Duckstation/src/util/metal_device.mm
Stenzek 88270771da
System: Combine VRR and Optimal Frame Pacing
GSync/FreeSync display users should:
 - DISABLE VSync.
 - ENABLE Optimal Frame Pacing.
2024-04-11 21:33:40 +10:00

2352 lines
76 KiB
Plaintext

// SPDX-FileCopyrightText: 2023 Connor McLaughlin <stenzek@gmail.com>
// SPDX-License-Identifier: (GPL-3.0 OR CC-BY-NC-ND-4.0)
#include "metal_device.h"
#include "common/align.h"
#include "common/assert.h"
#include "common/error.h"
#include "common/file_system.h"
#include "common/log.h"
#include "common/path.h"
#include "common/string_util.h"
// TODO FIXME...
#define FMT_EXCEPTIONS 0
#include "fmt/format.h"
#include "shaderc/shaderc.hpp"
#include "spirv-cross/spirv_cross.hpp"
#include "spirv-cross/spirv_msl.hpp"
#include <array>
#include <pthread.h>
Log_SetChannel(MetalDevice);
// TODO: Disable hazard tracking and issue barriers explicitly.
// Looking across a range of GPUs, the optimal copy alignment for Vulkan drivers seems
// to be between 1 (AMD/NV) and 64 (Intel). So, we'll go with 64 here.
static constexpr u32 TEXTURE_UPLOAD_ALIGNMENT = 64;
// The pitch alignment must be less or equal to the upload alignment.
// We need 32 here for AVX2, so 64 is also fine.
static constexpr u32 TEXTURE_UPLOAD_PITCH_ALIGNMENT = 64;
static constexpr std::array<MTLPixelFormat, static_cast<u32>(GPUTexture::Format::MaxCount)> s_pixel_format_mapping = {
MTLPixelFormatInvalid, // Unknown
MTLPixelFormatRGBA8Unorm, // RGBA8
MTLPixelFormatBGRA8Unorm, // BGRA8
MTLPixelFormatB5G6R5Unorm, // RGB565
MTLPixelFormatA1BGR5Unorm, // RGBA5551
MTLPixelFormatR8Unorm, // R8
MTLPixelFormatDepth16Unorm, // D16
MTLPixelFormatR16Unorm, // R16
MTLPixelFormatR16Sint, // R16I
MTLPixelFormatR16Uint, // R16U
MTLPixelFormatR16Float, // R16F
MTLPixelFormatR32Sint, // R32I
MTLPixelFormatR32Uint, // R32U
MTLPixelFormatR32Float, // R32F
MTLPixelFormatRG8Unorm, // RG8
MTLPixelFormatRG16Unorm, // RG16
MTLPixelFormatRG16Float, // RG16F
MTLPixelFormatRG32Float, // RG32F
MTLPixelFormatRGBA16Unorm, // RGBA16
MTLPixelFormatRGBA16Float, // RGBA16F
MTLPixelFormatRGBA32Float, // RGBA32F
MTLPixelFormatBGR10A2Unorm, // RGB10A2
};
static std::unique_ptr<shaderc::Compiler> s_shaderc_compiler;
static NSString* StringViewToNSString(const std::string_view& str)
{
if (str.empty())
return nil;
return [[[NSString alloc] autorelease] initWithBytes:str.data()
length:static_cast<NSUInteger>(str.length())
encoding:NSUTF8StringEncoding];
}
static void LogNSError(NSError* error, const char* desc, ...)
{
std::va_list ap;
va_start(ap, desc);
Log::Writev("MetalDevice", "", LOGLEVEL_ERROR, desc, ap);
va_end(ap);
Log::Writef("MetalDevice", "", LOGLEVEL_ERROR, " NSError Code: %u", static_cast<u32>(error.code));
Log::Writef("MetalDevice", "", LOGLEVEL_ERROR, " NSError Description: %s", [error.description UTF8String]);
}
static GPUTexture::Format GetTextureFormatForMTLFormat(MTLPixelFormat fmt)
{
for (u32 i = 0; i < static_cast<u32>(GPUTexture::Format::MaxCount); i++)
{
if (s_pixel_format_mapping[i] == fmt)
return static_cast<GPUTexture::Format>(i);
}
return GPUTexture::Format::Unknown;
}
template<typename F>
static void RunOnMainThread(F&& f)
{
if ([NSThread isMainThread])
f();
else
dispatch_sync(dispatch_get_main_queue(), f);
}
MetalDevice::MetalDevice() : m_current_viewport(0, 0, 1, 1), m_current_scissor(0, 0, 1, 1)
{
}
MetalDevice::~MetalDevice()
{
Assert(m_layer == nil);
Assert(m_device == nil);
}
RenderAPI MetalDevice::GetRenderAPI() const
{
return RenderAPI::Metal;
}
bool MetalDevice::HasSurface() const
{
return (m_layer != nil);
}
bool MetalDevice::GetHostRefreshRate(float* refresh_rate)
{
return GPUDevice::GetHostRefreshRate(refresh_rate);
}
void MetalDevice::SetVSyncEnabled(bool enabled)
{
if (m_vsync_enabled == enabled)
return;
m_vsync_enabled = enabled;
if (m_layer != nil)
[m_layer setDisplaySyncEnabled:enabled];
}
bool MetalDevice::CreateDevice(const std::string_view& adapter, bool threaded_presentation,
std::optional<bool> exclusive_fullscreen_control, FeatureMask disabled_features,
Error* error)
{
@autoreleasepool
{
id<MTLDevice> device = nil;
if (!adapter.empty())
{
NSArray<id<MTLDevice>>* devices = [MTLCopyAllDevices() autorelease];
const u32 count = static_cast<u32>([devices count]);
for (u32 i = 0; i < count; i++)
{
if (adapter == [[devices[i] name] UTF8String])
{
device = devices[i];
break;
}
}
if (device == nil)
Log_ErrorFmt("Failed to find device named '{}'. Trying default.", adapter);
}
if (device == nil)
{
device = [MTLCreateSystemDefaultDevice() autorelease];
if (device == nil)
{
Error::SetStringView(error, "Failed to create default Metal device.");
return false;
}
}
id<MTLCommandQueue> queue = [[device newCommandQueue] autorelease];
if (queue == nil)
{
Error::SetStringView(error, "Failed to create command queue.");
return false;
}
m_device = [device retain];
m_queue = [queue retain];
Log_InfoPrintf("Metal Device: %s", [[m_device name] UTF8String]);
SetFeatures(disabled_features);
if (m_window_info.type != WindowInfo::Type::Surfaceless && !CreateLayer())
{
Error::SetStringView(error, "Failed to create layer.");
return false;
}
CreateCommandBuffer();
RenderBlankFrame();
if (!LoadShaders())
{
Error::SetStringView(error, "Failed to load shaders.");
return false;
}
if (!CreateBuffers())
{
Error::SetStringView(error, "Failed to create buffers.");
return false;
}
return true;
}
}
void MetalDevice::SetFeatures(FeatureMask disabled_features)
{
// https://gist.github.com/kylehowells/63d0723abc9588eb734cade4b7df660d
if ([m_device supportsFamily:MTLGPUFamilyMacCatalyst1] || [m_device supportsFamily:MTLGPUFamilyMac1] ||
[m_device supportsFamily:MTLGPUFamilyApple3])
{
m_max_texture_size = 16384;
}
else
{
m_max_texture_size = 8192;
}
m_max_multisamples = 0;
for (u32 multisamples = 1; multisamples < 16; multisamples *= 2)
{
if (![m_device supportsTextureSampleCount:multisamples])
break;
m_max_multisamples = multisamples;
}
m_features.dual_source_blend = !(disabled_features & FEATURE_MASK_DUAL_SOURCE_BLEND);
m_features.framebuffer_fetch = !(disabled_features & FEATURE_MASK_FRAMEBUFFER_FETCH) && false; // TODO
m_features.per_sample_shading = true;
m_features.noperspective_interpolation = true;
m_features.texture_copy_to_self = !(disabled_features & FEATURE_MASK_TEXTURE_COPY_TO_SELF);
m_features.supports_texture_buffers = !(disabled_features & FEATURE_MASK_TEXTURE_BUFFERS);
m_features.texture_buffers_emulated_with_ssbo = true;
m_features.feedback_loops = false;
m_features.geometry_shaders = false;
m_features.partial_msaa_resolve = false;
m_features.memory_import = true;
m_features.shader_cache = true;
m_features.pipeline_cache = false;
m_features.prefer_unused_textures = true;
}
bool MetalDevice::LoadShaders()
{
@autoreleasepool
{
auto try_lib = [this](NSString* name) -> id<MTLLibrary> {
NSBundle* bundle = [NSBundle mainBundle];
NSString* path = [bundle pathForResource:name ofType:@"metallib"];
if (path == nil)
{
// Xcode places it alongside the binary.
path = [NSString stringWithFormat:@"%@/%@.metallib", [bundle bundlePath], name];
if (![[NSFileManager defaultManager] fileExistsAtPath:path])
return nil;
}
id<MTLLibrary> lib = [m_device newLibraryWithFile:path error:nil];
if (lib == nil)
return nil;
return [lib retain];
};
if (!(m_shaders = try_lib(@"Metal23")) && !(m_shaders = try_lib(@"Metal22")) &&
!(m_shaders = try_lib(@"Metal21")) && !(m_shaders = try_lib(@"default")))
{
return false;
}
return true;
}
}
id<MTLFunction> MetalDevice::GetFunctionFromLibrary(id<MTLLibrary> library, NSString* name)
{
id<MTLFunction> function = [library newFunctionWithName:name];
return function;
}
id<MTLComputePipelineState> MetalDevice::CreateComputePipeline(id<MTLFunction> function, NSString* name)
{
MTLComputePipelineDescriptor* desc = [MTLComputePipelineDescriptor new];
if (name != nil)
[desc setLabel:name];
[desc setComputeFunction:function];
NSError* err = nil;
id<MTLComputePipelineState> pipeline = [m_device newComputePipelineStateWithDescriptor:desc
options:MTLPipelineOptionNone
reflection:nil
error:&err];
[desc release];
if (pipeline == nil)
{
LogNSError(err, "Create compute pipeline failed:");
return nil;
}
return pipeline;
}
void MetalDevice::DestroyDevice()
{
WaitForPreviousCommandBuffers();
if (InRenderPass())
EndRenderPass();
if (m_upload_cmdbuf != nil)
{
[m_upload_encoder endEncoding];
[m_upload_encoder release];
m_upload_encoder = nil;
[m_upload_cmdbuf release];
m_upload_cmdbuf = nil;
}
if (m_render_cmdbuf != nil)
{
[m_render_cmdbuf release];
m_render_cmdbuf = nil;
}
DestroyBuffers();
for (auto& it : m_cleanup_objects)
[it.second release];
m_cleanup_objects.clear();
for (auto& it : m_resolve_pipelines)
{
if (it.second != nil)
[it.second release];
}
m_resolve_pipelines.clear();
if (m_shaders != nil)
{
[m_shaders release];
m_shaders = nil;
}
if (m_queue != nil)
{
[m_queue release];
m_queue = nil;
}
if (m_device != nil)
{
[m_device release];
m_device = nil;
}
}
bool MetalDevice::CreateLayer()
{
@autoreleasepool
{
RunOnMainThread([this]() {
@autoreleasepool
{
Log_InfoFmt("Creating a {}x{} Metal layer.", m_window_info.surface_width, m_window_info.surface_height);
const auto size =
CGSizeMake(static_cast<float>(m_window_info.surface_width), static_cast<float>(m_window_info.surface_height));
m_layer = [CAMetalLayer layer];
[m_layer setDevice:m_device];
[m_layer setDrawableSize:size];
// Default should be BGRA8.
const MTLPixelFormat layer_fmt = [m_layer pixelFormat];
m_window_info.surface_format = GetTextureFormatForMTLFormat(layer_fmt);
if (m_window_info.surface_format == GPUTexture::Format::Unknown)
{
Log_ErrorFmt("Invalid pixel format {} in layer, using BGRA8.", static_cast<u32>(layer_fmt));
[m_layer setPixelFormat:MTLPixelFormatBGRA8Unorm];
m_window_info.surface_format = GPUTexture::Format::BGRA8;
}
Log_VerboseFmt("Metal layer pixel format is {}.", GPUTexture::GetFormatName(m_window_info.surface_format));
NSView* view = GetWindowView();
[view setWantsLayer:TRUE];
[view setLayer:m_layer];
}
});
[m_layer setDisplaySyncEnabled:m_vsync_enabled];
DebugAssert(m_layer_pass_desc == nil);
m_layer_pass_desc = [[MTLRenderPassDescriptor renderPassDescriptor] retain];
m_layer_pass_desc.renderTargetWidth = m_window_info.surface_width;
m_layer_pass_desc.renderTargetHeight = m_window_info.surface_height;
m_layer_pass_desc.colorAttachments[0].loadAction = MTLLoadActionClear;
m_layer_pass_desc.colorAttachments[0].storeAction = MTLStoreActionStore;
m_layer_pass_desc.colorAttachments[0].clearColor = MTLClearColorMake(0.0, 0.0, 0.0, 1.0);
return true;
}
}
void MetalDevice::DestroyLayer()
{
if (m_layer == nil)
return;
// Should wait for previous command buffers to finish, which might be rendering to drawables.
WaitForPreviousCommandBuffers();
[m_layer_pass_desc release];
m_layer_pass_desc = nil;
m_window_info.surface_format = GPUTexture::Format::Unknown;
RunOnMainThread([this]() {
NSView* view = GetWindowView();
[view setLayer:nil];
[view setWantsLayer:FALSE];
[m_layer release];
m_layer = nullptr;
});
}
void MetalDevice::RenderBlankFrame()
{
DebugAssert(!InRenderPass());
if (m_layer == nil)
return;
@autoreleasepool
{
id<MTLDrawable> drawable = [[m_layer nextDrawable] retain];
m_layer_pass_desc.colorAttachments[0].texture = [drawable texture];
id<MTLRenderCommandEncoder> encoder = [m_render_cmdbuf renderCommandEncoderWithDescriptor:m_layer_pass_desc];
[encoder endEncoding];
[m_render_cmdbuf presentDrawable:drawable];
DeferRelease(drawable);
SubmitCommandBuffer();
}
}
bool MetalDevice::UpdateWindow()
{
if (InRenderPass())
EndRenderPass();
DestroyLayer();
if (!AcquireWindow(false))
return false;
if (m_window_info.type != WindowInfo::Type::Surfaceless && !CreateLayer())
{
Log_ErrorPrintf("Failed to create layer on updated window");
return false;
}
return true;
}
void MetalDevice::DestroySurface()
{
DestroyLayer();
}
void MetalDevice::ResizeWindow(s32 new_window_width, s32 new_window_height, float new_window_scale)
{
@autoreleasepool
{
m_window_info.surface_scale = new_window_scale;
if (static_cast<u32>(new_window_width) == m_window_info.surface_width &&
static_cast<u32>(new_window_height) == m_window_info.surface_height)
{
return;
}
m_window_info.surface_width = new_window_width;
m_window_info.surface_height = new_window_height;
[m_layer setDrawableSize:CGSizeMake(new_window_width, new_window_height)];
m_layer_pass_desc.renderTargetWidth = m_window_info.surface_width;
m_layer_pass_desc.renderTargetHeight = m_window_info.surface_height;
}
}
std::string MetalDevice::GetDriverInfo() const
{
@autoreleasepool
{
return ([[m_device description] UTF8String]);
}
}
bool MetalDevice::CreateBuffers()
{
if (!m_vertex_buffer.Create(m_device, VERTEX_BUFFER_SIZE) || !m_index_buffer.Create(m_device, INDEX_BUFFER_SIZE) ||
!m_uniform_buffer.Create(m_device, UNIFORM_BUFFER_SIZE) ||
!m_texture_upload_buffer.Create(m_device, TEXTURE_STREAM_BUFFER_SIZE))
{
Log_ErrorPrintf("Failed to create vertex/index/uniform buffers.");
return false;
}
return true;
}
void MetalDevice::DestroyBuffers()
{
m_texture_upload_buffer.Destroy();
m_uniform_buffer.Destroy();
m_vertex_buffer.Destroy();
m_index_buffer.Destroy();
for (auto& it : m_depth_states)
{
if (it.second != nil)
[it.second release];
}
m_depth_states.clear();
}
bool MetalDevice::IsRenderTargetBound(const GPUTexture* tex) const
{
for (u32 i = 0; i < m_num_current_render_targets; i++)
{
if (m_current_render_targets[i] == tex)
return true;
}
return false;
}
GPUDevice::AdapterAndModeList MetalDevice::StaticGetAdapterAndModeList()
{
AdapterAndModeList ret;
@autoreleasepool
{
NSArray<id<MTLDevice>>* devices = [MTLCopyAllDevices() autorelease];
const u32 count = static_cast<u32>([devices count]);
ret.adapter_names.reserve(count);
for (u32 i = 0; i < count; i++)
ret.adapter_names.emplace_back([devices[i].name UTF8String]);
}
return ret;
}
GPUDevice::AdapterAndModeList MetalDevice::GetAdapterAndModeList()
{
return StaticGetAdapterAndModeList();
}
bool MetalDevice::SetGPUTimingEnabled(bool enabled)
{
if (m_gpu_timing_enabled == enabled)
return true;
std::unique_lock lock(m_fence_mutex);
m_gpu_timing_enabled = enabled;
m_accumulated_gpu_time = 0.0;
m_last_gpu_time_end = 0.0;
return true;
}
float MetalDevice::GetAndResetAccumulatedGPUTime()
{
std::unique_lock lock(m_fence_mutex);
return std::exchange(m_accumulated_gpu_time, 0.0) * 1000.0;
}
MetalShader::MetalShader(GPUShaderStage stage, id<MTLLibrary> library, id<MTLFunction> function)
: GPUShader(stage), m_library(library), m_function(function)
{
}
MetalShader::~MetalShader()
{
MetalDevice::DeferRelease(m_function);
MetalDevice::DeferRelease(m_library);
}
void MetalShader::SetDebugName(const std::string_view& name)
{
@autoreleasepool
{
[m_function setLabel:StringViewToNSString(name)];
}
}
// TODO: Clean this up, somehow..
namespace EmuFolders {
extern std::string DataRoot;
}
static void DumpShader(u32 n, const std::string_view& suffix, const std::string_view& data)
{
if (data.empty())
return;
auto fp = FileSystem::OpenManagedCFile(
Path::Combine(EmuFolders::DataRoot, fmt::format("shader{}_{}.txt", suffix, n)).c_str(), "wb");
if (!fp)
return;
std::fwrite(data.data(), data.length(), 1, fp.get());
}
std::unique_ptr<GPUShader> MetalDevice::CreateShaderFromMSL(GPUShaderStage stage, const std::string_view& source,
const std::string_view& entry_point)
{
@autoreleasepool
{
NSString* const ns_source = StringViewToNSString(source);
NSError* error = nullptr;
id<MTLLibrary> library = [m_device newLibraryWithSource:ns_source options:nil error:&error];
if (!library)
{
LogNSError(error, "Failed to compile %s shader", GPUShader::GetStageName(stage));
const char* utf_error = [error.description UTF8String];
DumpBadShader(source, fmt::format("Error {}: {}", static_cast<u32>(error.code), utf_error ? utf_error : ""));
return {};
}
id<MTLFunction> function = [library newFunctionWithName:StringViewToNSString(entry_point)];
if (!function)
{
Log_ErrorPrintf("Failed to get main function in compiled library");
return {};
}
return std::unique_ptr<MetalShader>(new MetalShader(stage, [library retain], [function retain]));
}
}
std::unique_ptr<GPUShader> MetalDevice::CreateShaderFromBinary(GPUShaderStage stage, std::span<const u8> data)
{
const std::string_view str_data(reinterpret_cast<const char*>(data.data()), data.size());
return CreateShaderFromMSL(stage, str_data, "main0");
}
std::unique_ptr<GPUShader> MetalDevice::CreateShaderFromSource(GPUShaderStage stage, const std::string_view& source,
const char* entry_point,
DynamicHeapArray<u8>* out_binary /* = nullptr */)
{
static constexpr bool dump_shaders = false;
static constexpr const std::array<shaderc_shader_kind, static_cast<size_t>(GPUShaderStage::MaxCount)> stage_kinds = {{
shaderc_glsl_vertex_shader,
shaderc_glsl_fragment_shader,
shaderc_glsl_geometry_shader,
shaderc_glsl_compute_shader,
}};
// TODO: NOT thread safe, yet.
if (!s_shaderc_compiler)
s_shaderc_compiler = std::make_unique<shaderc::Compiler>();
shaderc::CompileOptions spv_options;
spv_options.SetSourceLanguage(shaderc_source_language_glsl);
spv_options.SetTargetEnvironment(shaderc_target_env_vulkan, 0);
if (m_debug_device)
{
spv_options.SetOptimizationLevel(shaderc_optimization_level_zero);
spv_options.SetGenerateDebugInfo();
}
else
{
spv_options.SetOptimizationLevel(shaderc_optimization_level_performance);
}
const shaderc::SpvCompilationResult result = s_shaderc_compiler->CompileGlslToSpv(
source.data(), source.length(), stage_kinds[static_cast<size_t>(stage)], "source", entry_point, spv_options);
if (result.GetCompilationStatus() != shaderc_compilation_status_success)
{
const std::string errors = result.GetErrorMessage();
DumpBadShader(source, errors);
Log_ErrorFmt("Failed to compile shader to SPIR-V:\n{}", errors);
return {};
}
else if (result.GetNumWarnings() > 0)
{
Log_WarningFmt("Shader compiled with warnings:\n{}", result.GetErrorMessage());
}
spirv_cross::CompilerMSL compiler(result.cbegin(), std::distance(result.cbegin(), result.cend()));
spirv_cross::CompilerMSL::Options msl_options = compiler.get_msl_options();
msl_options.pad_fragment_output_components = true;
if (stage == GPUShaderStage::Fragment)
{
for (u32 i = 0; i < MAX_TEXTURE_SAMPLERS; i++)
{
spirv_cross::MSLResourceBinding rb;
rb.stage = spv::ExecutionModelFragment;
rb.desc_set = 1;
rb.binding = i;
rb.count = 1;
rb.msl_texture = i;
rb.msl_sampler = i;
rb.msl_buffer = i;
compiler.add_msl_resource_binding(rb);
}
}
compiler.set_msl_options(msl_options);
const std::string msl = compiler.compile();
if (msl.empty())
{
Log_ErrorPrintf("Failed to compile SPIR-V to MSL.");
return {};
}
if constexpr (dump_shaders)
{
static unsigned s_next_id = 0;
++s_next_id;
DumpShader(s_next_id, "_input", source);
DumpShader(s_next_id, "_msl", msl);
}
if (out_binary)
{
out_binary->resize(msl.size());
std::memcpy(out_binary->data(), msl.data(), msl.size());
}
return CreateShaderFromMSL(stage, msl, "main0");
}
MetalPipeline::MetalPipeline(id<MTLRenderPipelineState> pipeline, id<MTLDepthStencilState> depth, MTLCullMode cull_mode,
MTLPrimitiveType primitive)
: m_pipeline(pipeline), m_depth(depth), m_cull_mode(cull_mode), m_primitive(primitive)
{
}
MetalPipeline::~MetalPipeline()
{
MetalDevice::DeferRelease(m_pipeline);
}
void MetalPipeline::SetDebugName(const std::string_view& name)
{
// readonly property :/
}
id<MTLDepthStencilState> MetalDevice::GetDepthState(const GPUPipeline::DepthState& ds)
{
const auto it = m_depth_states.find(ds.key);
if (it != m_depth_states.end())
return it->second;
@autoreleasepool
{
static constexpr std::array<MTLCompareFunction, static_cast<u32>(GPUPipeline::DepthFunc::MaxCount)> func_mapping = {
{
MTLCompareFunctionNever, // Never
MTLCompareFunctionAlways, // Always
MTLCompareFunctionLess, // Less
MTLCompareFunctionLessEqual, // LessEqual
MTLCompareFunctionGreater, // Greater
MTLCompareFunctionGreaterEqual, // GreaterEqual
MTLCompareFunctionEqual, // Equal
}};
MTLDepthStencilDescriptor* desc = [[MTLDepthStencilDescriptor new] autorelease];
desc.depthCompareFunction = func_mapping[static_cast<u8>(ds.depth_test.GetValue())];
desc.depthWriteEnabled = ds.depth_write ? TRUE : FALSE;
id<MTLDepthStencilState> state = [m_device newDepthStencilStateWithDescriptor:desc];
m_depth_states.emplace(ds.key, state);
if (state == nil)
Log_ErrorPrintf("Failed to create depth-stencil state.");
return state;
}
}
std::unique_ptr<GPUPipeline> MetalDevice::CreatePipeline(const GPUPipeline::GraphicsConfig& config)
{
@autoreleasepool
{
static constexpr std::array<MTLPrimitiveTopologyClass, static_cast<u32>(GPUPipeline::Primitive::MaxCount)>
primitive_classes = {{
MTLPrimitiveTopologyClassPoint, // Points
MTLPrimitiveTopologyClassLine, // Lines
MTLPrimitiveTopologyClassTriangle, // Triangles
MTLPrimitiveTopologyClassTriangle, // TriangleStrips
}};
static constexpr std::array<MTLPrimitiveType, static_cast<u32>(GPUPipeline::Primitive::MaxCount)> primitives = {{
MTLPrimitiveTypePoint, // Points
MTLPrimitiveTypeLine, // Lines
MTLPrimitiveTypeTriangle, // Triangles
MTLPrimitiveTypeTriangleStrip, // TriangleStrips
}};
static constexpr u32 MAX_COMPONENTS = 4;
static constexpr const MTLVertexFormat
format_mapping[static_cast<u8>(GPUPipeline::VertexAttribute::Type::MaxCount)][MAX_COMPONENTS] = {
{MTLVertexFormatFloat, MTLVertexFormatFloat2, MTLVertexFormatFloat3, MTLVertexFormatFloat4}, // Float
{MTLVertexFormatUChar, MTLVertexFormatUChar2, MTLVertexFormatUChar3, MTLVertexFormatUChar4}, // UInt8
{MTLVertexFormatChar, MTLVertexFormatChar2, MTLVertexFormatChar3, MTLVertexFormatChar4}, // SInt8
{MTLVertexFormatUCharNormalized, MTLVertexFormatUChar2Normalized, MTLVertexFormatUChar3Normalized,
MTLVertexFormatUChar4Normalized}, // UNorm8
{MTLVertexFormatUShort, MTLVertexFormatUShort2, MTLVertexFormatUShort3, MTLVertexFormatUShort4}, // UInt16
{MTLVertexFormatShort, MTLVertexFormatShort2, MTLVertexFormatShort3, MTLVertexFormatShort4}, // SInt16
{MTLVertexFormatUShortNormalized, MTLVertexFormatUShort2Normalized, MTLVertexFormatUShort3Normalized,
MTLVertexFormatUShort4Normalized}, // UNorm16
{MTLVertexFormatUInt, MTLVertexFormatUInt2, MTLVertexFormatUInt3, MTLVertexFormatUInt4}, // UInt32
{MTLVertexFormatInt, MTLVertexFormatInt2, MTLVertexFormatInt3, MTLVertexFormatInt4}, // SInt32
};
static constexpr std::array<MTLCullMode, static_cast<u32>(GPUPipeline::CullMode::MaxCount)> cull_mapping = {{
MTLCullModeNone, // None
MTLCullModeFront, // Front
MTLCullModeBack, // Back
}};
static constexpr std::array<MTLBlendFactor, static_cast<u32>(GPUPipeline::BlendFunc::MaxCount)> blend_mapping = {{
MTLBlendFactorZero, // Zero
MTLBlendFactorOne, // One
MTLBlendFactorSourceColor, // SrcColor
MTLBlendFactorOneMinusSourceColor, // InvSrcColor
MTLBlendFactorDestinationColor, // DstColor
MTLBlendFactorOneMinusDestinationColor, // InvDstColor
MTLBlendFactorSourceAlpha, // SrcAlpha
MTLBlendFactorOneMinusSourceAlpha, // InvSrcAlpha
MTLBlendFactorSource1Alpha, // SrcAlpha1
MTLBlendFactorOneMinusSource1Alpha, // InvSrcAlpha1
MTLBlendFactorDestinationAlpha, // DstAlpha
MTLBlendFactorOneMinusDestinationAlpha, // InvDstAlpha
MTLBlendFactorBlendColor, // ConstantAlpha
MTLBlendFactorOneMinusBlendColor, // InvConstantAlpha
}};
static constexpr std::array<MTLBlendOperation, static_cast<u32>(GPUPipeline::BlendOp::MaxCount)> op_mapping = {{
MTLBlendOperationAdd, // Add
MTLBlendOperationSubtract, // Subtract
MTLBlendOperationReverseSubtract, // ReverseSubtract
MTLBlendOperationMin, // Min
MTLBlendOperationMax, // Max
}};
MTLRenderPipelineDescriptor* desc = [[MTLRenderPipelineDescriptor new] autorelease];
desc.vertexFunction = static_cast<const MetalShader*>(config.vertex_shader)->GetFunction();
desc.fragmentFunction = static_cast<const MetalShader*>(config.fragment_shader)->GetFunction();
for (u32 i = 0; i < MAX_RENDER_TARGETS; i++)
{
if (config.color_formats[i] == GPUTexture::Format::Unknown)
break;
desc.colorAttachments[0].pixelFormat = s_pixel_format_mapping[static_cast<u8>(config.color_formats[i])];
}
desc.depthAttachmentPixelFormat = s_pixel_format_mapping[static_cast<u8>(config.depth_format)];
// Input assembly.
MTLVertexDescriptor* vdesc = nil;
if (!config.input_layout.vertex_attributes.empty())
{
vdesc = [MTLVertexDescriptor vertexDescriptor];
for (u32 i = 0; i < static_cast<u32>(config.input_layout.vertex_attributes.size()); i++)
{
const GPUPipeline::VertexAttribute& va = config.input_layout.vertex_attributes[i];
DebugAssert(va.components > 0 && va.components <= MAX_COMPONENTS);
MTLVertexAttributeDescriptor* vd = vdesc.attributes[i];
vd.format = format_mapping[static_cast<u8>(va.type.GetValue())][va.components - 1];
vd.offset = static_cast<NSUInteger>(va.offset.GetValue());
vd.bufferIndex = 1;
}
vdesc.layouts[1].stepFunction = MTLVertexStepFunctionPerVertex;
vdesc.layouts[1].stepRate = 1;
vdesc.layouts[1].stride = config.input_layout.vertex_stride;
desc.vertexDescriptor = vdesc;
}
// Rasterization state.
const MTLCullMode cull_mode = cull_mapping[static_cast<u8>(config.rasterization.cull_mode.GetValue())];
desc.rasterizationEnabled = TRUE;
desc.inputPrimitiveTopology = primitive_classes[static_cast<u8>(config.primitive)];
// Depth state
id<MTLDepthStencilState> depth = GetDepthState(config.depth);
if (depth == nil)
return {};
// Blending state
MTLRenderPipelineColorAttachmentDescriptor* ca = desc.colorAttachments[0];
ca.writeMask = (config.blend.write_r ? MTLColorWriteMaskRed : MTLColorWriteMaskNone) |
(config.blend.write_g ? MTLColorWriteMaskGreen : MTLColorWriteMaskNone) |
(config.blend.write_b ? MTLColorWriteMaskBlue : MTLColorWriteMaskNone) |
(config.blend.write_a ? MTLColorWriteMaskAlpha : MTLColorWriteMaskNone);
// General
const MTLPrimitiveType primitive = primitives[static_cast<u8>(config.primitive)];
desc.rasterSampleCount = config.samples;
// Metal-specific stuff
desc.vertexBuffers[0].mutability = MTLMutabilityImmutable;
desc.fragmentBuffers[0].mutability = MTLMutabilityImmutable;
if (!config.input_layout.vertex_attributes.empty())
desc.vertexBuffers[1].mutability = MTLMutabilityImmutable;
if (config.layout == GPUPipeline::Layout::SingleTextureBufferAndPushConstants)
desc.fragmentBuffers[1].mutability = MTLMutabilityImmutable;
ca.blendingEnabled = config.blend.enable;
if (config.blend.enable)
{
ca.sourceRGBBlendFactor = blend_mapping[static_cast<u8>(config.blend.src_blend.GetValue())];
ca.destinationRGBBlendFactor = blend_mapping[static_cast<u8>(config.blend.dst_blend.GetValue())];
ca.rgbBlendOperation = op_mapping[static_cast<u8>(config.blend.blend_op.GetValue())];
ca.sourceAlphaBlendFactor = blend_mapping[static_cast<u8>(config.blend.src_alpha_blend.GetValue())];
ca.destinationAlphaBlendFactor = blend_mapping[static_cast<u8>(config.blend.dst_alpha_blend.GetValue())];
ca.alphaBlendOperation = op_mapping[static_cast<u8>(config.blend.alpha_blend_op.GetValue())];
}
NSError* error = nullptr;
id<MTLRenderPipelineState> pipeline = [m_device newRenderPipelineStateWithDescriptor:desc error:&error];
if (pipeline == nil)
{
LogNSError(error, "Failed to create render pipeline state");
return {};
}
return std::unique_ptr<GPUPipeline>(new MetalPipeline(pipeline, depth, cull_mode, primitive));
}
}
MetalTexture::MetalTexture(id<MTLTexture> texture, u16 width, u16 height, u8 layers, u8 levels, u8 samples, Type type,
Format format)
: GPUTexture(width, height, layers, levels, samples, type, format), m_texture(texture)
{
}
MetalTexture::~MetalTexture()
{
if (m_texture != nil)
{
MetalDevice::GetInstance().UnbindTexture(this);
MetalDevice::DeferRelease(m_texture);
}
}
bool MetalTexture::Update(u32 x, u32 y, u32 width, u32 height, const void* data, u32 pitch, u32 layer /*= 0*/,
u32 level /*= 0*/)
{
const u32 aligned_pitch = Common::AlignUpPow2(width * GetPixelSize(), TEXTURE_UPLOAD_PITCH_ALIGNMENT);
const u32 req_size = height * aligned_pitch;
GPUDevice::GetStatistics().buffer_streamed += req_size;
GPUDevice::GetStatistics().num_uploads++;
MetalDevice& dev = MetalDevice::GetInstance();
MetalStreamBuffer& sb = dev.GetTextureStreamBuffer();
id<MTLBuffer> actual_buffer;
u32 actual_offset;
u32 actual_pitch;
if (req_size >= (sb.GetCurrentSize() / 2u))
{
const u32 upload_size = height * pitch;
const MTLResourceOptions options = MTLResourceStorageModeShared;
actual_buffer = [dev.GetMTLDevice() newBufferWithBytes:data length:upload_size options:options];
actual_offset = 0;
actual_pitch = pitch;
if (actual_buffer == nil)
{
Panic("Failed to allocate temporary buffer.");
return false;
}
dev.DeferRelease(actual_buffer);
}
else
{
if (!sb.ReserveMemory(req_size, TEXTURE_UPLOAD_ALIGNMENT))
{
dev.SubmitCommandBuffer();
if (!sb.ReserveMemory(req_size, TEXTURE_UPLOAD_ALIGNMENT))
{
Panic("Failed to reserve texture upload space.");
return false;
}
}
actual_offset = sb.GetCurrentOffset();
StringUtil::StrideMemCpy(sb.GetCurrentHostPointer(), aligned_pitch, data, pitch, width * GetPixelSize(), height);
sb.CommitMemory(req_size);
actual_buffer = sb.GetBuffer();
actual_pitch = aligned_pitch;
}
if (m_state == GPUTexture::State::Cleared && (x != 0 || y != 0 || width != m_width || height != m_height))
dev.CommitClear(this);
const bool is_inline = (m_use_fence_counter == dev.GetCurrentFenceCounter());
id<MTLBlitCommandEncoder> encoder = dev.GetBlitEncoder(is_inline);
[encoder copyFromBuffer:actual_buffer
sourceOffset:actual_offset
sourceBytesPerRow:actual_pitch
sourceBytesPerImage:0
sourceSize:MTLSizeMake(width, height, 1)
toTexture:m_texture
destinationSlice:layer
destinationLevel:level
destinationOrigin:MTLOriginMake(x, y, 0)];
m_state = GPUTexture::State::Dirty;
return true;
}
bool MetalTexture::Map(void** map, u32* map_stride, u32 x, u32 y, u32 width, u32 height, u32 layer /*= 0*/,
u32 level /*= 0*/)
{
if ((x + width) > GetMipWidth(level) || (y + height) > GetMipHeight(level) || layer > m_layers || level > m_levels)
return false;
const u32 aligned_pitch = Common::AlignUpPow2(width * GetPixelSize(), TEXTURE_UPLOAD_PITCH_ALIGNMENT);
const u32 req_size = height * aligned_pitch;
MetalDevice& dev = MetalDevice::GetInstance();
if (m_state == GPUTexture::State::Cleared && (x != 0 || y != 0 || width != m_width || height != m_height))
dev.CommitClear(this);
MetalStreamBuffer& sb = dev.GetTextureStreamBuffer();
if (!sb.ReserveMemory(req_size, TEXTURE_UPLOAD_ALIGNMENT))
{
dev.SubmitCommandBuffer();
if (!sb.ReserveMemory(req_size, TEXTURE_UPLOAD_ALIGNMENT))
{
Panic("Failed to allocate space in texture upload buffer");
return false;
}
}
*map = sb.GetCurrentHostPointer();
*map_stride = aligned_pitch;
m_map_x = x;
m_map_y = y;
m_map_width = width;
m_map_height = height;
m_map_layer = layer;
m_map_level = level;
m_state = GPUTexture::State::Dirty;
return true;
}
void MetalTexture::Unmap()
{
const u32 aligned_pitch = Common::AlignUpPow2(m_map_width * GetPixelSize(), TEXTURE_UPLOAD_PITCH_ALIGNMENT);
const u32 req_size = m_map_height * aligned_pitch;
GPUDevice::GetStatistics().buffer_streamed += req_size;
GPUDevice::GetStatistics().num_uploads++;
MetalDevice& dev = MetalDevice::GetInstance();
MetalStreamBuffer& sb = dev.GetTextureStreamBuffer();
const u32 offset = sb.GetCurrentOffset();
sb.CommitMemory(req_size);
// TODO: track this
const bool is_inline = true;
id<MTLBlitCommandEncoder> encoder = dev.GetBlitEncoder(is_inline);
[encoder copyFromBuffer:sb.GetBuffer()
sourceOffset:offset
sourceBytesPerRow:aligned_pitch
sourceBytesPerImage:0
sourceSize:MTLSizeMake(m_map_width, m_map_height, 1)
toTexture:m_texture
destinationSlice:m_map_layer
destinationLevel:m_map_level
destinationOrigin:MTLOriginMake(m_map_x, m_map_y, 0)];
m_map_x = 0;
m_map_y = 0;
m_map_width = 0;
m_map_height = 0;
m_map_layer = 0;
m_map_level = 0;
}
void MetalTexture::MakeReadyForSampling()
{
MetalDevice& dev = MetalDevice::GetInstance();
if (!dev.InRenderPass())
return;
if (IsRenderTarget() ? dev.IsRenderTargetBound(this) : (dev.m_current_depth_target == this))
dev.EndRenderPass();
}
void MetalTexture::SetDebugName(const std::string_view& name)
{
@autoreleasepool
{
[m_texture setLabel:StringViewToNSString(name)];
}
}
std::unique_ptr<GPUTexture> MetalDevice::CreateTexture(u32 width, u32 height, u32 layers, u32 levels, u32 samples,
GPUTexture::Type type, GPUTexture::Format format,
const void* data, u32 data_stride)
{
if (!GPUTexture::ValidateConfig(width, height, layers, layers, samples, type, format))
return {};
const MTLPixelFormat pixel_format = s_pixel_format_mapping[static_cast<u8>(format)];
if (pixel_format == MTLPixelFormatInvalid)
return {};
@autoreleasepool
{
MTLTextureDescriptor* desc = [MTLTextureDescriptor texture2DDescriptorWithPixelFormat:pixel_format
width:width
height:height
mipmapped:(levels > 1)];
desc.mipmapLevelCount = levels;
desc.storageMode = MTLStorageModePrivate;
if (samples > 1)
{
desc.textureType = (layers > 1) ? MTLTextureType2DMultisampleArray : MTLTextureType2DMultisample;
desc.sampleCount = samples;
}
else if (layers > 1)
{
desc.textureType = MTLTextureType2DArray;
desc.arrayLength = layers;
}
switch (type)
{
case GPUTexture::Type::Texture:
case GPUTexture::Type::DynamicTexture:
desc.usage = MTLTextureUsageShaderRead;
break;
case GPUTexture::Type::RenderTarget:
case GPUTexture::Type::DepthStencil:
desc.usage = MTLTextureUsageShaderRead | MTLTextureUsageRenderTarget;
break;
case GPUTexture::Type::RWTexture:
desc.usage = MTLTextureUsageShaderRead | MTLTextureUsageShaderWrite;
break;
default:
UnreachableCode();
break;
}
id<MTLTexture> tex = [m_device newTextureWithDescriptor:desc];
if (tex == nil)
{
Log_ErrorPrintf("Failed to create %ux%u texture.", width, height);
return {};
}
// This one can *definitely* go on the upload buffer.
std::unique_ptr<GPUTexture> gtex(
new MetalTexture([tex retain], width, height, layers, levels, samples, type, format));
if (data)
{
// TODO: handle multi-level uploads...
gtex->Update(0, 0, width, height, data, data_stride, 0, 0);
}
return gtex;
}
}
MetalDownloadTexture::MetalDownloadTexture(u32 width, u32 height, GPUTexture::Format format, u8* import_buffer,
size_t buffer_offset, id<MTLBuffer> buffer, const u8* map_ptr, u32 map_pitch)
: GPUDownloadTexture(width, height, format, (import_buffer != nullptr)), m_buffer_offset(buffer_offset),
m_buffer(buffer)
{
m_map_pointer = map_ptr;
m_current_pitch = map_pitch;
}
MetalDownloadTexture::~MetalDownloadTexture()
{
[m_buffer release];
}
std::unique_ptr<MetalDownloadTexture> MetalDownloadTexture::Create(u32 width, u32 height, GPUTexture::Format format,
void* memory, size_t memory_size, u32 memory_stride)
{
@autoreleasepool
{
MetalDevice& dev = MetalDevice::GetInstance();
id<MTLBuffer> buffer = nil;
size_t memory_offset = 0;
const u8* map_ptr = nullptr;
u32 map_pitch = 0;
u32 buffer_size = 0;
constexpr MTLResourceOptions options = MTLResourceStorageModeShared | MTLResourceCPUCacheModeDefaultCache;
// not importing memory?
if (!memory)
{
map_pitch = Common::AlignUpPow2(GPUTexture::CalcUploadPitch(format, width), TEXTURE_UPLOAD_PITCH_ALIGNMENT);
buffer_size = height * map_pitch;
buffer = [[dev.m_device newBufferWithLength:buffer_size options:options] retain];
if (buffer == nil)
{
Log_ErrorFmt("Failed to create {} byte buffer", buffer_size);
return {};
}
map_ptr = static_cast<u8*>([buffer contents]);
}
else
{
map_pitch = memory_stride;
buffer_size = height * map_pitch;
Assert(buffer_size <= memory_size);
// Importing memory, we need to page align the buffer.
void* page_aligned_memory =
reinterpret_cast<void*>(Common::AlignDownPow2(reinterpret_cast<uintptr_t>(memory), HOST_PAGE_SIZE));
const size_t page_offset = static_cast<size_t>(static_cast<u8*>(memory) - static_cast<u8*>(page_aligned_memory));
const size_t page_aligned_size = Common::AlignUpPow2(page_offset + memory_size, HOST_PAGE_SIZE);
Log_DevFmt("Trying to import {} bytes of memory at {} for download texture", page_aligned_memory,
page_aligned_size);
buffer = [[dev.m_device newBufferWithBytesNoCopy:page_aligned_memory
length:page_aligned_size
options:options
deallocator:nil] retain];
if (buffer == nil)
{
Log_ErrorFmt("Failed to import {} byte buffer", page_aligned_size);
return {};
}
map_ptr = static_cast<u8*>(memory);
}
return std::unique_ptr<MetalDownloadTexture>(new MetalDownloadTexture(
width, height, format, static_cast<u8*>(memory), memory_offset, buffer, map_ptr, map_pitch));
}
}
void MetalDownloadTexture::CopyFromTexture(u32 dst_x, u32 dst_y, GPUTexture* src, u32 src_x, u32 src_y, u32 width,
u32 height, u32 src_layer, u32 src_level, bool use_transfer_pitch)
{
MetalTexture* const mtlTex = static_cast<MetalTexture*>(src);
MetalDevice& dev = MetalDevice::GetInstance();
DebugAssert(mtlTex->GetFormat() == m_format);
DebugAssert(src_level < mtlTex->GetLevels());
DebugAssert((src_x + width) <= mtlTex->GetMipWidth(src_level) && (src_y + height) <= mtlTex->GetMipHeight(src_level));
DebugAssert((dst_x + width) <= m_width && (dst_y + height) <= m_height);
DebugAssert((dst_x == 0 && dst_y == 0) || !use_transfer_pitch);
DebugAssert(!m_is_imported || !use_transfer_pitch);
u32 copy_offset, copy_size, copy_rows;
if (!m_is_imported)
m_current_pitch = GetTransferPitch(use_transfer_pitch ? width : m_width, TEXTURE_UPLOAD_PITCH_ALIGNMENT);
GetTransferSize(dst_x, dst_y, width, height, m_current_pitch, &copy_offset, &copy_size, &copy_rows);
dev.GetStatistics().num_downloads++;
dev.CommitClear(mtlTex);
id<MTLBlitCommandEncoder> encoder = dev.GetBlitEncoder(true);
[encoder copyFromTexture:mtlTex->GetMTLTexture()
sourceSlice:src_layer
sourceLevel:src_level
sourceOrigin:MTLOriginMake(src_x, src_y, 0)
sourceSize:MTLSizeMake(width, height, 1)
toBuffer:m_buffer
destinationOffset:m_buffer_offset + copy_offset
destinationBytesPerRow:m_current_pitch
destinationBytesPerImage:0];
m_copy_fence_counter = dev.m_current_fence_counter;
m_needs_flush = true;
}
bool MetalDownloadTexture::Map(u32 x, u32 y, u32 width, u32 height)
{
// Always mapped.
return true;
}
void MetalDownloadTexture::Unmap()
{
// Always mapped.
}
void MetalDownloadTexture::Flush()
{
if (!m_needs_flush)
return;
m_needs_flush = false;
MetalDevice& dev = MetalDevice::GetInstance();
if (dev.m_completed_fence_counter >= m_copy_fence_counter)
return;
// Need to execute command buffer.
if (dev.GetCurrentFenceCounter() == m_copy_fence_counter)
dev.SubmitCommandBuffer(true);
else
dev.WaitForFenceCounter(m_copy_fence_counter);
}
void MetalDownloadTexture::SetDebugName(std::string_view name)
{
@autoreleasepool
{
[m_buffer setLabel:StringViewToNSString(name)];
}
}
std::unique_ptr<GPUDownloadTexture> MetalDevice::CreateDownloadTexture(u32 width, u32 height, GPUTexture::Format format)
{
return MetalDownloadTexture::Create(width, height, format, nullptr, 0, 0);
}
std::unique_ptr<GPUDownloadTexture> MetalDevice::CreateDownloadTexture(u32 width, u32 height, GPUTexture::Format format,
void* memory, size_t memory_size,
u32 memory_stride)
{
return MetalDownloadTexture::Create(width, height, format, memory, memory_size, memory_stride);
}
MetalSampler::MetalSampler(id<MTLSamplerState> ss) : m_ss(ss)
{
}
MetalSampler::~MetalSampler() = default;
void MetalSampler::SetDebugName(const std::string_view& name)
{
// lame.. have to put it on the descriptor :/
}
std::unique_ptr<GPUSampler> MetalDevice::CreateSampler(const GPUSampler::Config& config)
{
@autoreleasepool
{
static constexpr std::array<MTLSamplerAddressMode, static_cast<u8>(GPUSampler::AddressMode::MaxCount)> ta = {{
MTLSamplerAddressModeRepeat, // Repeat
MTLSamplerAddressModeClampToEdge, // ClampToEdge
MTLSamplerAddressModeClampToBorderColor, // ClampToBorder
MTLSamplerAddressModeMirrorRepeat, // MirrorRepeat
}};
static constexpr std::array<MTLSamplerMinMagFilter, static_cast<u8>(GPUSampler::Filter::MaxCount)> min_mag_filters =
{{
MTLSamplerMinMagFilterNearest, // Nearest
MTLSamplerMinMagFilterLinear, // Linear
}};
static constexpr std::array<MTLSamplerMipFilter, static_cast<u8>(GPUSampler::Filter::MaxCount)> mip_filters = {{
MTLSamplerMipFilterNearest, // Nearest
MTLSamplerMipFilterLinear, // Linear
}};
struct BorderColorMapping
{
u32 color;
MTLSamplerBorderColor mtl_color;
};
static constexpr BorderColorMapping border_color_mapping[] = {
{0x00000000u, MTLSamplerBorderColorTransparentBlack},
{0xFF000000u, MTLSamplerBorderColorOpaqueBlack},
{0xFFFFFFFFu, MTLSamplerBorderColorOpaqueWhite},
};
MTLSamplerDescriptor* desc = [[MTLSamplerDescriptor new] autorelease];
desc.normalizedCoordinates = true;
desc.sAddressMode = ta[static_cast<u8>(config.address_u.GetValue())];
desc.tAddressMode = ta[static_cast<u8>(config.address_v.GetValue())];
desc.rAddressMode = ta[static_cast<u8>(config.address_w.GetValue())];
desc.minFilter = min_mag_filters[static_cast<u8>(config.min_filter.GetValue())];
desc.magFilter = min_mag_filters[static_cast<u8>(config.mag_filter.GetValue())];
desc.mipFilter = (config.min_lod != config.max_lod) ? mip_filters[static_cast<u8>(config.mip_filter.GetValue())] :
MTLSamplerMipFilterNotMipmapped;
desc.lodMinClamp = static_cast<float>(config.min_lod);
desc.lodMaxClamp = static_cast<float>(config.max_lod);
desc.maxAnisotropy = std::max<u8>(config.anisotropy, 1);
if (config.address_u == GPUSampler::AddressMode::ClampToBorder ||
config.address_v == GPUSampler::AddressMode::ClampToBorder ||
config.address_w == GPUSampler::AddressMode::ClampToBorder)
{
u32 i;
for (i = 0; i < static_cast<u32>(std::size(border_color_mapping)); i++)
{
if (border_color_mapping[i].color == config.border_color)
break;
}
if (i == std::size(border_color_mapping))
{
Log_ErrorPrintf("Unsupported border color: %08X", config.border_color.GetValue());
return {};
}
desc.borderColor = border_color_mapping[i].mtl_color;
}
// TODO: Pool?
id<MTLSamplerState> ss = [m_device newSamplerStateWithDescriptor:desc];
if (ss == nil)
{
Log_ErrorPrintf("Failed to create sampler state.");
return {};
}
return std::unique_ptr<GPUSampler>(new MetalSampler([ss retain]));
}
}
bool MetalDevice::SupportsTextureFormat(GPUTexture::Format format) const
{
if (format == GPUTexture::Format::RGB565 || format == GPUTexture::Format::RGBA5551)
{
// These formats require an Apple Silicon GPU.
// See https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
if (![m_device supportsFamily:MTLGPUFamilyApple2])
return false;
}
return (s_pixel_format_mapping[static_cast<u8>(format)] != MTLPixelFormatInvalid);
}
void MetalDevice::CopyTextureRegion(GPUTexture* dst, u32 dst_x, u32 dst_y, u32 dst_layer, u32 dst_level,
GPUTexture* src, u32 src_x, u32 src_y, u32 src_layer, u32 src_level, u32 width,
u32 height)
{
DebugAssert(src_level < src->GetLevels() && src_layer < src->GetLayers());
DebugAssert((src_x + width) <= src->GetMipWidth(src_level));
DebugAssert((src_y + height) <= src->GetMipHeight(src_level));
DebugAssert(dst_level < dst->GetLevels() && dst_layer < dst->GetLayers());
DebugAssert((dst_x + width) <= dst->GetMipWidth(dst_level));
DebugAssert((dst_y + height) <= dst->GetMipHeight(dst_level));
MetalTexture* D = static_cast<MetalTexture*>(dst);
MetalTexture* S = static_cast<MetalTexture*>(src);
if (D->IsRenderTargetOrDepthStencil())
{
if (S->GetState() == GPUTexture::State::Cleared)
{
if (S->GetWidth() == D->GetWidth() && S->GetHeight() == D->GetHeight())
{
// pass clear through
D->m_state = S->m_state;
D->m_clear_value = S->m_clear_value;
return;
}
}
else if (S->GetState() == GPUTexture::State::Invalidated)
{
// Contents are undefined ;)
return;
}
else if (dst_x == 0 && dst_y == 0 && width == D->GetMipWidth(dst_level) && height == D->GetMipHeight(dst_level))
{
D->SetState(GPUTexture::State::Dirty);
}
CommitClear(D);
}
CommitClear(S);
S->SetUseFenceCounter(m_current_fence_counter);
D->SetUseFenceCounter(m_current_fence_counter);
s_stats.num_copies++;
@autoreleasepool
{
id<MTLBlitCommandEncoder> encoder = GetBlitEncoder(true);
[encoder copyFromTexture:S->GetMTLTexture()
sourceSlice:src_level
sourceLevel:src_level
sourceOrigin:MTLOriginMake(src_x, src_y, 0)
sourceSize:MTLSizeMake(width, height, 1)
toTexture:D->GetMTLTexture()
destinationSlice:dst_layer
destinationLevel:dst_level
destinationOrigin:MTLOriginMake(dst_x, dst_y, 0)];
}
}
void MetalDevice::ResolveTextureRegion(GPUTexture* dst, u32 dst_x, u32 dst_y, u32 dst_layer, u32 dst_level,
GPUTexture* src, u32 src_x, u32 src_y, u32 width, u32 height)
{
DebugAssert((src_x + width) <= src->GetWidth());
DebugAssert((src_y + height) <= src->GetHeight());
DebugAssert(dst_level < dst->GetLevels() && dst_layer < dst->GetLayers());
DebugAssert((dst_x + width) <= dst->GetMipWidth(dst_level));
DebugAssert((dst_y + height) <= dst->GetMipHeight(dst_level));
DebugAssert(!dst->IsMultisampled() && src->IsMultisampled());
// Only does first level for now..
DebugAssert(dst_level == 0 && dst_layer == 0);
const GPUTexture::Format src_format = dst->GetFormat();
const GPUTexture::Format dst_format = dst->GetFormat();
id<MTLComputePipelineState> resolve_pipeline = nil;
if (auto iter = std::find_if(m_resolve_pipelines.begin(), m_resolve_pipelines.end(),
[src_format, dst_format](const auto& it) {
return it.first.first == src_format && it.first.second == dst_format;
});
iter != m_resolve_pipelines.end())
{
resolve_pipeline = iter->second;
}
else
{
// Need to compile it.
@autoreleasepool
{
const bool is_depth = GPUTexture::IsDepthFormat(src_format);
id<MTLFunction> function =
[GetFunctionFromLibrary(m_shaders, is_depth ? @"depthResolveKernel" : @"colorResolveKernel") autorelease];
if (function == nil)
Panic("Failed to get resolve kernel");
resolve_pipeline = [CreateComputePipeline(function, is_depth ? @"Depth Resolve" : @"Color Resolve") autorelease];
if (resolve_pipeline != nil)
[resolve_pipeline retain];
m_resolve_pipelines.emplace_back(std::make_pair(src_format, dst_format), resolve_pipeline);
}
}
if (resolve_pipeline == nil)
Panic("Failed to get resolve pipeline");
if (InRenderPass())
EndRenderPass();
s_stats.num_copies++;
const u32 threadgroupHeight = resolve_pipeline.maxTotalThreadsPerThreadgroup / resolve_pipeline.threadExecutionWidth;
const MTLSize intrinsicThreadgroupSize = MTLSizeMake(resolve_pipeline.threadExecutionWidth, threadgroupHeight, 1);
const MTLSize threadgroupsInGrid =
MTLSizeMake((src->GetWidth() + intrinsicThreadgroupSize.width - 1) / intrinsicThreadgroupSize.width,
(src->GetHeight() + intrinsicThreadgroupSize.height - 1) / intrinsicThreadgroupSize.height, 1);
id<MTLComputeCommandEncoder> computeEncoder = [m_render_cmdbuf computeCommandEncoder];
[computeEncoder setComputePipelineState:resolve_pipeline];
[computeEncoder setTexture:static_cast<MetalTexture*>(src)->GetMTLTexture() atIndex:0];
[computeEncoder setTexture:static_cast<MetalTexture*>(dst)->GetMTLTexture() atIndex:1];
[computeEncoder dispatchThreadgroups:threadgroupsInGrid threadsPerThreadgroup:intrinsicThreadgroupSize];
[computeEncoder endEncoding];
}
void MetalDevice::ClearRenderTarget(GPUTexture* t, u32 c)
{
GPUDevice::ClearRenderTarget(t, c);
if (InRenderPass() && IsRenderTargetBound(t))
EndRenderPass();
}
void MetalDevice::ClearDepth(GPUTexture* t, float d)
{
GPUDevice::ClearDepth(t, d);
if (InRenderPass() && m_current_depth_target == t)
EndRenderPass();
}
void MetalDevice::InvalidateRenderTarget(GPUTexture* t)
{
GPUDevice::InvalidateRenderTarget(t);
if (InRenderPass() && (t->IsRenderTarget() ? IsRenderTargetBound(t) : (m_current_depth_target == t)))
EndRenderPass();
}
void MetalDevice::CommitClear(MetalTexture* tex)
{
if (tex->GetState() == GPUTexture::State::Cleared)
{
DebugAssert(tex->IsRenderTargetOrDepthStencil());
tex->SetState(GPUTexture::State::Dirty);
// TODO: We could combine it with the current render pass.
if (InRenderPass())
EndRenderPass();
@autoreleasepool
{
// Allocating here seems a bit sad.
MTLRenderPassDescriptor* desc = [MTLRenderPassDescriptor renderPassDescriptor];
desc.renderTargetWidth = tex->GetWidth();
desc.renderTargetHeight = tex->GetHeight();
if (tex->IsRenderTarget())
{
const auto cc = tex->GetUNormClearColor();
desc.colorAttachments[0].texture = tex->GetMTLTexture();
desc.colorAttachments[0].loadAction = MTLLoadActionClear;
desc.colorAttachments[0].storeAction = MTLStoreActionStore;
desc.colorAttachments[0].clearColor = MTLClearColorMake(cc[0], cc[1], cc[2], cc[3]);
}
else
{
desc.depthAttachment.texture = tex->GetMTLTexture();
desc.depthAttachment.loadAction = MTLLoadActionClear;
desc.depthAttachment.storeAction = MTLStoreActionStore;
desc.depthAttachment.clearDepth = tex->GetClearDepth();
}
id<MTLRenderCommandEncoder> encoder = [m_render_cmdbuf renderCommandEncoderWithDescriptor:desc];
[encoder endEncoding];
}
}
}
MetalTextureBuffer::MetalTextureBuffer(Format format, u32 size_in_elements) : GPUTextureBuffer(format, size_in_elements)
{
}
MetalTextureBuffer::~MetalTextureBuffer()
{
if (m_buffer.IsValid())
MetalDevice::GetInstance().UnbindTextureBuffer(this);
m_buffer.Destroy();
}
bool MetalTextureBuffer::CreateBuffer(id<MTLDevice> device)
{
return m_buffer.Create(device, GetSizeInBytes());
}
void* MetalTextureBuffer::Map(u32 required_elements)
{
const u32 esize = GetElementSize(m_format);
const u32 req_size = esize * required_elements;
if (!m_buffer.ReserveMemory(req_size, esize))
{
MetalDevice::GetInstance().SubmitCommandBufferAndRestartRenderPass("out of space in texture buffer");
if (!m_buffer.ReserveMemory(req_size, esize))
Panic("Failed to allocate texture buffer space.");
}
m_current_position = m_buffer.GetCurrentOffset() / esize;
return m_buffer.GetCurrentHostPointer();
}
void MetalTextureBuffer::Unmap(u32 used_elements)
{
const u32 size = GetElementSize(m_format) * used_elements;
GPUDevice::GetStatistics().buffer_streamed += size;
GPUDevice::GetStatistics().num_uploads++;
m_buffer.CommitMemory(size);
}
void MetalTextureBuffer::SetDebugName(const std::string_view& name)
{
@autoreleasepool
{
[m_buffer.GetBuffer() setLabel:StringViewToNSString(name)];
}
}
std::unique_ptr<GPUTextureBuffer> MetalDevice::CreateTextureBuffer(GPUTextureBuffer::Format format,
u32 size_in_elements)
{
std::unique_ptr<MetalTextureBuffer> tb = std::make_unique<MetalTextureBuffer>(format, size_in_elements);
if (!tb->CreateBuffer(m_device))
tb.reset();
return tb;
}
void MetalDevice::PushDebugGroup(const char* name)
{
}
void MetalDevice::PopDebugGroup()
{
}
void MetalDevice::InsertDebugMessage(const char* msg)
{
}
void MetalDevice::MapVertexBuffer(u32 vertex_size, u32 vertex_count, void** map_ptr, u32* map_space,
u32* map_base_vertex)
{
const u32 req_size = vertex_size * vertex_count;
if (!m_vertex_buffer.ReserveMemory(req_size, vertex_size))
{
SubmitCommandBufferAndRestartRenderPass("out of vertex space");
if (!m_vertex_buffer.ReserveMemory(req_size, vertex_size))
Panic("Failed to allocate vertex space");
}
*map_ptr = m_vertex_buffer.GetCurrentHostPointer();
*map_space = m_vertex_buffer.GetCurrentSpace() / vertex_size;
*map_base_vertex = m_vertex_buffer.GetCurrentOffset() / vertex_size;
}
void MetalDevice::UnmapVertexBuffer(u32 vertex_size, u32 vertex_count)
{
const u32 size = vertex_size * vertex_count;
s_stats.buffer_streamed += size;
m_vertex_buffer.CommitMemory(size);
}
void MetalDevice::MapIndexBuffer(u32 index_count, DrawIndex** map_ptr, u32* map_space, u32* map_base_index)
{
const u32 req_size = sizeof(DrawIndex) * index_count;
if (!m_index_buffer.ReserveMemory(req_size, sizeof(DrawIndex)))
{
SubmitCommandBufferAndRestartRenderPass("out of index space");
if (!m_index_buffer.ReserveMemory(req_size, sizeof(DrawIndex)))
Panic("Failed to allocate index space");
}
*map_ptr = reinterpret_cast<DrawIndex*>(m_index_buffer.GetCurrentHostPointer());
*map_space = m_index_buffer.GetCurrentSpace() / sizeof(DrawIndex);
*map_base_index = m_index_buffer.GetCurrentOffset() / sizeof(DrawIndex);
}
void MetalDevice::UnmapIndexBuffer(u32 used_index_count)
{
const u32 size = sizeof(DrawIndex) * used_index_count;
s_stats.buffer_streamed += size;
m_index_buffer.CommitMemory(size);
}
void MetalDevice::PushUniformBuffer(const void* data, u32 data_size)
{
s_stats.buffer_streamed += data_size;
void* map = MapUniformBuffer(data_size);
std::memcpy(map, data, data_size);
UnmapUniformBuffer(data_size);
}
void* MetalDevice::MapUniformBuffer(u32 size)
{
const u32 used_space = Common::AlignUpPow2(size, UNIFORM_BUFFER_ALIGNMENT);
if (!m_uniform_buffer.ReserveMemory(used_space, UNIFORM_BUFFER_ALIGNMENT))
{
SubmitCommandBufferAndRestartRenderPass("out of uniform space");
if (!m_uniform_buffer.ReserveMemory(used_space, UNIFORM_BUFFER_ALIGNMENT))
Panic("Failed to allocate uniform space.");
}
return m_uniform_buffer.GetCurrentHostPointer();
}
void MetalDevice::UnmapUniformBuffer(u32 size)
{
s_stats.buffer_streamed += size;
m_current_uniform_buffer_position = m_uniform_buffer.GetCurrentOffset();
m_uniform_buffer.CommitMemory(size);
if (InRenderPass())
{
[m_render_encoder setVertexBufferOffset:m_current_uniform_buffer_position atIndex:0];
[m_render_encoder setFragmentBufferOffset:m_current_uniform_buffer_position atIndex:0];
}
}
void MetalDevice::SetRenderTargets(GPUTexture* const* rts, u32 num_rts, GPUTexture* ds,
GPUPipeline::RenderPassFlag feedback_loop)
{
DebugAssert(!feedback_loop);
bool changed = (m_num_current_render_targets != num_rts || m_current_depth_target != ds);
bool needs_ds_clear = (ds && ds->IsClearedOrInvalidated());
bool needs_rt_clear = false;
m_current_depth_target = static_cast<MetalTexture*>(ds);
for (u32 i = 0; i < num_rts; i++)
{
MetalTexture* const RT = static_cast<MetalTexture*>(rts[i]);
changed |= m_current_render_targets[i] != RT;
m_current_render_targets[i] = RT;
needs_rt_clear |= RT->IsClearedOrInvalidated();
}
for (u32 i = num_rts; i < m_num_current_render_targets; i++)
m_current_render_targets[i] = nullptr;
m_num_current_render_targets = num_rts;
if (changed || needs_rt_clear || needs_ds_clear)
{
if (InRenderPass())
EndRenderPass();
}
}
void MetalDevice::SetPipeline(GPUPipeline* pipeline)
{
DebugAssert(pipeline);
if (m_current_pipeline == pipeline)
return;
m_current_pipeline = static_cast<MetalPipeline*>(pipeline);
if (InRenderPass())
{
[m_render_encoder setRenderPipelineState:m_current_pipeline->GetPipelineState()];
if (m_current_depth_state != m_current_pipeline->GetDepthState())
{
m_current_depth_state = m_current_pipeline->GetDepthState();
[m_render_encoder setDepthStencilState:m_current_depth_state];
}
if (m_current_cull_mode != m_current_pipeline->GetCullMode())
{
m_current_cull_mode = m_current_pipeline->GetCullMode();
[m_render_encoder setCullMode:m_current_cull_mode];
}
}
else
{
// Still need to set depth state before the draw begins.
m_current_depth_state = m_current_pipeline->GetDepthState();
m_current_cull_mode = m_current_pipeline->GetCullMode();
}
}
void MetalDevice::UnbindPipeline(MetalPipeline* pl)
{
if (m_current_pipeline != pl)
return;
m_current_pipeline = nullptr;
m_current_depth_state = nil;
}
void MetalDevice::SetTextureSampler(u32 slot, GPUTexture* texture, GPUSampler* sampler)
{
DebugAssert(slot < MAX_TEXTURE_SAMPLERS);
id<MTLTexture> T = texture ? static_cast<MetalTexture*>(texture)->GetMTLTexture() : nil;
if (texture)
{
CommitClear(static_cast<MetalTexture*>(texture));
static_cast<MetalTexture*>(texture)->SetUseFenceCounter(m_current_fence_counter);
}
if (m_current_textures[slot] != T)
{
m_current_textures[slot] = T;
if (InRenderPass())
[m_render_encoder setFragmentTexture:T atIndex:slot];
}
id<MTLSamplerState> S = sampler ? static_cast<MetalSampler*>(sampler)->GetSamplerState() : nil;
if (m_current_samplers[slot] != S)
{
m_current_samplers[slot] = S;
if (InRenderPass())
[m_render_encoder setFragmentSamplerState:S atIndex:slot];
}
}
void MetalDevice::SetTextureBuffer(u32 slot, GPUTextureBuffer* buffer)
{
id<MTLBuffer> B = buffer ? static_cast<MetalTextureBuffer*>(buffer)->GetMTLBuffer() : nil;
if (m_current_ssbo == B)
return;
m_current_ssbo = B;
if (InRenderPass())
[m_render_encoder setFragmentBuffer:B offset:0 atIndex:1];
}
void MetalDevice::UnbindTexture(MetalTexture* tex)
{
const id<MTLTexture> T = tex->GetMTLTexture();
for (u32 i = 0; i < MAX_TEXTURE_SAMPLERS; i++)
{
if (m_current_textures[i] == T)
{
m_current_textures[i] = nil;
if (InRenderPass())
[m_render_encoder setFragmentTexture:nil atIndex:i];
}
}
if (tex->IsRenderTarget())
{
for (u32 i = 0; i < m_num_current_render_targets; i++)
{
if (m_current_render_targets[i] == tex)
{
Log_WarningPrint("Unbinding current RT");
SetRenderTargets(nullptr, 0, m_current_depth_target, GPUPipeline::NoRenderPassFlags); // TODO: Wrong
break;
}
}
}
else if (tex->IsDepthStencil())
{
if (m_current_depth_target == tex)
{
Log_WarningPrint("Unbinding current DS");
SetRenderTargets(nullptr, 0, nullptr, GPUPipeline::NoRenderPassFlags);
}
}
}
void MetalDevice::UnbindTextureBuffer(MetalTextureBuffer* buf)
{
if (m_current_ssbo != buf->GetMTLBuffer())
return;
m_current_ssbo = nil;
if (InRenderPass())
[m_render_encoder setFragmentBuffer:nil offset:0 atIndex:1];
}
void MetalDevice::SetViewport(s32 x, s32 y, s32 width, s32 height)
{
const Common::Rectangle<s32> new_vp = Common::Rectangle<s32>::FromExtents(x, y, width, height);
if (new_vp == m_current_viewport)
return;
m_current_viewport = new_vp;
if (InRenderPass())
SetViewportInRenderEncoder();
}
void MetalDevice::SetScissor(s32 x, s32 y, s32 width, s32 height)
{
const Common::Rectangle<s32> new_sr = Common::Rectangle<s32>::FromExtents(x, y, width, height);
if (new_sr == m_current_scissor)
return;
m_current_scissor = new_sr;
if (InRenderPass())
SetScissorInRenderEncoder();
}
void MetalDevice::BeginRenderPass()
{
DebugAssert(m_render_encoder == nil);
// Inline writes :(
if (m_inline_upload_encoder != nil)
{
[m_inline_upload_encoder endEncoding];
[m_inline_upload_encoder release];
m_inline_upload_encoder = nil;
}
s_stats.num_render_passes++;
@autoreleasepool
{
MTLRenderPassDescriptor* desc = [MTLRenderPassDescriptor renderPassDescriptor];
if (m_num_current_render_targets == 0 && !m_current_depth_target)
{
// Rendering to view, but we got interrupted...
desc.colorAttachments[0].texture = [m_layer_drawable texture];
desc.colorAttachments[0].loadAction = MTLLoadActionLoad;
}
else
{
for (u32 i = 0; i < m_num_current_render_targets; i++)
{
MetalTexture* const RT = m_current_render_targets[i];
desc.colorAttachments[i].texture = RT->GetMTLTexture();
desc.colorAttachments[i].storeAction = MTLStoreActionStore;
RT->SetUseFenceCounter(m_current_fence_counter);
switch (RT->GetState())
{
case GPUTexture::State::Cleared:
{
const auto clear_color = RT->GetUNormClearColor();
desc.colorAttachments[i].loadAction = MTLLoadActionClear;
desc.colorAttachments[i].clearColor =
MTLClearColorMake(clear_color[0], clear_color[1], clear_color[2], clear_color[3]);
RT->SetState(GPUTexture::State::Dirty);
}
break;
case GPUTexture::State::Invalidated:
{
desc.colorAttachments[i].loadAction = MTLLoadActionDontCare;
RT->SetState(GPUTexture::State::Dirty);
}
break;
case GPUTexture::State::Dirty:
{
desc.colorAttachments[i].loadAction = MTLLoadActionLoad;
}
break;
default:
UnreachableCode();
break;
}
}
if (MetalTexture* DS = m_current_depth_target)
{
desc.depthAttachment.texture = m_current_depth_target->GetMTLTexture();
desc.depthAttachment.storeAction = MTLStoreActionStore;
DS->SetUseFenceCounter(m_current_fence_counter);
switch (DS->GetState())
{
case GPUTexture::State::Cleared:
{
desc.depthAttachment.loadAction = MTLLoadActionClear;
desc.depthAttachment.clearDepth = DS->GetClearDepth();
DS->SetState(GPUTexture::State::Dirty);
}
break;
case GPUTexture::State::Invalidated:
{
desc.depthAttachment.loadAction = MTLLoadActionDontCare;
DS->SetState(GPUTexture::State::Dirty);
}
break;
case GPUTexture::State::Dirty:
{
desc.depthAttachment.loadAction = MTLLoadActionLoad;
}
break;
default:
UnreachableCode();
break;
}
}
}
m_render_encoder = [[m_render_cmdbuf renderCommandEncoderWithDescriptor:desc] retain];
SetInitialEncoderState();
}
}
void MetalDevice::EndRenderPass()
{
DebugAssert(InRenderPass() && !IsInlineUploading());
[m_render_encoder endEncoding];
[m_render_encoder release];
m_render_encoder = nil;
}
void MetalDevice::EndInlineUploading()
{
DebugAssert(IsInlineUploading() && !InRenderPass());
[m_inline_upload_encoder endEncoding];
[m_inline_upload_encoder release];
m_inline_upload_encoder = nil;
}
void MetalDevice::EndAnyEncoding()
{
if (InRenderPass())
EndRenderPass();
else if (IsInlineUploading())
EndInlineUploading();
}
void MetalDevice::SetInitialEncoderState()
{
// Set initial state.
// TODO: avoid uniform set here? it's probably going to get changed...
// Might be better off just deferring all the init until the first draw...
[m_render_encoder setVertexBuffer:m_uniform_buffer.GetBuffer() offset:m_current_uniform_buffer_position atIndex:0];
[m_render_encoder setFragmentBuffer:m_uniform_buffer.GetBuffer() offset:m_current_uniform_buffer_position atIndex:0];
[m_render_encoder setVertexBuffer:m_vertex_buffer.GetBuffer() offset:0 atIndex:1];
[m_render_encoder setCullMode:m_current_cull_mode];
if (m_current_depth_state != nil)
[m_render_encoder setDepthStencilState:m_current_depth_state];
if (m_current_pipeline != nil)
[m_render_encoder setRenderPipelineState:m_current_pipeline->GetPipelineState()];
[m_render_encoder setFragmentTextures:m_current_textures.data() withRange:NSMakeRange(0, MAX_TEXTURE_SAMPLERS)];
[m_render_encoder setFragmentSamplerStates:m_current_samplers.data() withRange:NSMakeRange(0, MAX_TEXTURE_SAMPLERS)];
if (m_current_ssbo)
[m_render_encoder setFragmentBuffer:m_current_ssbo offset:0 atIndex:1];
SetViewportInRenderEncoder();
SetScissorInRenderEncoder();
}
void MetalDevice::SetViewportInRenderEncoder()
{
const Common::Rectangle<s32> rc = ClampToFramebufferSize(m_current_viewport);
[m_render_encoder
setViewport:(MTLViewport){static_cast<double>(rc.left), static_cast<double>(rc.top),
static_cast<double>(rc.GetWidth()), static_cast<double>(rc.GetHeight()), 0.0, 1.0}];
}
void MetalDevice::SetScissorInRenderEncoder()
{
const Common::Rectangle<s32> rc = ClampToFramebufferSize(m_current_scissor);
[m_render_encoder
setScissorRect:(MTLScissorRect){static_cast<NSUInteger>(rc.left), static_cast<NSUInteger>(rc.top),
static_cast<NSUInteger>(rc.GetWidth()), static_cast<NSUInteger>(rc.GetHeight())}];
}
Common::Rectangle<s32> MetalDevice::ClampToFramebufferSize(const Common::Rectangle<s32>& rc) const
{
const MetalTexture* rt_or_ds =
(m_num_current_render_targets > 0) ? m_current_render_targets[0] : m_current_depth_target;
const s32 clamp_width = rt_or_ds ? rt_or_ds->GetWidth() : m_window_info.surface_width;
const s32 clamp_height = rt_or_ds ? rt_or_ds->GetHeight() : m_window_info.surface_height;
return rc.ClampedSize(clamp_width, clamp_height);
}
void MetalDevice::PreDrawCheck()
{
if (!InRenderPass())
BeginRenderPass();
}
void MetalDevice::Draw(u32 vertex_count, u32 base_vertex)
{
PreDrawCheck();
s_stats.num_draws++;
[m_render_encoder drawPrimitives:m_current_pipeline->GetPrimitive() vertexStart:base_vertex vertexCount:vertex_count];
}
void MetalDevice::DrawIndexed(u32 index_count, u32 base_index, u32 base_vertex)
{
PreDrawCheck();
s_stats.num_draws++;
const u32 index_offset = base_index * sizeof(u16);
[m_render_encoder drawIndexedPrimitives:m_current_pipeline->GetPrimitive()
indexCount:index_count
indexType:MTLIndexTypeUInt16
indexBuffer:m_index_buffer.GetBuffer()
indexBufferOffset:index_offset
instanceCount:1
baseVertex:base_vertex
baseInstance:0];
}
void MetalDevice::DrawIndexedWithBarrier(u32 index_count, u32 base_index, u32 base_vertex, DrawBarrier type)
{
Panic("Barriers are not supported");
}
id<MTLBlitCommandEncoder> MetalDevice::GetBlitEncoder(bool is_inline)
{
@autoreleasepool
{
if (!is_inline)
{
if (!m_upload_cmdbuf)
{
m_upload_cmdbuf = [[m_queue commandBufferWithUnretainedReferences] retain];
m_upload_encoder = [[m_upload_cmdbuf blitCommandEncoder] retain];
[m_upload_encoder setLabel:@"Upload Encoder"];
}
return m_upload_encoder;
}
// Interleaved with draws.
if (m_inline_upload_encoder != nil)
return m_inline_upload_encoder;
if (InRenderPass())
EndRenderPass();
m_inline_upload_encoder = [[m_render_cmdbuf blitCommandEncoder] retain];
return m_inline_upload_encoder;
}
}
bool MetalDevice::BeginPresent(bool skip_present)
{
@autoreleasepool
{
if (skip_present)
return false;
if (m_layer == nil)
{
TrimTexturePool();
return false;
}
EndAnyEncoding();
m_layer_drawable = [[m_layer nextDrawable] retain];
if (m_layer_drawable == nil)
{
TrimTexturePool();
return false;
}
SetViewportAndScissor(0, 0, m_window_info.surface_width, m_window_info.surface_height);
// Set up rendering to layer.
id<MTLTexture> layer_texture = [m_layer_drawable texture];
m_layer_pass_desc.colorAttachments[0].texture = layer_texture;
m_layer_pass_desc.colorAttachments[0].loadAction = MTLLoadActionClear;
m_render_encoder = [[m_render_cmdbuf renderCommandEncoderWithDescriptor:m_layer_pass_desc] retain];
s_stats.num_render_passes++;
std::memset(m_current_render_targets.data(), 0, sizeof(m_current_render_targets));
m_num_current_render_targets = 0;
m_current_depth_target = nullptr;
m_current_pipeline = nullptr;
m_current_depth_state = nil;
SetInitialEncoderState();
return true;
}
}
void MetalDevice::EndPresent()
{
DebugAssert(m_num_current_render_targets == 0 && !m_current_depth_target);
EndAnyEncoding();
[m_render_cmdbuf presentDrawable:m_layer_drawable];
DeferRelease(m_layer_drawable);
m_layer_drawable = nil;
SubmitCommandBuffer();
TrimTexturePool();
}
void MetalDevice::CreateCommandBuffer()
{
@autoreleasepool
{
DebugAssert(m_render_cmdbuf == nil);
const u64 fence_counter = ++m_current_fence_counter;
m_render_cmdbuf = [[m_queue commandBufferWithUnretainedReferences] retain];
[m_render_cmdbuf addCompletedHandler:[this, fence_counter](id<MTLCommandBuffer> buffer) {
CommandBufferCompletedOffThread(buffer, fence_counter);
}];
}
CleanupObjects();
}
void MetalDevice::CommandBufferCompletedOffThread(id<MTLCommandBuffer> buffer, u64 fence_counter)
{
std::unique_lock lock(m_fence_mutex);
m_completed_fence_counter.store(std::max(m_completed_fence_counter.load(std::memory_order_acquire), fence_counter),
std::memory_order_release);
if (m_gpu_timing_enabled)
{
const double begin = std::max(m_last_gpu_time_end, [buffer GPUStartTime]);
const double end = [buffer GPUEndTime];
if (end > begin)
{
m_accumulated_gpu_time += end - begin;
m_last_gpu_time_end = end;
}
}
}
void MetalDevice::SubmitCommandBuffer(bool wait_for_completion)
{
if (m_upload_cmdbuf != nil)
{
[m_upload_encoder endEncoding];
[m_upload_encoder release];
m_upload_encoder = nil;
[m_upload_cmdbuf commit];
[m_upload_cmdbuf release];
m_upload_cmdbuf = nil;
}
if (m_render_cmdbuf != nil)
{
if (InRenderPass())
EndRenderPass();
else if (IsInlineUploading())
EndInlineUploading();
[m_render_cmdbuf commit];
if (wait_for_completion)
[m_render_cmdbuf waitUntilCompleted];
[m_render_cmdbuf release];
m_render_cmdbuf = nil;
}
CreateCommandBuffer();
}
void MetalDevice::SubmitCommandBufferAndRestartRenderPass(const char* reason)
{
Log_DevPrintf("Submitting command buffer and restarting render pass due to %s", reason);
const bool in_render_pass = InRenderPass();
SubmitCommandBuffer();
if (in_render_pass)
BeginRenderPass();
}
void MetalDevice::WaitForFenceCounter(u64 counter)
{
if (m_completed_fence_counter.load(std::memory_order_relaxed) >= counter)
return;
// TODO: There has to be a better way to do this..
std::unique_lock lock(m_fence_mutex);
while (m_completed_fence_counter.load(std::memory_order_acquire) < counter)
{
lock.unlock();
pthread_yield_np();
lock.lock();
}
CleanupObjects();
}
void MetalDevice::WaitForPreviousCommandBuffers()
{
// Early init?
if (m_current_fence_counter == 0)
return;
WaitForFenceCounter(m_current_fence_counter - 1);
}
void MetalDevice::CleanupObjects()
{
const u64 counter = m_completed_fence_counter.load(std::memory_order_acquire);
while (m_cleanup_objects.size() > 0 && m_cleanup_objects.front().first <= counter)
{
[m_cleanup_objects.front().second release];
m_cleanup_objects.pop_front();
}
}
void MetalDevice::DeferRelease(id obj)
{
MetalDevice& dev = GetInstance();
dev.m_cleanup_objects.emplace_back(dev.m_current_fence_counter, obj);
}
void MetalDevice::DeferRelease(u64 fence_counter, id obj)
{
MetalDevice& dev = GetInstance();
dev.m_cleanup_objects.emplace_back(fence_counter, obj);
}
std::unique_ptr<GPUDevice> GPUDevice::WrapNewMetalDevice()
{
return std::unique_ptr<GPUDevice>(new MetalDevice());
}
GPUDevice::AdapterAndModeList GPUDevice::WrapGetMetalAdapterAndModeList()
{
return MetalDevice::StaticGetAdapterAndModeList();
}