Duckstation/src/util/gpu_device.cpp
2023-09-17 12:36:52 +10:00

778 lines
22 KiB
C++

// SPDX-FileCopyrightText: 2019-2023 Connor McLaughlin <stenzek@gmail.com>
// SPDX-License-Identifier: (GPL-3.0 OR CC-BY-NC-ND-4.0)
#include "gpu_device.h"
#include "core/host.h" // TODO: Remove, needed for getting fullscreen mode.
#include "core/settings.h" // TODO: Remove, needed for dump directory.
#include "shadergen.h"
#include "common/assert.h"
#include "common/file_system.h"
#include "common/log.h"
#include "common/path.h"
#include "common/string_util.h"
#include "common/timer.h"
#include "fmt/format.h"
#include "imgui.h"
Log_SetChannel(GPUDevice);
#ifdef _WIN32
#include "common/windows_headers.h"
#include "d3d11_device.h"
#include "d3d12_device.h"
#include "d3d_common.h"
#endif
#ifdef ENABLE_OPENGL
#include "opengl_device.h"
#endif
#ifdef ENABLE_VULKAN
#include "vulkan_device.h"
#endif
std::unique_ptr<GPUDevice> g_gpu_device;
static std::string s_pipeline_cache_path;
GPUFramebuffer::GPUFramebuffer(GPUTexture* rt, GPUTexture* ds, u32 width, u32 height)
: m_rt(rt), m_ds(ds), m_width(width), m_height(height)
{
}
GPUFramebuffer::~GPUFramebuffer() = default;
GPUSampler::GPUSampler() = default;
GPUSampler::~GPUSampler() = default;
GPUSampler::Config GPUSampler::GetNearestConfig()
{
Config config = {};
config.address_u = GPUSampler::AddressMode::ClampToEdge;
config.address_v = GPUSampler::AddressMode::ClampToEdge;
config.address_w = GPUSampler::AddressMode::ClampToEdge;
config.min_filter = GPUSampler::Filter::Nearest;
config.mag_filter = GPUSampler::Filter::Nearest;
return config;
}
GPUSampler::Config GPUSampler::GetLinearConfig()
{
Config config = {};
config.address_u = GPUSampler::AddressMode::ClampToEdge;
config.address_v = GPUSampler::AddressMode::ClampToEdge;
config.address_w = GPUSampler::AddressMode::ClampToEdge;
config.min_filter = GPUSampler::Filter::Linear;
config.mag_filter = GPUSampler::Filter::Linear;
return config;
}
GPUShader::GPUShader(GPUShaderStage stage) : m_stage(stage)
{
}
GPUShader::~GPUShader() = default;
const char* GPUShader::GetStageName(GPUShaderStage stage)
{
static constexpr std::array<const char*, static_cast<u32>(GPUShaderStage::MaxCount)> names = {"Vertex", "Fragment",
"Geometry", "Compute"};
return names[static_cast<u32>(stage)];
}
GPUPipeline::GPUPipeline() = default;
GPUPipeline::~GPUPipeline() = default;
size_t GPUPipeline::InputLayoutHash::operator()(const InputLayout& il) const
{
std::size_t h = 0;
hash_combine(h, il.vertex_attributes.size(), il.vertex_stride);
for (const VertexAttribute& va : il.vertex_attributes)
hash_combine(h, va.key);
return h;
}
bool GPUPipeline::InputLayout::operator==(const InputLayout& rhs) const
{
return (vertex_stride == rhs.vertex_stride && vertex_attributes.size() == rhs.vertex_attributes.size() &&
std::memcmp(vertex_attributes.data(), rhs.vertex_attributes.data(),
sizeof(VertexAttribute) * rhs.vertex_attributes.size()) == 0);
}
bool GPUPipeline::InputLayout::operator!=(const InputLayout& rhs) const
{
return (vertex_stride != rhs.vertex_stride ||
vertex_attributes.size() != rhs.vertex_attributes.size() ||
std::memcmp(vertex_attributes.data(), rhs.vertex_attributes.data(),
sizeof(VertexAttribute) * rhs.vertex_attributes.size()) != 0);
}
GPUPipeline::RasterizationState GPUPipeline::RasterizationState::GetNoCullState()
{
RasterizationState ret = {};
ret.cull_mode = CullMode::None;
return ret;
}
GPUPipeline::DepthState GPUPipeline::DepthState::GetNoTestsState()
{
DepthState ret = {};
ret.depth_test = DepthFunc::Always;
return ret;
}
GPUPipeline::DepthState GPUPipeline::DepthState::GetAlwaysWriteState()
{
DepthState ret = {};
ret.depth_test = DepthFunc::Always;
ret.depth_write = true;
return ret;
}
GPUPipeline::BlendState GPUPipeline::BlendState::GetNoBlendingState()
{
BlendState ret = {};
ret.write_mask = 0xf;
return ret;
}
GPUPipeline::BlendState GPUPipeline::BlendState::GetAlphaBlendingState()
{
BlendState ret = {};
ret.enable = true;
ret.src_blend = BlendFunc::SrcAlpha;
ret.dst_blend = BlendFunc::InvSrcAlpha;
ret.blend_op = BlendOp::Add;
ret.src_alpha_blend = BlendFunc::One;
ret.dst_alpha_blend = BlendFunc::Zero;
ret.alpha_blend_op = BlendOp::Add;
ret.write_mask = 0xf;
return ret;
}
GPUTextureBuffer::GPUTextureBuffer(Format format, u32 size) : m_format(format), m_size_in_elements(size)
{
}
GPUTextureBuffer::~GPUTextureBuffer() = default;
u32 GPUTextureBuffer::GetElementSize(Format format)
{
static constexpr std::array<u32, static_cast<u32>(Format::MaxCount)> element_size = {{
sizeof(u16),
}};
return element_size[static_cast<u32>(format)];
}
GPUDevice::~GPUDevice() = default;
RenderAPI GPUDevice::GetPreferredAPI()
{
#ifdef _WIN32
return RenderAPI::D3D11;
#else
return RenderAPI::Metal;
#endif
}
const char* GPUDevice::RenderAPIToString(RenderAPI api)
{
// TODO: Combine ES
switch (api)
{
// clang-format off
#define CASE(x) case RenderAPI::x: return #x
CASE(None);
CASE(D3D11);
CASE(D3D12);
CASE(Metal);
CASE(Vulkan);
CASE(OpenGL);
CASE(OpenGLES);
#undef CASE
// clang-format on
default:
return "Unknown";
}
}
bool GPUDevice::Create(const std::string_view& adapter, const std::string_view& shader_cache_path,
u32 shader_cache_version, bool debug_device, bool vsync, bool threaded_presentation)
{
m_vsync_enabled = vsync;
m_debug_device = debug_device;
if (!AcquireWindow(true))
{
Log_ErrorPrintf("Failed to acquire window from host.");
return false;
}
if (!CreateDevice(adapter, threaded_presentation))
{
Log_ErrorPrintf("Failed to create device.");
return false;
}
Log_InfoPrintf("Graphics Driver Info:\n%s", GetDriverInfo().c_str());
OpenShaderCache(shader_cache_path, shader_cache_version);
if (!CreateResources())
{
Log_ErrorPrintf("Failed to create base resources.");
return false;
}
return true;
}
void GPUDevice::Destroy()
{
if (HasSurface())
DestroySurface();
DestroyResources();
CloseShaderCache();
DestroyDevice();
}
bool GPUDevice::SupportsExclusiveFullscreen() const
{
return false;
}
void GPUDevice::OpenShaderCache(const std::string_view& base_path, u32 version)
{
if (m_features.shader_cache && !base_path.empty())
{
const std::string basename = GetShaderCacheBaseName("shaders");
const std::string filename = Path::Combine(base_path, basename);
if (!m_shader_cache.Open(filename.c_str(), version))
{
Log_WarningPrintf("Failed to open shader cache. Creating new cache.");
if (!m_shader_cache.Create())
Log_ErrorPrintf("Failed to create new shader cache.");
// Squish the pipeline cache too, it's going to be stale.
if (m_features.pipeline_cache)
{
const std::string pc_filename =
Path::Combine(base_path, TinyString::FromFmt("{}.bin", GetShaderCacheBaseName("pipelines")));
if (FileSystem::FileExists(pc_filename.c_str()))
{
Log_InfoPrintf("Removing old pipeline cache '%s'", pc_filename.c_str());
FileSystem::DeleteFile(pc_filename.c_str());
}
}
}
}
else
{
// Still need to set the version - GL needs it.
m_shader_cache.Open(std::string_view(), version);
}
s_pipeline_cache_path = {};
if (m_features.pipeline_cache && !base_path.empty())
{
const std::string basename = GetShaderCacheBaseName("pipelines");
const std::string filename = Path::Combine(base_path, TinyString::FromFmt("{}.bin", basename));
if (ReadPipelineCache(filename))
s_pipeline_cache_path = std::move(filename);
else
Log_WarningPrintf("Failed to read pipeline cache.");
}
}
void GPUDevice::CloseShaderCache()
{
m_shader_cache.Close();
if (!s_pipeline_cache_path.empty())
{
DynamicHeapArray<u8> data;
if (GetPipelineCacheData(&data))
{
// Save disk writes if it hasn't changed, think of the poor SSDs.
FILESYSTEM_STAT_DATA sd;
if (!FileSystem::StatFile(s_pipeline_cache_path.c_str(), &sd) || sd.Size != static_cast<s64>(data.size()))
{
Log_InfoPrintf("Writing %zu bytes to '%s'", data.size(), s_pipeline_cache_path.c_str());
if (!FileSystem::WriteBinaryFile(s_pipeline_cache_path.c_str(), data.data(), data.size()))
Log_ErrorPrintf("Failed to write pipeline cache to '%s'", s_pipeline_cache_path.c_str());
}
else
{
Log_InfoPrintf("Skipping updating pipeline cache '%s' due to no changes.", s_pipeline_cache_path.c_str());
}
}
s_pipeline_cache_path = {};
}
}
std::string GPUDevice::GetShaderCacheBaseName(const std::string_view& type) const
{
const std::string_view debug_suffix = m_debug_device ? "_debug" : "";
std::string ret;
switch (GetRenderAPI())
{
#ifdef _WIN32
case RenderAPI::D3D11:
ret = fmt::format(
"d3d11_{}_{}{}", type,
D3DCommon::GetFeatureLevelShaderModelString(D3D11Device::GetInstance().GetD3DDevice()->GetFeatureLevel()),
debug_suffix);
break;
case RenderAPI::D3D12:
ret = fmt::format("d3d12_{}{}", type, debug_suffix);
break;
#endif
#ifdef ENABLE_VULKAN
case RenderAPI::Vulkan:
ret = fmt::format("vulkan_{}{}", type, debug_suffix);
break;
#endif
#ifdef ENABLE_OPENGL
case RenderAPI::OpenGL:
ret = fmt::format("opengl_{}{}", type, debug_suffix);
break;
case RenderAPI::OpenGLES:
ret = fmt::format("opengles_{}{}", type, debug_suffix);
break;
#endif
#ifdef __APPLE__
case RenderAPI::Metal:
ret = fmt::format("metal_{}{}", type, debug_suffix);
break;
#endif
default:
UnreachableCode();
break;
}
return ret;
}
bool GPUDevice::ReadPipelineCache(const std::string& filename)
{
return false;
}
bool GPUDevice::GetPipelineCacheData(DynamicHeapArray<u8>* data)
{
return false;
}
bool GPUDevice::AcquireWindow(bool recreate_window)
{
std::optional<WindowInfo> wi = Host::AcquireRenderWindow(recreate_window);
if (!wi.has_value())
return false;
Log_InfoPrintf("Render window is %ux%u.", wi->surface_width, wi->surface_height);
m_window_info = wi.value();
return true;
}
bool GPUDevice::CreateResources()
{
if (!(m_nearest_sampler = CreateSampler(GPUSampler::GetNearestConfig())))
return false;
if (!(m_linear_sampler = CreateSampler(GPUSampler::GetLinearConfig())))
return false;
ShaderGen shadergen(GetRenderAPI(), m_features.dual_source_blend);
std::unique_ptr<GPUShader> imgui_vs = CreateShader(GPUShaderStage::Vertex, shadergen.GenerateImGuiVertexShader());
std::unique_ptr<GPUShader> imgui_fs = CreateShader(GPUShaderStage::Fragment, shadergen.GenerateImGuiFragmentShader());
if (!imgui_vs || !imgui_fs)
return false;
GL_OBJECT_NAME(imgui_vs, "ImGui Vertex Shader");
GL_OBJECT_NAME(imgui_fs, "ImGui Fragment Shader");
static constexpr GPUPipeline::VertexAttribute imgui_attributes[] = {
GPUPipeline::VertexAttribute::Make(0, GPUPipeline::VertexAttribute::Semantic::Position, 0,
GPUPipeline::VertexAttribute::Type::Float, 2, offsetof(ImDrawVert, pos)),
GPUPipeline::VertexAttribute::Make(1, GPUPipeline::VertexAttribute::Semantic::TexCoord, 0,
GPUPipeline::VertexAttribute::Type::Float, 2, offsetof(ImDrawVert, uv)),
GPUPipeline::VertexAttribute::Make(2, GPUPipeline::VertexAttribute::Semantic::Color, 0,
GPUPipeline::VertexAttribute::Type::UNorm8, 4, offsetof(ImDrawVert, col)),
};
GPUPipeline::GraphicsConfig plconfig;
plconfig.layout = GPUPipeline::Layout::SingleTextureAndPushConstants;
plconfig.input_layout.vertex_attributes = imgui_attributes;
plconfig.input_layout.vertex_stride = sizeof(ImDrawVert);
plconfig.primitive = GPUPipeline::Primitive::Triangles;
plconfig.rasterization = GPUPipeline::RasterizationState::GetNoCullState();
plconfig.depth = GPUPipeline::DepthState::GetNoTestsState();
plconfig.blend = GPUPipeline::BlendState::GetAlphaBlendingState();
plconfig.blend.write_mask = 0x7;
plconfig.color_format = HasSurface() ? m_window_info.surface_format : GPUTexture::Format::RGBA8;
plconfig.depth_format = GPUTexture::Format::Unknown;
plconfig.samples = 1;
plconfig.per_sample_shading = false;
plconfig.vertex_shader = imgui_vs.get();
plconfig.geometry_shader = nullptr;
plconfig.fragment_shader = imgui_fs.get();
m_imgui_pipeline = CreatePipeline(plconfig);
if (!m_imgui_pipeline)
{
Log_ErrorPrintf("Failed to compile ImGui pipeline.");
return false;
}
GL_OBJECT_NAME(m_imgui_pipeline, "ImGui Pipeline");
return true;
}
void GPUDevice::DestroyResources()
{
m_imgui_font_texture.reset();
m_imgui_pipeline.reset();
m_imgui_pipeline.reset();
m_linear_sampler.reset();
m_nearest_sampler.reset();
m_shader_cache.Close();
}
void GPUDevice::RenderImGui()
{
GL_SCOPE("RenderImGui");
ImGui::Render();
const ImDrawData* draw_data = ImGui::GetDrawData();
if (draw_data->CmdListsCount == 0)
return;
SetPipeline(m_imgui_pipeline.get());
SetViewportAndScissor(0, 0, m_window_info.surface_width, m_window_info.surface_height);
const float L = 0.0f;
const float R = static_cast<float>(m_window_info.surface_width);
const float T = 0.0f;
const float B = static_cast<float>(m_window_info.surface_height);
const float ortho_projection[4][4] = {
{2.0f / (R - L), 0.0f, 0.0f, 0.0f},
{0.0f, 2.0f / (T - B), 0.0f, 0.0f},
{0.0f, 0.0f, 0.5f, 0.0f},
{(R + L) / (L - R), (T + B) / (B - T), 0.5f, 1.0f},
};
PushUniformBuffer(ortho_projection, sizeof(ortho_projection));
// Render command lists
for (int n = 0; n < draw_data->CmdListsCount; n++)
{
const ImDrawList* cmd_list = draw_data->CmdLists[n];
static_assert(sizeof(ImDrawIdx) == sizeof(DrawIndex));
u32 base_vertex, base_index;
UploadVertexBuffer(cmd_list->VtxBuffer.Data, sizeof(ImDrawVert), cmd_list->VtxBuffer.Size, &base_vertex);
UploadIndexBuffer(cmd_list->IdxBuffer.Data, cmd_list->IdxBuffer.Size, &base_index);
for (int cmd_i = 0; cmd_i < cmd_list->CmdBuffer.Size; cmd_i++)
{
const ImDrawCmd* pcmd = &cmd_list->CmdBuffer[cmd_i];
DebugAssert(!pcmd->UserCallback);
if (pcmd->ElemCount == 0 || pcmd->ClipRect.z <= pcmd->ClipRect.x || pcmd->ClipRect.w <= pcmd->ClipRect.y)
continue;
SetScissor(static_cast<s32>(pcmd->ClipRect.x), static_cast<s32>(pcmd->ClipRect.y),
static_cast<s32>(pcmd->ClipRect.z - pcmd->ClipRect.x),
static_cast<s32>(pcmd->ClipRect.w - pcmd->ClipRect.y));
SetTextureSampler(0, reinterpret_cast<GPUTexture*>(pcmd->TextureId), m_linear_sampler.get());
DrawIndexed(pcmd->ElemCount, base_index + pcmd->IdxOffset, base_vertex + pcmd->VtxOffset);
}
}
}
void GPUDevice::UploadVertexBuffer(const void* vertices, u32 vertex_size, u32 vertex_count, u32* base_vertex)
{
void* map;
u32 space;
MapVertexBuffer(vertex_size, vertex_count, &map, &space, base_vertex);
std::memcpy(map, vertices, vertex_size * vertex_count);
UnmapVertexBuffer(vertex_size, vertex_count);
}
void GPUDevice::UploadIndexBuffer(const u16* indices, u32 index_count, u32* base_index)
{
u16* map;
u32 space;
MapIndexBuffer(index_count, &map, &space, base_index);
std::memcpy(map, indices, sizeof(u16) * index_count);
UnmapIndexBuffer(index_count);
}
void GPUDevice::UploadUniformBuffer(const void* data, u32 data_size)
{
void* map = MapUniformBuffer(data_size);
std::memcpy(map, data, data_size);
UnmapUniformBuffer(data_size);
}
void GPUDevice::SetViewportAndScissor(s32 x, s32 y, s32 width, s32 height)
{
SetViewport(x, y, width, height);
SetScissor(x, y, width, height);
}
void GPUDevice::ClearRenderTarget(GPUTexture* t, u32 c)
{
t->SetClearColor(c);
}
void GPUDevice::ClearDepth(GPUTexture* t, float d)
{
t->SetClearDepth(d);
}
void GPUDevice::InvalidateRenderTarget(GPUTexture* t)
{
t->SetState(GPUTexture::State::Invalidated);
}
std::unique_ptr<GPUShader> GPUDevice::CreateShader(GPUShaderStage stage, const std::string_view& source,
const char* entry_point /* = "main" */)
{
std::unique_ptr<GPUShader> shader;
if (!m_shader_cache.IsOpen())
{
shader = CreateShaderFromSource(stage, source, entry_point, nullptr);
return shader;
}
const GPUShaderCache::CacheIndexKey key = m_shader_cache.GetCacheKey(stage, source, entry_point);
DynamicHeapArray<u8> binary;
if (m_shader_cache.Lookup(key, &binary))
{
shader = CreateShaderFromBinary(stage, binary);
if (shader)
return shader;
Log_ErrorPrintf("Failed to create shader from binary (driver changed?). Clearing cache.");
m_shader_cache.Clear();
}
shader = CreateShaderFromSource(stage, source, entry_point, &binary);
if (!shader)
return shader;
// Don't insert empty shaders into the cache...
if (!binary.empty())
{
if (!m_shader_cache.Insert(key, binary.data(), static_cast<u32>(binary.size())))
m_shader_cache.Close();
}
return shader;
}
bool GPUDevice::GetRequestedExclusiveFullscreenMode(u32* width, u32* height, float* refresh_rate)
{
const std::string mode = Host::GetBaseStringSettingValue("GPU", "FullscreenMode", "");
if (!mode.empty())
{
const std::string_view mode_view = mode;
std::string_view::size_type sep1 = mode.find('x');
if (sep1 != std::string_view::npos)
{
std::optional<u32> owidth = StringUtil::FromChars<u32>(mode_view.substr(0, sep1));
sep1++;
while (sep1 < mode.length() && std::isspace(mode[sep1]))
sep1++;
if (owidth.has_value() && sep1 < mode.length())
{
std::string_view::size_type sep2 = mode.find('@', sep1);
if (sep2 != std::string_view::npos)
{
std::optional<u32> oheight = StringUtil::FromChars<u32>(mode_view.substr(sep1, sep2 - sep1));
sep2++;
while (sep2 < mode.length() && std::isspace(mode[sep2]))
sep2++;
if (oheight.has_value() && sep2 < mode.length())
{
std::optional<float> orefresh_rate = StringUtil::FromChars<float>(mode_view.substr(sep2));
if (orefresh_rate.has_value())
{
*width = owidth.value();
*height = oheight.value();
*refresh_rate = orefresh_rate.value();
return true;
}
}
}
}
}
}
*width = 0;
*height = 0;
*refresh_rate = 0;
return false;
}
std::string GPUDevice::GetFullscreenModeString(u32 width, u32 height, float refresh_rate)
{
return StringUtil::StdStringFromFormat("%u x %u @ %f hz", width, height, refresh_rate);
}
std::string GPUDevice::GetShaderDumpPath(const std::string_view& name)
{
return Path::Combine(EmuFolders::Dumps, name);
}
std::array<float, 4> GPUDevice::RGBA8ToFloat(u32 rgba)
{
return std::array<float, 4>{static_cast<float>(rgba & UINT32_C(0xFF)) * (1.0f / 255.0f),
static_cast<float>((rgba >> 8) & UINT32_C(0xFF)) * (1.0f / 255.0f),
static_cast<float>((rgba >> 16) & UINT32_C(0xFF)) * (1.0f / 255.0f),
static_cast<float>(rgba >> 24) * (1.0f / 255.0f)};
}
bool GPUDevice::UpdateImGuiFontTexture()
{
ImGuiIO& io = ImGui::GetIO();
unsigned char* pixels;
int width, height;
io.Fonts->GetTexDataAsRGBA32(&pixels, &width, &height);
const u32 pitch = sizeof(u32) * width;
if (m_imgui_font_texture && m_imgui_font_texture->GetWidth() == static_cast<u32>(width) &&
m_imgui_font_texture->GetHeight() == static_cast<u32>(height) &&
m_imgui_font_texture->Update(0, 0, static_cast<u32>(width), static_cast<u32>(height), pixels, pitch))
{
io.Fonts->SetTexID(m_imgui_font_texture.get());
return true;
}
std::unique_ptr<GPUTexture> new_font =
CreateTexture(width, height, 1, 1, 1, GPUTexture::Type::Texture, GPUTexture::Format::RGBA8, pixels, pitch);
if (!new_font)
return false;
m_imgui_font_texture = std::move(new_font);
io.Fonts->SetTexID(m_imgui_font_texture.get());
return true;
}
bool GPUDevice::UsesLowerLeftOrigin() const
{
const RenderAPI api = GetRenderAPI();
return (api == RenderAPI::OpenGL || api == RenderAPI::OpenGLES);
}
void GPUDevice::SetDisplayMaxFPS(float max_fps)
{
m_display_frame_interval = (max_fps > 0.0f) ? (1.0f / max_fps) : 0.0f;
}
bool GPUDevice::ShouldSkipDisplayingFrame()
{
if (m_display_frame_interval == 0.0f)
return false;
const u64 now = Common::Timer::GetCurrentValue();
const double diff = Common::Timer::ConvertValueToSeconds(now - m_last_frame_displayed_time);
if (diff < m_display_frame_interval)
return true;
m_last_frame_displayed_time = now;
return false;
}
void GPUDevice::ThrottlePresentation()
{
const float throttle_rate = (m_window_info.surface_refresh_rate > 0.0f) ? m_window_info.surface_refresh_rate : 60.0f;
const u64 sleep_period = Common::Timer::ConvertNanosecondsToValue(1e+9f / static_cast<double>(throttle_rate));
const u64 current_ts = Common::Timer::GetCurrentValue();
// Allow it to fall behind/run ahead up to 2*period. Sleep isn't that precise, plus we need to
// allow time for the actual rendering.
const u64 max_variance = sleep_period * 2;
if (static_cast<u64>(std::abs(static_cast<s64>(current_ts - m_last_frame_displayed_time))) > max_variance)
m_last_frame_displayed_time = current_ts + sleep_period;
else
m_last_frame_displayed_time += sleep_period;
Common::Timer::SleepUntil(m_last_frame_displayed_time, false);
}
bool GPUDevice::GetHostRefreshRate(float* refresh_rate)
{
if (m_window_info.surface_refresh_rate > 0.0f)
{
*refresh_rate = m_window_info.surface_refresh_rate;
return true;
}
return WindowInfo::QueryRefreshRateForWindow(m_window_info, refresh_rate);
}
bool GPUDevice::SetGPUTimingEnabled(bool enabled)
{
return false;
}
float GPUDevice::GetAndResetAccumulatedGPUTime()
{
return 0.0f;
}
std::unique_ptr<GPUDevice> GPUDevice::CreateDeviceForAPI(RenderAPI api)
{
switch (api)
{
#ifdef ENABLE_VULKAN
case RenderAPI::Vulkan:
return std::make_unique<VulkanDevice>();
#endif
#ifdef ENABLE_OPENGL
case RenderAPI::OpenGL:
case RenderAPI::OpenGLES:
return std::make_unique<OpenGLDevice>();
#endif
#ifdef _WIN32
case RenderAPI::D3D12:
return std::make_unique<D3D12Device>();
case RenderAPI::D3D11:
return std::make_unique<D3D11Device>();
#endif
#ifdef __APPLE__
case RenderAPI::Metal:
return WrapNewMetalDevice();
#endif
default:
return {};
}
}