Duckstation/src/util/metal_stream_buffer.mm
2024-09-01 23:10:55 +10:00

256 lines
8 KiB
Plaintext

// SPDX-FileCopyrightText: 2019-2024 Connor McLaughlin <stenzek@gmail.com>
// SPDX-License-Identifier: PolyForm-Strict-1.0.0
#include "metal_stream_buffer.h"
#include "metal_device.h"
#include "common/align.h"
#include "common/assert.h"
#include "common/log.h"
Log_SetChannel(MetalDevice);
MetalStreamBuffer::MetalStreamBuffer() = default;
MetalStreamBuffer::~MetalStreamBuffer()
{
if (IsValid())
Destroy();
}
bool MetalStreamBuffer::Create(id<MTLDevice> device, u32 size)
{
@autoreleasepool
{
const MTLResourceOptions options = MTLResourceStorageModeShared | MTLResourceCPUCacheModeWriteCombined;
id<MTLBuffer> new_buffer = [device newBufferWithLength:size options:options];
if (new_buffer == nil)
{
ERROR_LOG("Failed to create buffer.");
return false;
}
if (IsValid())
Destroy();
// Replace with the new buffer
m_size = size;
m_current_offset = 0;
m_current_gpu_position = 0;
m_tracked_fences.clear();
m_buffer = [new_buffer retain];
m_host_pointer = static_cast<u8*>([new_buffer contents]);
return true;
}
}
void MetalStreamBuffer::Destroy()
{
m_size = 0;
m_current_offset = 0;
m_current_gpu_position = 0;
m_tracked_fences.clear();
[m_buffer release];
m_buffer = nil;
m_host_pointer = nullptr;
}
bool MetalStreamBuffer::ReserveMemory(u32 num_bytes, u32 alignment)
{
const u32 required_bytes = num_bytes + alignment;
// Check for sane allocations
if (required_bytes > m_size) [[unlikely]]
{
ERROR_LOG("Attempting to allocate {} bytes from a {} byte stream buffer", num_bytes, m_size);
Panic("Stream buffer overflow");
return false;
}
UpdateGPUPosition();
// Is the GPU behind or up to date with our current offset?
if (m_current_offset >= m_current_gpu_position)
{
const u32 remaining_bytes = m_size - m_current_offset;
if (required_bytes <= remaining_bytes)
{
// Place at the current position, after the GPU position.
m_current_offset = Common::AlignUp(m_current_offset, alignment);
m_current_space = m_size - m_current_offset;
return true;
}
// Check for space at the start of the buffer
// We use < here because we don't want to have the case of m_current_offset ==
// m_current_gpu_position. That would mean the code above would assume the
// GPU has caught up to us, which it hasn't.
if (required_bytes < m_current_gpu_position)
{
// Reset offset to zero, since we're allocating behind the gpu now
m_current_offset = 0;
m_current_space = m_current_gpu_position - 1;
return true;
}
}
// Is the GPU ahead of our current offset?
if (m_current_offset < m_current_gpu_position)
{
// We have from m_current_offset..m_current_gpu_position space to use.
const u32 remaining_bytes = m_current_gpu_position - m_current_offset;
if (required_bytes < remaining_bytes)
{
// Place at the current position, since this is still behind the GPU.
m_current_offset = Common::AlignUp(m_current_offset, alignment);
m_current_space = m_current_gpu_position - m_current_offset - 1;
return true;
}
}
// Can we find a fence to wait on that will give us enough memory?
if (WaitForClearSpace(required_bytes))
{
const u32 align_diff = Common::AlignUp(m_current_offset, alignment) - m_current_offset;
m_current_offset += align_diff;
m_current_space -= align_diff;
return true;
}
// We tried everything we could, and still couldn't get anything. This means that too much space
// in the buffer is being used by the command buffer currently being recorded. Therefore, the
// only option is to execute it, and wait until it's done.
return false;
}
void MetalStreamBuffer::CommitMemory(u32 final_num_bytes)
{
DebugAssert((m_current_offset + final_num_bytes) <= m_size);
DebugAssert(final_num_bytes <= m_current_space);
m_current_offset += final_num_bytes;
m_current_space -= final_num_bytes;
UpdateCurrentFencePosition();
}
void MetalStreamBuffer::UpdateCurrentFencePosition()
{
// Has the offset changed since the last fence?
const u64 counter = MetalDevice::GetInstance().GetCurrentFenceCounter();
if (!m_tracked_fences.empty() && m_tracked_fences.back().first == counter)
{
// Still haven't executed a command buffer, so just update the offset.
m_tracked_fences.back().second = m_current_offset;
return;
}
// New buffer, so update the GPU position while we're at it.
m_tracked_fences.emplace_back(counter, m_current_offset);
}
void MetalStreamBuffer::UpdateGPUPosition()
{
auto start = m_tracked_fences.begin();
auto end = start;
const u64 completed_counter = MetalDevice::GetInstance().GetCompletedFenceCounter();
while (end != m_tracked_fences.end() && completed_counter >= end->first)
{
m_current_gpu_position = end->second;
++end;
}
if (start != end)
{
m_tracked_fences.erase(start, end);
if (m_current_offset == m_current_gpu_position)
{
// GPU is all caught up now.
m_current_offset = 0;
m_current_gpu_position = 0;
m_current_space = m_size;
}
}
}
bool MetalStreamBuffer::WaitForClearSpace(u32 num_bytes)
{
u32 new_offset = 0;
u32 new_space = 0;
u32 new_gpu_position = 0;
auto iter = m_tracked_fences.begin();
for (; iter != m_tracked_fences.end(); ++iter)
{
// Would this fence bring us in line with the GPU?
// This is the "last resort" case, where a command buffer execution has been forced
// after no additional data has been written to it, so we can assume that after the
// fence has been signaled the entire buffer is now consumed.
u32 gpu_position = iter->second;
if (m_current_offset == gpu_position)
{
new_offset = 0;
new_space = m_size;
new_gpu_position = 0;
break;
}
// Assuming that we wait for this fence, are we allocating in front of the GPU?
if (m_current_offset > gpu_position)
{
// This would suggest the GPU has now followed us and wrapped around, so we have from
// m_current_position..m_size free, as well as and 0..gpu_position.
const u32 remaining_space_after_offset = m_size - m_current_offset;
if (remaining_space_after_offset >= num_bytes)
{
// Switch to allocating in front of the GPU, using the remainder of the buffer.
new_offset = m_current_offset;
new_space = m_size - m_current_offset;
new_gpu_position = gpu_position;
break;
}
// We can wrap around to the start, behind the GPU, if there is enough space.
// We use > here because otherwise we'd end up lining up with the GPU, and then the
// allocator would assume that the GPU has consumed what we just wrote.
if (gpu_position > num_bytes)
{
new_offset = 0;
new_space = gpu_position - 1;
new_gpu_position = gpu_position;
break;
}
}
else
{
// We're currently allocating behind the GPU. This would give us between the current
// offset and the GPU position worth of space to work with. Again, > because we can't
// align the GPU position with the buffer offset.
u32 available_space_inbetween = gpu_position - m_current_offset;
if (available_space_inbetween > num_bytes)
{
// Leave the offset as-is, but update the GPU position.
new_offset = m_current_offset;
new_space = available_space_inbetween - 1;
new_gpu_position = gpu_position;
break;
}
}
}
// Did any fences satisfy this condition?
// Has the command buffer been executed yet? If not, the caller should execute it.
MetalDevice& dev = MetalDevice::GetInstance();
if (iter == m_tracked_fences.end() || iter->first == dev.GetCurrentFenceCounter())
return false;
// Wait until this fence is signaled. This will fire the callback, updating the GPU position.
dev.WaitForFenceCounter(iter->first);
m_tracked_fences.erase(m_tracked_fences.begin(), m_current_offset == iter->second ? m_tracked_fences.end() : ++iter);
m_current_offset = new_offset;
m_current_space = new_space;
m_current_gpu_position = new_gpu_position;
return true;
}