlushed == mtctx->jobs[wJobID].cSize) {  /* nothing to flush */
 | |
|             if (mtctx->jobs[wJobID].consumed == mtctx->jobs[wJobID].src.size) {
 | |
|                 DEBUGLOG(5, "job %u is completely consumed (%u == %u) => don't wait for cond, there will be none",
 | |
|                             mtctx->doneJobID, (U32)mtctx->jobs[wJobID].consumed, (U32)mtctx->jobs[wJobID].src.size);
 | |
|                 break;
 | |
|             }
 | |
|             DEBUGLOG(5, "waiting for something to flush from job %u (currently flushed: %u bytes)",
 | |
|                         mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed);
 | |
|             ZSTD_pthread_cond_wait(&mtctx->jobs[wJobID].job_cond, &mtctx->jobs[wJobID].job_mutex);  /* block when nothing to flush but some to come */
 | |
|     }   }
 | |
| 
 | |
|     /* try to flush something */
 | |
|     {   size_t cSize = mtctx->jobs[wJobID].cSize;                  /* shared */
 | |
|         size_t const srcConsumed = mtctx->jobs[wJobID].consumed;   /* shared */
 | |
|         size_t const srcSize = mtctx->jobs[wJobID].src.size;       /* read-only, could be done after mutex lock, but no-declaration-after-statement */
 | |
|         ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
 | |
|         if (ZSTD_isError(cSize)) {
 | |
|             DEBUGLOG(5, "ZSTDMT_flushProduced: job %u : compression error detected : %s",
 | |
|                         mtctx->doneJobID, ZSTD_getErrorName(cSize));
 | |
|             ZSTDMT_waitForAllJobsCompleted(mtctx);
 | |
|             ZSTDMT_releaseAllJobResources(mtctx);
 | |
|             return cSize;
 | |
|         }
 | |
|         /* add frame checksum if necessary (can only happen once) */
 | |
|         assert(srcConsumed <= srcSize);
 | |
|         if ( (srcConsumed == srcSize)   /* job completed -> worker no longer active */
 | |
|           && mtctx->jobs[wJobID].frameChecksumNeeded ) {
 | |
|             U32 const checksum = (U32)XXH64_digest(&mtctx->serial.xxhState);
 | |
|             DEBUGLOG(4, "ZSTDMT_flushProduced: writing checksum : %08X \n", checksum);
 | |
|             MEM_writeLE32((char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].cSize, checksum);
 | |
|             cSize += 4;
 | |
|             mtctx->jobs[wJobID].cSize += 4;  /* can write this shared value, as worker is no longer active */
 | |
|             mtctx->jobs[wJobID].frameChecksumNeeded = 0;
 | |
|         }
 | |
| 
 | |
|         if (cSize > 0) {   /* compression is ongoing or completed */
 | |
|             size_t const toFlush = MIN(cSize - mtctx->jobs[wJobID].dstFlushed, output->size - output->pos);
 | |
|             DEBUGLOG(5, "ZSTDMT_flushProduced: Flushing %u bytes from job %u (completion:%u/%u, generated:%u)",
 | |
|                         (U32)toFlush, mtctx->doneJobID, (U32)srcConsumed, (U32)srcSize, (U32)cSize);
 | |
|             assert(mtctx->doneJobID < mtctx->nextJobID);
 | |
|             assert(cSize >= mtctx->jobs[wJobID].dstFlushed);
 | |
|             assert(mtctx->jobs[wJobID].dstBuff.start != NULL);
 | |
|             if (toFlush > 0) {
 | |
|                 ZSTD_memcpy((char*)output->dst + output->pos,
 | |
|                     (const char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].dstFlushed,
 | |
|                     toFlush);
 | |
|             }
 | |
|             output->pos += toFlush;
 | |
|             mtctx->jobs[wJobID].dstFlushed += toFlush;  /* can write : this value is only used by mtctx */
 | |
| 
 | |
|             if ( (srcConsumed == srcSize)    /* job is completed */
 | |
|               && (mtctx->jobs[wJobID].dstFlushed == cSize) ) {   /* output buffer fully flushed => free this job position */
 | |
|                 DEBUGLOG(5, "Job %u completed (%u bytes), moving to next one",
 | |
|                         mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed);
 | |
|                 ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[wJobID].dstBuff);
 | |
|                 DEBUGLOG(5, "dstBuffer released");
 | |
|                 mtctx->jobs[wJobID].dstBuff = g_nullBuffer;
 | |
|                 mtctx->jobs[wJobID].cSize = 0;   /* ensure this job slot is considered "not started" in future check */
 | |
|                 mtctx->consumed += srcSize;
 | |
|                 mtctx->produced += cSize;
 | |
|                 mtctx->doneJobID++;
 | |
|         }   }
 | |
| 
 | |
|         /* return value : how many bytes left in buffer ; fake it to 1 when unknown but >0 */
 | |
|         if (cSize > mtctx->jobs[wJobID].dstFlushed) return (cSize - mtctx->jobs[wJobID].dstFlushed);
 | |
|         if (srcSize > srcConsumed) return 1;   /* current job not completely compressed */
 | |
|     }
 | |
|     if (mtctx->doneJobID < mtctx->nextJobID) return 1;   /* some more jobs ongoing */
 | |
|     if (mtctx->jobReady) return 1;      /* one job is ready to push, just not yet in the list */
 | |
|     if (mtctx->inBuff.filled > 0) return 1;   /* input is not empty, and still needs to be converted into a job */
 | |
|     mtctx->allJobsCompleted = mtctx->frameEnded;   /* all jobs are entirely flushed => if this one is last one, frame is completed */
 | |
|     if (end == ZSTD_e_end) return !mtctx->frameEnded;  /* for ZSTD_e_end, question becomes : is frame completed ? instead of : are internal buffers fully flushed ? */
 | |
|     return 0;   /* internal buffers fully flushed */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Returns the range of data used by the earliest job that is not yet complete.
 | |
|  * If the data of the first job is broken up into two segments, we cover both
 | |
|  * sections.
 | |
|  */
 | |
| static range_t ZSTDMT_getInputDataInUse(ZSTDMT_CCtx* mtctx)
 | |
| {
 | |
|     unsigned const firstJobID = mtctx->doneJobID;
 | |
|     unsigned const lastJobID = mtctx->nextJobID;
 | |
|     unsigned jobID;
 | |
| 
 | |
|     for (jobID = firstJobID; jobID < lastJobID; ++jobID) {
 | |
|         unsigned const wJobID = jobID & mtctx->jobIDMask;
 | |
|         size_t consumed;
 | |
| 
 | |
|         ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex);
 | |
|         consumed = mtctx->jobs[wJobID].consumed;
 | |
|         ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
 | |
| 
 | |
|         if (consumed < mtctx->jobs[wJobID].src.size) {
 | |
|             range_t range = mtctx->jobs[wJobID].prefix;
 | |
|             if (range.size == 0) {
 | |
|                 /* Empty prefix */
 | |
|                 range = mtctx->jobs[wJobID].src;
 | |
|             }
 | |
|             /* Job source in multiple segments not supported yet */
 | |
|             assert(range.start <= mtctx->jobs[wJobID].src.start);
 | |
|             return range;
 | |
|         }
 | |
|     }
 | |
|     return kNullRange;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Returns non-zero iff buffer and range overlap.
 | |
|  */
 | |
| static int ZSTDMT_isOverlapped(buffer_t buffer, range_t range)
 | |
| {
 | |
|     BYTE const* const bufferStart = (BYTE const*)buffer.start;
 | |
|     BYTE const* const rangeStart = (BYTE const*)range.start;
 | |
| 
 | |
|     if (rangeStart == NULL || bufferStart == NULL)
 | |
|         return 0;
 | |
| 
 | |
|     {
 | |
|         BYTE const* const bufferEnd = bufferStart + buffer.capacity;
 | |
|         BYTE const* const rangeEnd = rangeStart + range.size;
 | |
| 
 | |
|         /* Empty ranges cannot overlap */
 | |
|         if (bufferStart == bufferEnd || rangeStart == rangeEnd)
 | |
|             return 0;
 | |
| 
 | |
|         return bufferStart < rangeEnd && rangeStart < bufferEnd;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int ZSTDMT_doesOverlapWindow(buffer_t buffer, ZSTD_window_t window)
 | |
| {
 | |
|     range_t extDict;
 | |
|     range_t prefix;
 | |
| 
 | |
|     DEBUGLOG(5, "ZSTDMT_doesOverlapWindow");
 | |
|     extDict.start = window.dictBase + window.lowLimit;
 | |
|     extDict.size = window.dictLimit - window.lowLimit;
 | |
| 
 | |
|     prefix.start = window.base + window.dictLimit;
 | |
|     prefix.size = window.nextSrc - (window.base + window.dictLimit);
 | |
|     DEBUGLOG(5, "extDict [0x%zx, 0x%zx)",
 | |
|                 (size_t)extDict.start,
 | |
|                 (size_t)extDict.start + extDict.size);
 | |
|     DEBUGLOG(5, "prefix  [0x%zx, 0x%zx)",
 | |
|                 (size_t)prefix.start,
 | |
|                 (size_t)prefix.start + prefix.size);
 | |
| 
 | |
|     return ZSTDMT_isOverlapped(buffer, extDict)
 | |
|         || ZSTDMT_isOverlapped(buffer, prefix);
 | |
| }
 | |
| 
 | |
| static void ZSTDMT_waitForLdmComplete(ZSTDMT_CCtx* mtctx, buffer_t buffer)
 | |
| {
 | |
|     if (mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable) {
 | |
|         ZSTD_pthread_mutex_t* mutex = &mtctx->serial.ldmWindowMutex;
 | |
|         DEBUGLOG(5, "ZSTDMT_waitForLdmComplete");
 | |
|         DEBUGLOG(5, "source  [0x%zx, 0x%zx)",
 | |
|                     (size_t)buffer.start,
 | |
|                     (size_t)buffer.start + buffer.capacity);
 | |
|         ZSTD_PTHREAD_MUTEX_LOCK(mutex);
 | |
|         while (ZSTDMT_doesOverlapWindow(buffer, mtctx->serial.ldmWindow)) {
 | |
|             DEBUGLOG(5, "Waiting for LDM to finish...");
 | |
|             ZSTD_pthread_cond_wait(&mtctx->serial.ldmWindowCond, mutex);
 | |
|         }
 | |
|         DEBUGLOG(6, "Done waiting for LDM to finish");
 | |
|         ZSTD_pthread_mutex_unlock(mutex);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Attempts to set the inBuff to the next section to fill.
 | |
|  * If any part of the new section is still in use we give up.
 | |
|  * Returns non-zero if the buffer is filled.
 | |
|  */
 | |
| static int ZSTDMT_tryGetInputRange(ZSTDMT_CCtx* mtctx)
 | |
| {
 | |
|     range_t const inUse = ZSTDMT_getInputDataInUse(mtctx);
 | |
|     size_t const spaceLeft = mtctx->roundBuff.capacity - mtctx->roundBuff.pos;
 | |
|     size_t const target = mtctx->targetSectionSize;
 | |
|     buffer_t buffer;
 | |
| 
 | |
|     DEBUGLOG(5, "ZSTDMT_tryGetInputRange");
 | |
|     assert(mtctx->inBuff.buffer.start == NULL);
 | |
|     assert(mtctx->roundBuff.capacity >= target);
 | |
| 
 | |
|     if (spaceLeft < target) {
 | |
|         /* ZSTD_invalidateRepCodes() doesn't work for extDict variants.
 | |
|          * Simply copy the prefix to the beginning in that case.
 | |
|          */
 | |
|         BYTE* const start = (BYTE*)mtctx->roundBuff.buffer;
 | |
|         size_t const prefixSize = mtctx->inBuff.prefix.size;
 | |
| 
 | |
|         buffer.start = start;
 | |
|         buffer.capacity = prefixSize;
 | |
|         if (ZSTDMT_isOverlapped(buffer, inUse)) {
 | |
|             DEBUGLOG(5, "Waiting for buffer...");
 | |
|             return 0;
 | |
|         }
 | |
|         ZSTDMT_waitForLdmComplete(mtctx, buffer);
 | |
|         ZSTD_memmove(start, mtctx->inBuff.prefix.start, prefixSize);
 | |
|         mtctx->inBuff.prefix.start = start;
 | |
|         mtctx->roundBuff.pos = prefixSize;
 | |
|     }
 | |
|     buffer.start = mtctx->roundBuff.buffer + mtctx->roundBuff.pos;
 | |
|     buffer.capacity = target;
 | |
| 
 | |
|     if (ZSTDMT_isOverlapped(buffer, inUse)) {
 | |
|         DEBUGLOG(5, "Waiting for buffer...");
 | |
|         return 0;
 | |
|     }
 | |
|     assert(!ZSTDMT_isOverlapped(buffer, mtctx->inBuff.prefix));
 | |
| 
 | |
|     ZSTDMT_waitForLdmComplete(mtctx, buffer);
 | |
| 
 | |
|     DEBUGLOG(5, "Using prefix range [%zx, %zx)",
 | |
|                 (size_t)mtctx->inBuff.prefix.start,
 | |
|                 (size_t)mtctx->inBuff.prefix.start + mtctx->inBuff.prefix.size);
 | |
|     DEBUGLOG(5, "Using source range [%zx, %zx)",
 | |
|                 (size_t)buffer.start,
 | |
|                 (size_t)buffer.start + buffer.capacity);
 | |
| 
 | |
| 
 | |
|     mtctx->inBuff.buffer = buffer;
 | |
|     mtctx->inBuff.filled = 0;
 | |
|     assert(mtctx->roundBuff.pos + buffer.capacity <= mtctx->roundBuff.capacity);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
|   size_t toLoad;  /* The number of bytes to load from the input. */
 | |
|   int flush;      /* Boolean declaring if we must flush because we found a synchronization point. */
 | |
| } syncPoint_t;
 | |
| 
 | |
| /**
 | |
|  * Searches through the input for a synchronization point. If one is found, we
 | |
|  * will instruct the caller to flush, and return the number of bytes to load.
 | |
|  * Otherwise, we will load as many bytes as possible and instruct the caller
 | |
|  * to continue as normal.
 | |
|  */
 | |
| static syncPoint_t
 | |
| findSynchronizationPoint(ZSTDMT_CCtx const* mtctx, ZSTD_inBuffer const input)
 | |
| {
 | |
|     BYTE const* const istart = (BYTE const*)input.src + input.pos;
 | |
|     U64 const primePower = mtctx->rsync.primePower;
 | |
|     U64 const hitMask = mtctx->rsync.hitMask;
 | |
| 
 | |
|     syncPoint_t syncPoint;
 | |
|     U64 hash;
 | |
|     BYTE const* prev;
 | |
|     size_t pos;
 | |
| 
 | |
|     syncPoint.toLoad = MIN(input.size - input.pos, mtctx->targetSectionSize - mtctx->inBuff.filled);
 | |
|     syncPoint.flush = 0;
 | |
|     if (!mtctx->params.rsyncable)
 | |
|         /* Rsync is disabled. */
 | |
|         return syncPoint;
 | |
|     if (mtctx->inBuff.filled + input.size - input.pos < RSYNC_MIN_BLOCK_SIZE)
 | |
|         /* We don't emit synchronization points if it would produce too small blocks.
 | |
|          * We don't have enough input to find a synchronization point, so don't look.
 | |
|          */
 | |
|         return syncPoint;
 | |
|     if (mtctx->inBuff.filled + syncPoint.toLoad < RSYNC_LENGTH)
 | |
|         /* Not enough to compute the hash.
 | |
|          * We will miss any synchronization points in this RSYNC_LENGTH byte
 | |
|          * window. However, since it depends only in the internal buffers, if the
 | |
|          * state is already synchronized, we will remain synchronized.
 | |
|          * Additionally, the probability that we miss a synchronization point is
 | |
|          * low: RSYNC_LENGTH / targetSectionSize.
 | |
|          */
 | |
|         return syncPoint;
 | |
|     /* Initialize the loop variables. */
 | |
|     if (mtctx->inBuff.filled < RSYNC_MIN_BLOCK_SIZE) {
 | |
|         /* We don't need to scan the first RSYNC_MIN_BLOCK_SIZE positions
 | |
|          * because they can't possibly be a sync point. So we can start
 | |
|          * part way through the input buffer.
 | |
|          */
 | |
|         pos = RSYNC_MIN_BLOCK_SIZE - mtctx->inBuff.filled;
 | |
|         if (pos >= RSYNC_LENGTH) {
 | |
|             prev = istart + pos - RSYNC_LENGTH;
 | |
|             hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH);
 | |
|         } else {
 | |
|             assert(mtctx->inBuff.filled >= RSYNC_LENGTH);
 | |
|             prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH;
 | |
|             hash = ZSTD_rollingHash_compute(prev + pos, (RSYNC_LENGTH - pos));
 | |
|             hash = ZSTD_rollingHash_append(hash, istart, pos);
 | |
|         }
 | |
|     } else {
 | |
|         /* We have enough bytes buffered to initialize the hash,
 | |
|          * and are have processed enough bytes to find a sync point.
 | |
|          * Start scanning at the beginning of the input.
 | |
|          */
 | |
|         assert(mtctx->inBuff.filled >= RSYNC_MIN_BLOCK_SIZE);
 | |
|         assert(RSYNC_MIN_BLOCK_SIZE >= RSYNC_LENGTH);
 | |
|         pos = 0;
 | |
|         prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH;
 | |
|         hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH);
 | |
|         if ((hash & hitMask) == hitMask) {
 | |
|             /* We're already at a sync point so don't load any more until
 | |
|              * we're able to flush this sync point.
 | |
|              * This likely happened because the job table was full so we
 | |
|              * couldn't add our job.
 | |
|              */
 | |
|             syncPoint.toLoad = 0;
 | |
|             syncPoint.flush = 1;
 | |
|             return syncPoint;
 | |
|         }
 | |
|     }
 | |
|     /* Starting with the hash of the previous RSYNC_LENGTH bytes, roll
 | |
|      * through the input. If we hit a synchronization point, then cut the
 | |
|      * job off, and tell the compressor to flush the job. Otherwise, load
 | |
|      * all the bytes and continue as normal.
 | |
|      * If we go too long without a synchronization point (targetSectionSize)
 | |
|      * then a block will be emitted anyways, but this is okay, since if we
 | |
|      * are already synchronized we will remain synchronized.
 | |
|      */
 | |
|     for (; pos < syncPoint.toLoad; ++pos) {
 | |
|         BYTE const toRemove = pos < RSYNC_LENGTH ? prev[pos] : istart[pos - RSYNC_LENGTH];
 | |
|         assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash);
 | |
|         hash = ZSTD_rollingHash_rotate(hash, toRemove, istart[pos], primePower);
 | |
|         assert(mtctx->inBuff.filled + pos >= RSYNC_MIN_BLOCK_SIZE);
 | |
|         if ((hash & hitMask) == hitMask) {
 | |
|             syncPoint.toLoad = pos + 1;
 | |
|             syncPoint.flush = 1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return syncPoint;
 | |
| }
 | |
| 
 | |
| size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx)
 | |
| {
 | |
|     size_t hintInSize = mtctx->targetSectionSize - mtctx->inBuff.filled;
 | |
|     if (hintInSize==0) hintInSize = mtctx->targetSectionSize;
 | |
|     return hintInSize;
 | |
| }
 | |
| 
 | |
| /** ZSTDMT_compressStream_generic() :
 | |
|  *  internal use only - exposed to be invoked from zstd_compress.c
 | |
|  *  assumption : output and input are valid (pos <= size)
 | |
|  * @return : minimum amount of data remaining to flush, 0 if none */
 | |
| size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx,
 | |
|                                      ZSTD_outBuffer* output,
 | |
|                                      ZSTD_inBuffer* input,
 | |
|                                      ZSTD_EndDirective endOp)
 | |
| {
 | |
|     unsigned forwardInputProgress = 0;
 | |
|     DEBUGLOG(5, "ZSTDMT_compressStream_generic (endOp=%u, srcSize=%u)",
 | |
|                 (U32)endOp, (U32)(input->size - input->pos));
 | |
|     assert(output->pos <= output->size);
 | |
|     assert(input->pos  <= input->size);
 | |
| 
 | |
|     if ((mtctx->frameEnded) && (endOp==ZSTD_e_continue)) {
 | |
|         /* current frame being ended. Only flush/end are allowed */
 | |
|         return ERROR(stage_wrong);
 | |
|     }
 | |
| 
 | |
|     /* fill input buffer */
 | |
|     if ( (!mtctx->jobReady)
 | |
|       && (input->size > input->pos) ) {   /* support NULL input */
 | |
|         if (mtctx->inBuff.buffer.start == NULL) {
 | |
|             assert(mtctx->inBuff.filled == 0); /* Can't fill an empty buffer */
 | |
|             if (!ZSTDMT_tryGetInputRange(mtctx)) {
 | |
|                 /* It is only possible for this operation to fail if there are
 | |
|                  * still compression jobs ongoing.
 | |
|                  */
 | |
|                 DEBUGLOG(5, "ZSTDMT_tryGetInputRange failed");
 | |
|                 assert(mtctx->doneJobID != mtctx->nextJobID);
 | |
|             } else
 | |
|                 DEBUGLOG(5, "ZSTDMT_tryGetInputRange completed successfully : mtctx->inBuff.buffer.start = %p", mtctx->inBuff.buffer.start);
 | |
|         }
 | |
|         if (mtctx->inBuff.buffer.start != NULL) {
 | |
|             syncPoint_t const syncPoint = findSynchronizationPoint(mtctx, *input);
 | |
|             if (syncPoint.flush && endOp == ZSTD_e_continue) {
 | |
|                 endOp = ZSTD_e_flush;
 | |
|             }
 | |
|             assert(mtctx->inBuff.buffer.capacity >= mtctx->targetSectionSize);
 | |
|             DEBUGLOG(5, "ZSTDMT_compressStream_generic: adding %u bytes on top of %u to buffer of size %u",
 | |
|                         (U32)syncPoint.toLoad, (U32)mtctx->inBuff.filled, (U32)mtctx->targetSectionSize);
 | |
|             ZSTD_memcpy((char*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled, (const char*)input->src + input->pos, syncPoint.toLoad);
 | |
|             input->pos += syncPoint.toLoad;
 | |
|             mtctx->inBuff.filled += syncPoint.toLoad;
 | |
|             forwardInputProgress = syncPoint.toLoad>0;
 | |
|         }
 | |
|     }
 | |
|     if ((input->pos < input->size) && (endOp == ZSTD_e_end)) {
 | |
|         /* Can't end yet because the input is not fully consumed.
 | |
|             * We are in one of these cases:
 | |
|             * - mtctx->inBuff is NULL & empty: we couldn't get an input buffer so don't create a new job.
 | |
|             * - We filled the input buffer: flush this job but don't end the frame.
 | |
|             * - We hit a synchronization point: flush this job but don't end the frame.
 | |
|             */
 | |
|         assert(mtctx->inBuff.filled == 0 || mtctx->inBuff.filled == mtctx->targetSectionSize || mtctx->params.rsyncable);
 | |
|         endOp = ZSTD_e_flush;
 | |
|     }
 | |
| 
 | |
|     if ( (mtctx->jobReady)
 | |
|       || (mtctx->inBuff.filled >= mtctx->targetSectionSize)  /* filled enough : let's compress */
 | |
|       || ((endOp != ZSTD_e_continue) && (mtctx->inBuff.filled > 0))  /* something to flush : let's go */
 | |
|       || ((endOp == ZSTD_e_end) && (!mtctx->frameEnded)) ) {   /* must finish the frame with a zero-size block */
 | |
|         size_t const jobSize = mtctx->inBuff.filled;
 | |
|         assert(mtctx->inBuff.filled <= mtctx->targetSectionSize);
 | |
|         FORWARD_IF_ERROR( ZSTDMT_createCompressionJob(mtctx, jobSize, endOp) , "");
 | |
|     }
 | |
| 
 | |
|     /* check for potential compressed data ready to be flushed */
 | |
|     {   size_t const remainingToFlush = ZSTDMT_flushProduced(mtctx, output, !forwardInputProgress, endOp); /* block if there was no forward input progress */
 | |
|         if (input->pos < input->size) return MAX(remainingToFlush, 1);  /* input not consumed : do not end flush yet */
 | |
|         DEBUGLOG(5, "end of ZSTDMT_compressStream_generic: remainingToFlush = %u", (U32)remainingToFlush);
 | |
|         return remainingToFlush;
 | |
|     }
 | |
| }
 | 
