mirror of
https://github.com/RetroDECK/Duckstation.git
synced 2024-12-04 03:25:39 +00:00
257 lines
8.1 KiB
Plaintext
257 lines
8.1 KiB
Plaintext
// SPDX-FileCopyrightText: 2023 Connor McLaughlin <stenzek@gmail.com>
|
|
// SPDX-License-Identifier: (GPL-3.0 OR CC-BY-NC-ND-4.0)
|
|
|
|
#include "metal_stream_buffer.h"
|
|
#include "metal_device.h"
|
|
|
|
#include "common/align.h"
|
|
#include "common/assert.h"
|
|
#include "common/log.h"
|
|
|
|
Log_SetChannel(MetalDevice);
|
|
|
|
MetalStreamBuffer::MetalStreamBuffer() = default;
|
|
|
|
MetalStreamBuffer::~MetalStreamBuffer()
|
|
{
|
|
if (IsValid())
|
|
Destroy();
|
|
}
|
|
|
|
bool MetalStreamBuffer::Create(id<MTLDevice> device, u32 size)
|
|
{
|
|
@autoreleasepool
|
|
{
|
|
const MTLResourceOptions options = MTLResourceStorageModeShared | MTLResourceCPUCacheModeWriteCombined;
|
|
|
|
id<MTLBuffer> new_buffer = [device newBufferWithLength:size options:options];
|
|
if (new_buffer == nil)
|
|
{
|
|
Log_ErrorPrintf("Failed to create buffer.");
|
|
return false;
|
|
}
|
|
|
|
if (IsValid())
|
|
Destroy();
|
|
|
|
// Replace with the new buffer
|
|
m_size = size;
|
|
m_current_offset = 0;
|
|
m_current_gpu_position = 0;
|
|
m_tracked_fences.clear();
|
|
m_buffer = [new_buffer retain];
|
|
m_host_pointer = static_cast<u8*>([new_buffer contents]);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
void MetalStreamBuffer::Destroy()
|
|
{
|
|
m_size = 0;
|
|
m_current_offset = 0;
|
|
m_current_gpu_position = 0;
|
|
m_tracked_fences.clear();
|
|
[m_buffer release];
|
|
m_buffer = nil;
|
|
m_host_pointer = nullptr;
|
|
}
|
|
|
|
bool MetalStreamBuffer::ReserveMemory(u32 num_bytes, u32 alignment)
|
|
{
|
|
const u32 required_bytes = num_bytes + alignment;
|
|
|
|
// Check for sane allocations
|
|
if (required_bytes > m_size)
|
|
{
|
|
Log_ErrorPrintf("Attempting to allocate %u bytes from a %u byte stream buffer", static_cast<u32>(num_bytes),
|
|
static_cast<u32>(m_size));
|
|
Panic("Stream buffer overflow");
|
|
return false;
|
|
}
|
|
|
|
UpdateGPUPosition();
|
|
|
|
// Is the GPU behind or up to date with our current offset?
|
|
if (m_current_offset >= m_current_gpu_position)
|
|
{
|
|
const u32 remaining_bytes = m_size - m_current_offset;
|
|
if (required_bytes <= remaining_bytes)
|
|
{
|
|
// Place at the current position, after the GPU position.
|
|
m_current_offset = Common::AlignUp(m_current_offset, alignment);
|
|
m_current_space = m_size - m_current_offset;
|
|
return true;
|
|
}
|
|
|
|
// Check for space at the start of the buffer
|
|
// We use < here because we don't want to have the case of m_current_offset ==
|
|
// m_current_gpu_position. That would mean the code above would assume the
|
|
// GPU has caught up to us, which it hasn't.
|
|
if (required_bytes < m_current_gpu_position)
|
|
{
|
|
// Reset offset to zero, since we're allocating behind the gpu now
|
|
m_current_offset = 0;
|
|
m_current_space = m_current_gpu_position - 1;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Is the GPU ahead of our current offset?
|
|
if (m_current_offset < m_current_gpu_position)
|
|
{
|
|
// We have from m_current_offset..m_current_gpu_position space to use.
|
|
const u32 remaining_bytes = m_current_gpu_position - m_current_offset;
|
|
if (required_bytes < remaining_bytes)
|
|
{
|
|
// Place at the current position, since this is still behind the GPU.
|
|
m_current_offset = Common::AlignUp(m_current_offset, alignment);
|
|
m_current_space = m_current_gpu_position - m_current_offset - 1;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Can we find a fence to wait on that will give us enough memory?
|
|
if (WaitForClearSpace(required_bytes))
|
|
{
|
|
const u32 align_diff = Common::AlignUp(m_current_offset, alignment) - m_current_offset;
|
|
m_current_offset += align_diff;
|
|
m_current_space -= align_diff;
|
|
return true;
|
|
}
|
|
|
|
// We tried everything we could, and still couldn't get anything. This means that too much space
|
|
// in the buffer is being used by the command buffer currently being recorded. Therefore, the
|
|
// only option is to execute it, and wait until it's done.
|
|
return false;
|
|
}
|
|
|
|
void MetalStreamBuffer::CommitMemory(u32 final_num_bytes)
|
|
{
|
|
DebugAssert((m_current_offset + final_num_bytes) <= m_size);
|
|
DebugAssert(final_num_bytes <= m_current_space);
|
|
|
|
m_current_offset += final_num_bytes;
|
|
m_current_space -= final_num_bytes;
|
|
UpdateCurrentFencePosition();
|
|
}
|
|
|
|
void MetalStreamBuffer::UpdateCurrentFencePosition()
|
|
{
|
|
// Has the offset changed since the last fence?
|
|
const u64 counter = MetalDevice::GetInstance().GetCurrentFenceCounter();
|
|
if (!m_tracked_fences.empty() && m_tracked_fences.back().first == counter)
|
|
{
|
|
// Still haven't executed a command buffer, so just update the offset.
|
|
m_tracked_fences.back().second = m_current_offset;
|
|
return;
|
|
}
|
|
|
|
// New buffer, so update the GPU position while we're at it.
|
|
m_tracked_fences.emplace_back(counter, m_current_offset);
|
|
}
|
|
|
|
void MetalStreamBuffer::UpdateGPUPosition()
|
|
{
|
|
auto start = m_tracked_fences.begin();
|
|
auto end = start;
|
|
|
|
const u64 completed_counter = MetalDevice::GetInstance().GetCompletedFenceCounter();
|
|
while (end != m_tracked_fences.end() && completed_counter >= end->first)
|
|
{
|
|
m_current_gpu_position = end->second;
|
|
++end;
|
|
}
|
|
|
|
if (start != end)
|
|
{
|
|
m_tracked_fences.erase(start, end);
|
|
if (m_current_offset == m_current_gpu_position)
|
|
{
|
|
// GPU is all caught up now.
|
|
m_current_offset = 0;
|
|
m_current_gpu_position = 0;
|
|
m_current_space = m_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool MetalStreamBuffer::WaitForClearSpace(u32 num_bytes)
|
|
{
|
|
u32 new_offset = 0;
|
|
u32 new_space = 0;
|
|
u32 new_gpu_position = 0;
|
|
|
|
auto iter = m_tracked_fences.begin();
|
|
for (; iter != m_tracked_fences.end(); ++iter)
|
|
{
|
|
// Would this fence bring us in line with the GPU?
|
|
// This is the "last resort" case, where a command buffer execution has been forced
|
|
// after no additional data has been written to it, so we can assume that after the
|
|
// fence has been signaled the entire buffer is now consumed.
|
|
u32 gpu_position = iter->second;
|
|
if (m_current_offset == gpu_position)
|
|
{
|
|
new_offset = 0;
|
|
new_space = m_size;
|
|
new_gpu_position = 0;
|
|
break;
|
|
}
|
|
|
|
// Assuming that we wait for this fence, are we allocating in front of the GPU?
|
|
if (m_current_offset > gpu_position)
|
|
{
|
|
// This would suggest the GPU has now followed us and wrapped around, so we have from
|
|
// m_current_position..m_size free, as well as and 0..gpu_position.
|
|
const u32 remaining_space_after_offset = m_size - m_current_offset;
|
|
if (remaining_space_after_offset >= num_bytes)
|
|
{
|
|
// Switch to allocating in front of the GPU, using the remainder of the buffer.
|
|
new_offset = m_current_offset;
|
|
new_space = m_size - m_current_offset;
|
|
new_gpu_position = gpu_position;
|
|
break;
|
|
}
|
|
|
|
// We can wrap around to the start, behind the GPU, if there is enough space.
|
|
// We use > here because otherwise we'd end up lining up with the GPU, and then the
|
|
// allocator would assume that the GPU has consumed what we just wrote.
|
|
if (gpu_position > num_bytes)
|
|
{
|
|
new_offset = 0;
|
|
new_space = gpu_position - 1;
|
|
new_gpu_position = gpu_position;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// We're currently allocating behind the GPU. This would give us between the current
|
|
// offset and the GPU position worth of space to work with. Again, > because we can't
|
|
// align the GPU position with the buffer offset.
|
|
u32 available_space_inbetween = gpu_position - m_current_offset;
|
|
if (available_space_inbetween > num_bytes)
|
|
{
|
|
// Leave the offset as-is, but update the GPU position.
|
|
new_offset = m_current_offset;
|
|
new_space = available_space_inbetween - 1;
|
|
new_gpu_position = gpu_position;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Did any fences satisfy this condition?
|
|
// Has the command buffer been executed yet? If not, the caller should execute it.
|
|
MetalDevice& dev = MetalDevice::GetInstance();
|
|
if (iter == m_tracked_fences.end() || iter->first == dev.GetCurrentFenceCounter())
|
|
return false;
|
|
|
|
// Wait until this fence is signaled. This will fire the callback, updating the GPU position.
|
|
dev.WaitForFenceCounter(iter->first);
|
|
m_tracked_fences.erase(m_tracked_fences.begin(), m_current_offset == iter->second ? m_tracked_fences.end() : ++iter);
|
|
m_current_offset = new_offset;
|
|
m_current_space = new_space;
|
|
m_current_gpu_position = new_gpu_position;
|
|
return true;
|
|
}
|