Duckstation/src/core/gpu_sw_backend.cpp
2021-02-06 19:19:55 +10:00

927 lines
30 KiB
C++

#include "gpu_sw_backend.h"
#include "common/assert.h"
#include "common/log.h"
#include "gpu_sw_backend.h"
#include "host_display.h"
#include "system.h"
#include <algorithm>
Log_SetChannel(GPU_SW_Backend);
GPU_SW_Backend::GPU_SW_Backend() : GPUBackend()
{
m_vram.fill(0);
m_vram_ptr = m_vram.data();
}
GPU_SW_Backend::~GPU_SW_Backend() = default;
bool GPU_SW_Backend::Initialize()
{
return GPUBackend::Initialize();
}
void GPU_SW_Backend::Reset(bool clear_vram)
{
GPUBackend::Reset(clear_vram);
if (clear_vram)
m_vram.fill(0);
}
void GPU_SW_Backend::DrawPolygon(const GPUBackendDrawPolygonCommand* cmd)
{
const GPURenderCommand rc{cmd->rc.bits};
const bool dithering_enable = rc.IsDitheringEnabled() && cmd->draw_mode.dither_enable;
const DrawTriangleFunction DrawFunction = GetDrawTriangleFunction(
rc.shading_enable, rc.texture_enable, rc.raw_texture_enable, rc.transparency_enable, dithering_enable);
(this->*DrawFunction)(cmd, &cmd->vertices[0], &cmd->vertices[1], &cmd->vertices[2]);
if (rc.quad_polygon)
(this->*DrawFunction)(cmd, &cmd->vertices[2], &cmd->vertices[1], &cmd->vertices[3]);
}
void GPU_SW_Backend::DrawRectangle(const GPUBackendDrawRectangleCommand* cmd)
{
const GPURenderCommand rc{cmd->rc.bits};
const DrawRectangleFunction DrawFunction =
GetDrawRectangleFunction(rc.texture_enable, rc.raw_texture_enable, rc.transparency_enable);
(this->*DrawFunction)(cmd);
}
void GPU_SW_Backend::DrawLine(const GPUBackendDrawLineCommand* cmd)
{
const DrawLineFunction DrawFunction =
GetDrawLineFunction(cmd->rc.shading_enable, cmd->rc.transparency_enable, cmd->IsDitheringEnabled());
for (u16 i = 1; i < cmd->num_vertices; i++)
(this->*DrawFunction)(cmd, &cmd->vertices[i - 1], &cmd->vertices[i]);
}
constexpr GPU_SW_Backend::DitherLUT GPU_SW_Backend::ComputeDitherLUT()
{
DitherLUT lut = {};
for (u32 i = 0; i < DITHER_MATRIX_SIZE; i++)
{
for (u32 j = 0; j < DITHER_MATRIX_SIZE; j++)
{
for (u32 value = 0; value < DITHER_LUT_SIZE; value++)
{
const s32 dithered_value = (static_cast<s32>(value) + DITHER_MATRIX[i][j]) >> 3;
lut[i][j][value] = static_cast<u8>((dithered_value < 0) ? 0 : ((dithered_value > 31) ? 31 : dithered_value));
}
}
}
return lut;
}
static constexpr GPU_SW_Backend::DitherLUT s_dither_lut = GPU_SW_Backend::ComputeDitherLUT();
template<bool texture_enable, bool raw_texture_enable, bool transparency_enable, bool dithering_enable>
void ALWAYS_INLINE_RELEASE GPU_SW_Backend::ShadePixel(const GPUBackendDrawCommand* cmd, u32 x, u32 y, u8 color_r,
u8 color_g, u8 color_b, u8 texcoord_x, u8 texcoord_y)
{
VRAMPixel color;
bool transparent;
if constexpr (texture_enable)
{
// Apply texture window
// TODO: Precompute the second half
texcoord_x = (texcoord_x & cmd->window.and_x) | cmd->window.or_x;
texcoord_y = (texcoord_y & cmd->window.and_y) | cmd->window.or_y;
VRAMPixel texture_color;
switch (cmd->draw_mode.texture_mode)
{
case GPUTextureMode::Palette4Bit:
{
const u16 palette_value =
GetPixel((cmd->draw_mode.GetTexturePageBaseX() + ZeroExtend32(texcoord_x / 4)) % VRAM_WIDTH,
(cmd->draw_mode.GetTexturePageBaseY() + ZeroExtend32(texcoord_y)) % VRAM_HEIGHT);
const u16 palette_index = (palette_value >> ((texcoord_x % 4) * 4)) & 0x0Fu;
texture_color.bits =
GetPixel((cmd->palette.GetXBase() + ZeroExtend32(palette_index)) % VRAM_WIDTH, cmd->palette.GetYBase());
}
break;
case GPUTextureMode::Palette8Bit:
{
const u16 palette_value =
GetPixel((cmd->draw_mode.GetTexturePageBaseX() + ZeroExtend32(texcoord_x / 2)) % VRAM_WIDTH,
(cmd->draw_mode.GetTexturePageBaseY() + ZeroExtend32(texcoord_y)) % VRAM_HEIGHT);
const u16 palette_index = (palette_value >> ((texcoord_x % 2) * 8)) & 0xFFu;
texture_color.bits =
GetPixel((cmd->palette.GetXBase() + ZeroExtend32(palette_index)) % VRAM_WIDTH, cmd->palette.GetYBase());
}
break;
default:
{
texture_color.bits = GetPixel((cmd->draw_mode.GetTexturePageBaseX() + ZeroExtend32(texcoord_x)) % VRAM_WIDTH,
(cmd->draw_mode.GetTexturePageBaseY() + ZeroExtend32(texcoord_y)) % VRAM_HEIGHT);
}
break;
}
if (texture_color.bits == 0)
return;
transparent = texture_color.c;
if constexpr (raw_texture_enable)
{
color.bits = texture_color.bits;
}
else
{
const u32 dither_y = (dithering_enable) ? (y & 3u) : 2u;
const u32 dither_x = (dithering_enable) ? (x & 3u) : 3u;
color.bits = (ZeroExtend16(s_dither_lut[dither_y][dither_x][(u16(texture_color.r) * u16(color_r)) >> 4]) << 0) |
(ZeroExtend16(s_dither_lut[dither_y][dither_x][(u16(texture_color.g) * u16(color_g)) >> 4]) << 5) |
(ZeroExtend16(s_dither_lut[dither_y][dither_x][(u16(texture_color.b) * u16(color_b)) >> 4]) << 10) |
(texture_color.bits & 0x8000u);
}
}
else
{
transparent = true;
const u32 dither_y = (dithering_enable) ? (y & 3u) : 2u;
const u32 dither_x = (dithering_enable) ? (x & 3u) : 3u;
color.bits = (ZeroExtend16(s_dither_lut[dither_y][dither_x][color_r]) << 0) |
(ZeroExtend16(s_dither_lut[dither_y][dither_x][color_g]) << 5) |
(ZeroExtend16(s_dither_lut[dither_y][dither_x][color_b]) << 10);
}
const VRAMPixel bg_color{GetPixel(static_cast<u32>(x), static_cast<u32>(y))};
if constexpr (transparency_enable)
{
if (transparent)
{
#define BLEND_AVERAGE(bg, fg) Truncate8(std::min<u32>((ZeroExtend32(bg) / 2) + (ZeroExtend32(fg) / 2), 0x1F))
#define BLEND_ADD(bg, fg) Truncate8(std::min<u32>(ZeroExtend32(bg) + ZeroExtend32(fg), 0x1F))
#define BLEND_SUBTRACT(bg, fg) Truncate8((bg > fg) ? ((bg) - (fg)) : 0)
#define BLEND_QUARTER(bg, fg) Truncate8(std::min<u32>(ZeroExtend32(bg) + ZeroExtend32(fg / 4), 0x1F))
#define BLEND_RGB(func) \
color.Set(func(bg_color.r.GetValue(), color.r.GetValue()), func(bg_color.g.GetValue(), color.g.GetValue()), \
func(bg_color.b.GetValue(), color.b.GetValue()), color.c.GetValue())
switch (cmd->draw_mode.transparency_mode)
{
case GPUTransparencyMode::HalfBackgroundPlusHalfForeground:
BLEND_RGB(BLEND_AVERAGE);
break;
case GPUTransparencyMode::BackgroundPlusForeground:
BLEND_RGB(BLEND_ADD);
break;
case GPUTransparencyMode::BackgroundMinusForeground:
BLEND_RGB(BLEND_SUBTRACT);
break;
case GPUTransparencyMode::BackgroundPlusQuarterForeground:
BLEND_RGB(BLEND_QUARTER);
break;
default:
break;
}
#undef BLEND_RGB
#undef BLEND_QUARTER
#undef BLEND_SUBTRACT
#undef BLEND_ADD
#undef BLEND_AVERAGE
}
}
else
{
UNREFERENCED_VARIABLE(transparent);
}
const u16 mask_and = cmd->params.GetMaskAND();
if ((bg_color.bits & mask_and) != 0)
return;
SetPixel(static_cast<u32>(x), static_cast<u32>(y), color.bits | cmd->params.GetMaskOR());
}
template<bool texture_enable, bool raw_texture_enable, bool transparency_enable>
void GPU_SW_Backend::DrawRectangle(const GPUBackendDrawRectangleCommand* cmd)
{
const s32 origin_x = cmd->x;
const s32 origin_y = cmd->y;
const auto [r, g, b] = UnpackColorRGB24(cmd->color);
const auto [origin_texcoord_x, origin_texcoord_y] = UnpackTexcoord(cmd->texcoord);
for (u32 offset_y = 0; offset_y < cmd->height; offset_y++)
{
const s32 y = origin_y + static_cast<s32>(offset_y);
if (y < static_cast<s32>(m_drawing_area.top) || y > static_cast<s32>(m_drawing_area.bottom) ||
(cmd->params.interlaced_rendering && cmd->params.active_line_lsb == (Truncate8(static_cast<u32>(y)) & 1u)))
{
continue;
}
const u8 texcoord_y = Truncate8(ZeroExtend32(origin_texcoord_y) + offset_y);
for (u32 offset_x = 0; offset_x < cmd->width; offset_x++)
{
const s32 x = origin_x + static_cast<s32>(offset_x);
if (x < static_cast<s32>(m_drawing_area.left) || x > static_cast<s32>(m_drawing_area.right))
continue;
const u8 texcoord_x = Truncate8(ZeroExtend32(origin_texcoord_x) + offset_x);
ShadePixel<texture_enable, raw_texture_enable, transparency_enable, false>(
cmd, static_cast<u32>(x), static_cast<u32>(y), r, g, b, texcoord_x, texcoord_y);
}
}
}
//////////////////////////////////////////////////////////////////////////
// Polygon and line rasterization ported from Mednafen
//////////////////////////////////////////////////////////////////////////
#define COORD_FBS 12
#define COORD_MF_INT(n) ((n) << COORD_FBS)
#define COORD_POST_PADDING 12
static ALWAYS_INLINE_RELEASE s64 MakePolyXFP(s32 x)
{
return ((u64)x << 32) + ((1ULL << 32) - (1 << 11));
}
static ALWAYS_INLINE_RELEASE s64 MakePolyXFPStep(s32 dx, s32 dy)
{
s64 ret;
s64 dx_ex = (u64)dx << 32;
if (dx_ex < 0)
dx_ex -= dy - 1;
if (dx_ex > 0)
dx_ex += dy - 1;
ret = dx_ex / dy;
return (ret);
}
static ALWAYS_INLINE_RELEASE s32 GetPolyXFP_Int(s64 xfp)
{
return (xfp >> 32);
}
template<bool shading_enable, bool texture_enable>
bool ALWAYS_INLINE_RELEASE GPU_SW_Backend::CalcIDeltas(i_deltas& idl, const GPUBackendDrawPolygonCommand::Vertex* A,
const GPUBackendDrawPolygonCommand::Vertex* B,
const GPUBackendDrawPolygonCommand::Vertex* C)
{
#define CALCIS(x, y) (((B->x - A->x) * (C->y - B->y)) - ((C->x - B->x) * (B->y - A->y)))
s32 denom = CALCIS(x, y);
if (!denom)
return false;
if constexpr (shading_enable)
{
idl.dr_dx = (u32)(CALCIS(r, y) * (1 << COORD_FBS) / denom) << COORD_POST_PADDING;
idl.dr_dy = (u32)(CALCIS(x, r) * (1 << COORD_FBS) / denom) << COORD_POST_PADDING;
idl.dg_dx = (u32)(CALCIS(g, y) * (1 << COORD_FBS) / denom) << COORD_POST_PADDING;
idl.dg_dy = (u32)(CALCIS(x, g) * (1 << COORD_FBS) / denom) << COORD_POST_PADDING;
idl.db_dx = (u32)(CALCIS(b, y) * (1 << COORD_FBS) / denom) << COORD_POST_PADDING;
idl.db_dy = (u32)(CALCIS(x, b) * (1 << COORD_FBS) / denom) << COORD_POST_PADDING;
}
if constexpr (texture_enable)
{
idl.du_dx = (u32)(CALCIS(u, y) * (1 << COORD_FBS) / denom) << COORD_POST_PADDING;
idl.du_dy = (u32)(CALCIS(x, u) * (1 << COORD_FBS) / denom) << COORD_POST_PADDING;
idl.dv_dx = (u32)(CALCIS(v, y) * (1 << COORD_FBS) / denom) << COORD_POST_PADDING;
idl.dv_dy = (u32)(CALCIS(x, v) * (1 << COORD_FBS) / denom) << COORD_POST_PADDING;
}
return true;
#undef CALCIS
}
template<bool shading_enable, bool texture_enable>
void ALWAYS_INLINE_RELEASE GPU_SW_Backend::AddIDeltas_DX(i_group& ig, const i_deltas& idl, u32 count /*= 1*/)
{
if constexpr (shading_enable)
{
ig.r += idl.dr_dx * count;
ig.g += idl.dg_dx * count;
ig.b += idl.db_dx * count;
}
if constexpr (texture_enable)
{
ig.u += idl.du_dx * count;
ig.v += idl.dv_dx * count;
}
}
template<bool shading_enable, bool texture_enable>
void ALWAYS_INLINE_RELEASE GPU_SW_Backend::AddIDeltas_DY(i_group& ig, const i_deltas& idl, u32 count /*= 1*/)
{
if constexpr (shading_enable)
{
ig.r += idl.dr_dy * count;
ig.g += idl.dg_dy * count;
ig.b += idl.db_dy * count;
}
if constexpr (texture_enable)
{
ig.u += idl.du_dy * count;
ig.v += idl.dv_dy * count;
}
}
template<bool shading_enable, bool texture_enable, bool raw_texture_enable, bool transparency_enable,
bool dithering_enable>
void GPU_SW_Backend::DrawSpan(const GPUBackendDrawPolygonCommand* cmd, s32 y, s32 x_start, s32 x_bound, i_group ig,
const i_deltas& idl)
{
if (cmd->params.interlaced_rendering && cmd->params.active_line_lsb == (Truncate8(static_cast<u32>(y)) & 1u))
return;
s32 x_ig_adjust = x_start;
s32 w = x_bound - x_start;
s32 x = TruncateGPUVertexPosition(x_start);
if (x < static_cast<s32>(m_drawing_area.left))
{
s32 delta = static_cast<s32>(m_drawing_area.left) - x;
x_ig_adjust += delta;
x += delta;
w -= delta;
}
if ((x + w) > (static_cast<s32>(m_drawing_area.right) + 1))
w = static_cast<s32>(m_drawing_area.right) + 1 - x;
if (w <= 0)
return;
AddIDeltas_DX<shading_enable, texture_enable>(ig, idl, x_ig_adjust);
AddIDeltas_DY<shading_enable, texture_enable>(ig, idl, y);
do
{
const u32 r = ig.r >> (COORD_FBS + COORD_POST_PADDING);
const u32 g = ig.g >> (COORD_FBS + COORD_POST_PADDING);
const u32 b = ig.b >> (COORD_FBS + COORD_POST_PADDING);
const u32 u = ig.u >> (COORD_FBS + COORD_POST_PADDING);
const u32 v = ig.v >> (COORD_FBS + COORD_POST_PADDING);
ShadePixel<texture_enable, raw_texture_enable, transparency_enable, dithering_enable>(
cmd, static_cast<u32>(x), static_cast<u32>(y), Truncate8(r), Truncate8(g), Truncate8(b), Truncate8(u),
Truncate8(v));
x++;
AddIDeltas_DX<shading_enable, texture_enable>(ig, idl);
} while (--w > 0);
}
template<bool shading_enable, bool texture_enable, bool raw_texture_enable, bool transparency_enable,
bool dithering_enable>
void GPU_SW_Backend::DrawTriangle(const GPUBackendDrawPolygonCommand* cmd,
const GPUBackendDrawPolygonCommand::Vertex* v0,
const GPUBackendDrawPolygonCommand::Vertex* v1,
const GPUBackendDrawPolygonCommand::Vertex* v2)
{
u32 core_vertex;
{
u32 cvtemp = 0;
if (v1->x <= v0->x)
{
if (v2->x <= v1->x)
cvtemp = (1 << 2);
else
cvtemp = (1 << 1);
}
else if (v2->x < v0->x)
cvtemp = (1 << 2);
else
cvtemp = (1 << 0);
if (v2->y < v1->y)
{
std::swap(v2, v1);
cvtemp = ((cvtemp >> 1) & 0x2) | ((cvtemp << 1) & 0x4) | (cvtemp & 0x1);
}
if (v1->y < v0->y)
{
std::swap(v1, v0);
cvtemp = ((cvtemp >> 1) & 0x1) | ((cvtemp << 1) & 0x2) | (cvtemp & 0x4);
}
if (v2->y < v1->y)
{
std::swap(v2, v1);
cvtemp = ((cvtemp >> 1) & 0x2) | ((cvtemp << 1) & 0x4) | (cvtemp & 0x1);
}
core_vertex = cvtemp >> 1;
}
if (v0->y == v2->y)
return;
if (static_cast<u32>(std::abs(v2->x - v0->x)) >= MAX_PRIMITIVE_WIDTH ||
static_cast<u32>(std::abs(v2->x - v1->x)) >= MAX_PRIMITIVE_WIDTH ||
static_cast<u32>(std::abs(v1->x - v0->x)) >= MAX_PRIMITIVE_WIDTH ||
static_cast<u32>(v2->y - v0->y) >= MAX_PRIMITIVE_HEIGHT)
{
return;
}
s64 base_coord = MakePolyXFP(v0->x);
s64 base_step = MakePolyXFPStep((v2->x - v0->x), (v2->y - v0->y));
s64 bound_coord_us;
s64 bound_coord_ls;
bool right_facing;
if (v1->y == v0->y)
{
bound_coord_us = 0;
right_facing = (bool)(v1->x > v0->x);
}
else
{
bound_coord_us = MakePolyXFPStep((v1->x - v0->x), (v1->y - v0->y));
right_facing = (bool)(bound_coord_us > base_step);
}
if (v2->y == v1->y)
bound_coord_ls = 0;
else
bound_coord_ls = MakePolyXFPStep((v2->x - v1->x), (v2->y - v1->y));
i_deltas idl;
if (!CalcIDeltas<shading_enable, texture_enable>(idl, v0, v1, v2))
return;
const GPUBackendDrawPolygonCommand::Vertex* vertices[3] = {v0, v1, v2};
i_group ig;
if constexpr (texture_enable)
{
ig.u = (COORD_MF_INT(vertices[core_vertex]->u) + (1 << (COORD_FBS - 1))) << COORD_POST_PADDING;
ig.v = (COORD_MF_INT(vertices[core_vertex]->v) + (1 << (COORD_FBS - 1))) << COORD_POST_PADDING;
}
ig.r = (COORD_MF_INT(vertices[core_vertex]->r) + (1 << (COORD_FBS - 1))) << COORD_POST_PADDING;
ig.g = (COORD_MF_INT(vertices[core_vertex]->g) + (1 << (COORD_FBS - 1))) << COORD_POST_PADDING;
ig.b = (COORD_MF_INT(vertices[core_vertex]->b) + (1 << (COORD_FBS - 1))) << COORD_POST_PADDING;
AddIDeltas_DX<shading_enable, texture_enable>(ig, idl, -vertices[core_vertex]->x);
AddIDeltas_DY<shading_enable, texture_enable>(ig, idl, -vertices[core_vertex]->y);
struct TriangleHalf
{
u64 x_coord[2];
u64 x_step[2];
s32 y_coord;
s32 y_bound;
bool dec_mode;
} tripart[2];
u32 vo = 0;
u32 vp = 0;
if (core_vertex != 0)
vo = 1;
if (core_vertex == 2)
vp = 3;
{
TriangleHalf* tp = &tripart[vo];
tp->y_coord = vertices[0 ^ vo]->y;
tp->y_bound = vertices[1 ^ vo]->y;
tp->x_coord[right_facing] = MakePolyXFP(vertices[0 ^ vo]->x);
tp->x_step[right_facing] = bound_coord_us;
tp->x_coord[!right_facing] = base_coord + ((vertices[vo]->y - vertices[0]->y) * base_step);
tp->x_step[!right_facing] = base_step;
tp->dec_mode = vo;
}
{
TriangleHalf* tp = &tripart[vo ^ 1];
tp->y_coord = vertices[1 ^ vp]->y;
tp->y_bound = vertices[2 ^ vp]->y;
tp->x_coord[right_facing] = MakePolyXFP(vertices[1 ^ vp]->x);
tp->x_step[right_facing] = bound_coord_ls;
tp->x_coord[!right_facing] =
base_coord + ((vertices[1 ^ vp]->y - vertices[0]->y) *
base_step); // base_coord + ((vertices[1].y - vertices[0].y) * base_step);
tp->x_step[!right_facing] = base_step;
tp->dec_mode = vp;
}
for (u32 i = 0; i < 2; i++)
{
s32 yi = tripart[i].y_coord;
s32 yb = tripart[i].y_bound;
u64 lc = tripart[i].x_coord[0];
u64 ls = tripart[i].x_step[0];
u64 rc = tripart[i].x_coord[1];
u64 rs = tripart[i].x_step[1];
if (tripart[i].dec_mode)
{
while (yi > yb)
{
yi--;
lc -= ls;
rc -= rs;
s32 y = TruncateGPUVertexPosition(yi);
if (y < static_cast<s32>(m_drawing_area.top))
break;
if (y > static_cast<s32>(m_drawing_area.bottom))
continue;
DrawSpan<shading_enable, texture_enable, raw_texture_enable, transparency_enable, dithering_enable>(
cmd, yi, GetPolyXFP_Int(lc), GetPolyXFP_Int(rc), ig, idl);
}
}
else
{
while (yi < yb)
{
s32 y = TruncateGPUVertexPosition(yi);
if (y > static_cast<s32>(m_drawing_area.bottom))
break;
if (y >= static_cast<s32>(m_drawing_area.top))
{
DrawSpan<shading_enable, texture_enable, raw_texture_enable, transparency_enable, dithering_enable>(
cmd, yi, GetPolyXFP_Int(lc), GetPolyXFP_Int(rc), ig, idl);
}
yi++;
lc += ls;
rc += rs;
}
}
}
}
GPU_SW_Backend::DrawTriangleFunction GPU_SW_Backend::GetDrawTriangleFunction(bool shading_enable, bool texture_enable,
bool raw_texture_enable,
bool transparency_enable,
bool dithering_enable)
{
#define F(SHADING, TEXTURE, RAW_TEXTURE, TRANSPARENCY, DITHERING) \
&GPU_SW_Backend::DrawTriangle<SHADING, TEXTURE, RAW_TEXTURE, TRANSPARENCY, DITHERING>
static constexpr DrawTriangleFunction funcs[2][2][2][2][2] = {
{{{{F(false, false, false, false, false), F(false, false, false, false, true)},
{F(false, false, false, true, false), F(false, false, false, true, true)}},
{{F(false, false, true, false, false), F(false, false, true, false, true)},
{F(false, false, true, true, false), F(false, false, true, true, true)}}},
{{{F(false, true, false, false, false), F(false, true, false, false, true)},
{F(false, true, false, true, false), F(false, true, false, true, true)}},
{{F(false, true, true, false, false), F(false, true, true, false, true)},
{F(false, true, true, true, false), F(false, true, true, true, true)}}}},
{{{{F(true, false, false, false, false), F(true, false, false, false, true)},
{F(true, false, false, true, false), F(true, false, false, true, true)}},
{{F(true, false, true, false, false), F(true, false, true, false, true)},
{F(true, false, true, true, false), F(true, false, true, true, true)}}},
{{{F(true, true, false, false, false), F(true, true, false, false, true)},
{F(true, true, false, true, false), F(true, true, false, true, true)}},
{{F(true, true, true, false, false), F(true, true, true, false, true)},
{F(true, true, true, true, false), F(true, true, true, true, true)}}}}};
#undef F
return funcs[u8(shading_enable)][u8(texture_enable)][u8(raw_texture_enable)][u8(transparency_enable)]
[u8(dithering_enable)];
}
enum
{
Line_XY_FractBits = 32
};
enum
{
Line_RGB_FractBits = 12
};
struct line_fxp_coord
{
u64 x, y;
u32 r, g, b;
};
struct line_fxp_step
{
s64 dx_dk, dy_dk;
s32 dr_dk, dg_dk, db_dk;
};
static ALWAYS_INLINE_RELEASE s64 LineDivide(s64 delta, s32 dk)
{
delta = (u64)delta << Line_XY_FractBits;
if (delta < 0)
delta -= dk - 1;
if (delta > 0)
delta += dk - 1;
return (delta / dk);
}
template<bool shading_enable, bool transparency_enable, bool dithering_enable>
void GPU_SW_Backend::DrawLine(const GPUBackendDrawLineCommand* cmd, const GPUBackendDrawLineCommand::Vertex* p0,
const GPUBackendDrawLineCommand::Vertex* p1)
{
const s32 i_dx = std::abs(p1->x - p0->x);
const s32 i_dy = std::abs(p1->y - p0->y);
const s32 k = (i_dx > i_dy) ? i_dx : i_dy;
if (i_dx >= MAX_PRIMITIVE_WIDTH || i_dy >= MAX_PRIMITIVE_HEIGHT)
return;
if (p0->x >= p1->x && k > 0)
std::swap(p0, p1);
line_fxp_step step;
if (k == 0)
{
step.dx_dk = 0;
step.dy_dk = 0;
if constexpr (shading_enable)
{
step.dr_dk = 0;
step.dg_dk = 0;
step.db_dk = 0;
}
}
else
{
step.dx_dk = LineDivide(p1->x - p0->x, k);
step.dy_dk = LineDivide(p1->y - p0->y, k);
if constexpr (shading_enable)
{
step.dr_dk = (s32)((u32)(p1->r - p0->r) << Line_RGB_FractBits) / k;
step.dg_dk = (s32)((u32)(p1->g - p0->g) << Line_RGB_FractBits) / k;
step.db_dk = (s32)((u32)(p1->b - p0->b) << Line_RGB_FractBits) / k;
}
}
line_fxp_coord cur_point;
cur_point.x = ((u64)p0->x << Line_XY_FractBits) | (1ULL << (Line_XY_FractBits - 1));
cur_point.y = ((u64)p0->y << Line_XY_FractBits) | (1ULL << (Line_XY_FractBits - 1));
cur_point.x -= 1024;
if (step.dy_dk < 0)
cur_point.y -= 1024;
if constexpr (shading_enable)
{
cur_point.r = (p0->r << Line_RGB_FractBits) | (1 << (Line_RGB_FractBits - 1));
cur_point.g = (p0->g << Line_RGB_FractBits) | (1 << (Line_RGB_FractBits - 1));
cur_point.b = (p0->b << Line_RGB_FractBits) | (1 << (Line_RGB_FractBits - 1));
}
for (s32 i = 0; i <= k; i++)
{
// Sign extension is not necessary here for x and y, due to the maximum values that ClipX1 and ClipY1 can contain.
const s32 x = (cur_point.x >> Line_XY_FractBits) & 2047;
const s32 y = (cur_point.y >> Line_XY_FractBits) & 2047;
if ((!cmd->params.interlaced_rendering || cmd->params.active_line_lsb != (Truncate8(static_cast<u32>(y)) & 1u)) &&
x >= static_cast<s32>(m_drawing_area.left) && x <= static_cast<s32>(m_drawing_area.right) &&
y >= static_cast<s32>(m_drawing_area.top) && y <= static_cast<s32>(m_drawing_area.bottom))
{
const u8 r = shading_enable ? static_cast<u8>(cur_point.r >> Line_RGB_FractBits) : p0->r;
const u8 g = shading_enable ? static_cast<u8>(cur_point.g >> Line_RGB_FractBits) : p0->g;
const u8 b = shading_enable ? static_cast<u8>(cur_point.b >> Line_RGB_FractBits) : p0->b;
ShadePixel<false, false, transparency_enable, dithering_enable>(cmd, static_cast<u32>(x), static_cast<u32>(y), r,
g, b, 0, 0);
}
cur_point.x += step.dx_dk;
cur_point.y += step.dy_dk;
if constexpr (shading_enable)
{
cur_point.r += step.dr_dk;
cur_point.g += step.dg_dk;
cur_point.b += step.db_dk;
}
}
}
GPU_SW_Backend::DrawLineFunction GPU_SW_Backend::GetDrawLineFunction(bool shading_enable, bool transparency_enable,
bool dithering_enable)
{
#define F(SHADING, TRANSPARENCY, DITHERING) &GPU_SW_Backend::DrawLine<SHADING, TRANSPARENCY, DITHERING>
static constexpr DrawLineFunction funcs[2][2][2] = {
{{F(false, false, false), F(false, false, true)}, {F(false, true, false), F(false, true, true)}},
{{F(true, false, false), F(true, false, true)}, {F(true, true, false), F(true, true, true)}}};
#undef F
return funcs[u8(shading_enable)][u8(transparency_enable)][u8(dithering_enable)];
}
GPU_SW_Backend::DrawRectangleFunction
GPU_SW_Backend::GetDrawRectangleFunction(bool texture_enable, bool raw_texture_enable, bool transparency_enable)
{
#define F(TEXTURE, RAW_TEXTURE, TRANSPARENCY) &GPU_SW_Backend::DrawRectangle<TEXTURE, RAW_TEXTURE, TRANSPARENCY>
static constexpr DrawRectangleFunction funcs[2][2][2] = {
{{F(false, false, false), F(false, false, true)}, {F(false, true, false), F(false, true, true)}},
{{F(true, false, false), F(true, false, true)}, {F(true, true, false), F(true, true, true)}}};
#undef F
return funcs[u8(texture_enable)][u8(raw_texture_enable)][u8(transparency_enable)];
}
void GPU_SW_Backend::FillVRAM(u32 x, u32 y, u32 width, u32 height, u32 color, GPUBackendCommandParameters params)
{
const u16 color16 = RGBA8888ToRGBA5551(color);
if ((x + width) <= VRAM_WIDTH && !params.interlaced_rendering)
{
for (u32 yoffs = 0; yoffs < height; yoffs++)
{
const u32 row = (y + yoffs) % VRAM_HEIGHT;
std::fill_n(&m_vram_ptr[row * VRAM_WIDTH + x], width, color16);
}
}
else if (params.interlaced_rendering)
{
// Hardware tests show that fills seem to break on the first two lines when the offset matches the displayed field.
const u32 active_field = params.active_line_lsb;
for (u32 yoffs = 0; yoffs < height; yoffs++)
{
const u32 row = (y + yoffs) % VRAM_HEIGHT;
if ((row & u32(1)) == active_field)
continue;
u16* row_ptr = &m_vram_ptr[row * VRAM_WIDTH];
for (u32 xoffs = 0; xoffs < width; xoffs++)
{
const u32 col = (x + xoffs) % VRAM_WIDTH;
row_ptr[col] = color16;
}
}
}
else
{
for (u32 yoffs = 0; yoffs < height; yoffs++)
{
const u32 row = (y + yoffs) % VRAM_HEIGHT;
u16* row_ptr = &m_vram_ptr[row * VRAM_WIDTH];
for (u32 xoffs = 0; xoffs < width; xoffs++)
{
const u32 col = (x + xoffs) % VRAM_WIDTH;
row_ptr[col] = color16;
}
}
}
}
void GPU_SW_Backend::UpdateVRAM(u32 x, u32 y, u32 width, u32 height, const void* data,
GPUBackendCommandParameters params)
{
// Fast path when the copy is not oversized.
if ((x + width) <= VRAM_WIDTH && (y + height) <= VRAM_HEIGHT && !params.IsMaskingEnabled())
{
const u16* src_ptr = static_cast<const u16*>(data);
u16* dst_ptr = &m_vram_ptr[y * VRAM_WIDTH + x];
for (u32 yoffs = 0; yoffs < height; yoffs++)
{
std::copy_n(src_ptr, width, dst_ptr);
src_ptr += width;
dst_ptr += VRAM_WIDTH;
}
}
else
{
// Slow path when we need to handle wrap-around.
const u16* src_ptr = static_cast<const u16*>(data);
const u16 mask_and = params.GetMaskAND();
const u16 mask_or = params.GetMaskOR();
for (u32 row = 0; row < height;)
{
u16* dst_row_ptr = &m_vram_ptr[((y + row++) % VRAM_HEIGHT) * VRAM_WIDTH];
for (u32 col = 0; col < width;)
{
// TODO: Handle unaligned reads...
u16* pixel_ptr = &dst_row_ptr[(x + col++) % VRAM_WIDTH];
if (((*pixel_ptr) & mask_and) == 0)
*pixel_ptr = *(src_ptr++) | mask_or;
}
}
}
}
void GPU_SW_Backend::CopyVRAM(u32 src_x, u32 src_y, u32 dst_x, u32 dst_y, u32 width, u32 height,
GPUBackendCommandParameters params)
{
// Break up oversized copies. This behavior has not been verified on console.
if ((src_x + width) > VRAM_WIDTH || (dst_x + width) > VRAM_WIDTH)
{
u32 remaining_rows = height;
u32 current_src_y = src_y;
u32 current_dst_y = dst_y;
while (remaining_rows > 0)
{
const u32 rows_to_copy =
std::min<u32>(remaining_rows, std::min<u32>(VRAM_HEIGHT - current_src_y, VRAM_HEIGHT - current_dst_y));
u32 remaining_columns = width;
u32 current_src_x = src_x;
u32 current_dst_x = dst_x;
while (remaining_columns > 0)
{
const u32 columns_to_copy =
std::min<u32>(remaining_columns, std::min<u32>(VRAM_WIDTH - current_src_x, VRAM_WIDTH - current_dst_x));
CopyVRAM(current_src_x, current_src_y, current_dst_x, current_dst_y, columns_to_copy, rows_to_copy, params);
current_src_x = (current_src_x + columns_to_copy) % VRAM_WIDTH;
current_dst_x = (current_dst_x + columns_to_copy) % VRAM_WIDTH;
remaining_columns -= columns_to_copy;
}
current_src_y = (current_src_y + rows_to_copy) % VRAM_HEIGHT;
current_dst_y = (current_dst_y + rows_to_copy) % VRAM_HEIGHT;
remaining_rows -= rows_to_copy;
}
return;
}
// This doesn't have a fast path, but do we really need one? It's not common.
const u16 mask_and = params.GetMaskAND();
const u16 mask_or = params.GetMaskOR();
// Copy in reverse when src_x < dst_x, this is verified on console.
if (src_x < dst_x || ((src_x + width - 1) % VRAM_WIDTH) < ((dst_x + width - 1) % VRAM_WIDTH))
{
for (u32 row = 0; row < height; row++)
{
const u16* src_row_ptr = &m_vram_ptr[((src_y + row) % VRAM_HEIGHT) * VRAM_WIDTH];
u16* dst_row_ptr = &m_vram_ptr[((dst_y + row) % VRAM_HEIGHT) * VRAM_WIDTH];
for (s32 col = static_cast<s32>(width - 1); col >= 0; col--)
{
const u16 src_pixel = src_row_ptr[(src_x + static_cast<u32>(col)) % VRAM_WIDTH];
u16* dst_pixel_ptr = &dst_row_ptr[(dst_x + static_cast<u32>(col)) % VRAM_WIDTH];
if ((*dst_pixel_ptr & mask_and) == 0)
*dst_pixel_ptr = src_pixel | mask_or;
}
}
}
else
{
for (u32 row = 0; row < height; row++)
{
const u16* src_row_ptr = &m_vram_ptr[((src_y + row) % VRAM_HEIGHT) * VRAM_WIDTH];
u16* dst_row_ptr = &m_vram_ptr[((dst_y + row) % VRAM_HEIGHT) * VRAM_WIDTH];
for (u32 col = 0; col < width; col++)
{
const u16 src_pixel = src_row_ptr[(src_x + col) % VRAM_WIDTH];
u16* dst_pixel_ptr = &dst_row_ptr[(dst_x + col) % VRAM_WIDTH];
if ((*dst_pixel_ptr & mask_and) == 0)
*dst_pixel_ptr = src_pixel | mask_or;
}
}
}
}
void GPU_SW_Backend::FlushRender() {}
void GPU_SW_Backend::DrawingAreaChanged() {}