mirror of
https://github.com/RetroDECK/Duckstation.git
synced 2024-11-26 23:55:40 +00:00
cf15591704
* Add crt-hyllian-sinc.fx, crt-geo-zfast.fx and update others - Add crt-hyllian-sinc.fx; - Add crt-geo-zfast.fx; - Updated bicubic.fx and lanczos3.fx to allow prescaling; - Add include folder and mask.fxh and geom.fxh; * Update psx.jpg - No logos anymore.
326 lines
8.4 KiB
HLSL
326 lines
8.4 KiB
HLSL
#include "ReShade.fxh"
|
|
|
|
/*
|
|
Geom Shader - a modified CRT-Geom without CRT features made to be appended/integrated
|
|
into any other shaders and provide curvature/warping/oversampling features.
|
|
|
|
Adapted by Hyllian (2024).
|
|
*/
|
|
|
|
|
|
/*
|
|
CRT-interlaced
|
|
|
|
Copyright (C) 2010-2012 cgwg, Themaister and DOLLS
|
|
|
|
This program is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 2 of the License, or (at your option)
|
|
any later version.
|
|
|
|
(cgwg gave their consent to have the original version of this shader
|
|
distributed under the GPL in this message:
|
|
|
|
http://board.byuu.org/viewtopic.php?p=26075#p26075
|
|
|
|
"Feel free to distribute my shaders under the GPL. After all, the
|
|
barrel distortion code was taken from the Curvature shader, which is
|
|
under the GPL."
|
|
)
|
|
This shader variant is pre-configured with screen curvature
|
|
*/
|
|
|
|
|
|
|
|
uniform bool geom_curvature <
|
|
ui_type = "radio";
|
|
ui_label = "Geom Curvature Toggle";
|
|
> = 1.0;
|
|
|
|
uniform float geom_R <
|
|
ui_type = "drag";
|
|
ui_min = 0.1;
|
|
ui_max = 10.0;
|
|
ui_step = 0.1;
|
|
ui_label = "Geom Curvature Radius";
|
|
> = 2.0;
|
|
|
|
uniform float geom_d <
|
|
ui_type = "drag";
|
|
ui_min = 0.1;
|
|
ui_max = 3.0;
|
|
ui_step = 0.1;
|
|
ui_label = "Geom Distance";
|
|
> = 1.5;
|
|
|
|
uniform bool geom_invert_aspect <
|
|
ui_type = "radio";
|
|
ui_label = "Geom Curvature Aspect Inversion";
|
|
> = 0.0;
|
|
|
|
uniform float geom_cornersize <
|
|
ui_type = "drag";
|
|
ui_min = 0.001;
|
|
ui_max = 1.0;
|
|
ui_step = 0.005;
|
|
ui_label = "Geom Corner Size";
|
|
> = 0.03;
|
|
|
|
uniform float geom_cornersmooth <
|
|
ui_type = "drag";
|
|
ui_min = 80.0;
|
|
ui_max = 2000.0;
|
|
ui_step = 100.0;
|
|
ui_label = "Geom Corner Smoothness";
|
|
> = 1000.0;
|
|
|
|
uniform float geom_x_tilt <
|
|
ui_type = "drag";
|
|
ui_min = -1.0;
|
|
ui_max = 1.0;
|
|
ui_step = 0.05;
|
|
ui_label = "Geom Horizontal Tilt";
|
|
> = 0.0;
|
|
|
|
uniform float geom_y_tilt <
|
|
ui_type = "drag";
|
|
ui_min = -1.0;
|
|
ui_max = 1.0;
|
|
ui_step = 0.05;
|
|
ui_label = "Geom Vertical Tilt";
|
|
> = 0.0;
|
|
|
|
uniform float geom_overscan_x <
|
|
ui_type = "drag";
|
|
ui_min = -125.0;
|
|
ui_max = 125.0;
|
|
ui_step = 0.5;
|
|
ui_label = "Geom Horiz. Overscan %";
|
|
> = 100.0;
|
|
|
|
uniform float geom_overscan_y <
|
|
ui_type = "drag";
|
|
ui_min = -125.0;
|
|
ui_max = 125.0;
|
|
ui_step = 0.5;
|
|
ui_label = "Geom Vert. Overscan %";
|
|
> = 100.0;
|
|
|
|
uniform float centerx <
|
|
ui_type = "drag";
|
|
ui_min = -100.0;
|
|
ui_max = 100.0;
|
|
ui_step = 0.1;
|
|
ui_label = "Image Center X";
|
|
> = 0.00;
|
|
|
|
uniform float centery <
|
|
ui_type = "drag";
|
|
ui_min = -100.0;
|
|
ui_max = 100.0;
|
|
ui_step = 0.1;
|
|
ui_label = "Image Center Y";
|
|
> = 0.00;
|
|
|
|
uniform float geom_lum <
|
|
ui_type = "drag";
|
|
ui_min = 0.5;
|
|
ui_max = 2.0;
|
|
ui_step = 0.01;
|
|
ui_label = "Geom Luminance";
|
|
> = 1.0;
|
|
|
|
uniform float geom_target_gamma <
|
|
ui_type = "drag";
|
|
ui_min = 0.1;
|
|
ui_max = 5.0;
|
|
ui_step = 0.1;
|
|
ui_label = "Geom Target Gamma";
|
|
> = 2.4;
|
|
|
|
uniform float geom_monitor_gamma <
|
|
ui_type = "drag";
|
|
ui_min = 0.1;
|
|
ui_max = 5.0;
|
|
ui_step = 0.1;
|
|
ui_label = "Geom Monitor Gamma";
|
|
> = 2.2;
|
|
|
|
|
|
uniform float2 BufferToViewportRatio < source = "buffer_to_viewport_ratio"; >;
|
|
uniform float2 NormalizedNativePixelSize < source = "normalized_native_pixel_size"; >;
|
|
uniform float2 ViewportSize < source = "viewportsize"; >;
|
|
uniform float ViewportWidth < source = "viewportwidth"; >;
|
|
uniform float ViewportHeight < source = "viewportheight"; >;
|
|
|
|
sampler2D sBackBuffer{Texture=ReShade::BackBufferTex;AddressU=BORDER;AddressV=BORDER;AddressW=BORDER;MagFilter=LINEAR;MinFilter=LINEAR;};
|
|
|
|
// Comment the next line to disable interpolation in linear gamma (and
|
|
// gain speed).
|
|
#define LINEAR_PROCESSING
|
|
|
|
// Enable 3x oversampling of the beam profile; improves moire effect caused by scanlines+curvature
|
|
#define OVERSAMPLE
|
|
|
|
// Use the older, purely gaussian beam profile; uncomment for speed
|
|
//#define USEGAUSSIAN
|
|
|
|
// Macros.
|
|
#define FIX(c) max(abs(c), 1e-5);
|
|
#define PI 3.141592653589
|
|
|
|
#ifdef LINEAR_PROCESSING
|
|
# define TEX2D(c) pow(tex2D(sBackBuffer, (c)), geom_target_gamma.xxxx)
|
|
#else
|
|
# define TEX2D(c) tex2D(sBackBuffer, (c))
|
|
#endif
|
|
|
|
// aspect ratio
|
|
#define aspect (geom_invert_aspect==true?float2(ViewportHeight/ViewportWidth,1.0):float2(1.0,ViewportHeight/ViewportWidth))
|
|
#define overscan (1.01.xx);
|
|
|
|
|
|
struct ST_VertexOut
|
|
{
|
|
float2 sinangle : TEXCOORD1;
|
|
float2 cosangle : TEXCOORD2;
|
|
float3 stretch : TEXCOORD3;
|
|
float2 TextureSize : TEXCOORD4;
|
|
};
|
|
|
|
|
|
float intersect(float2 xy, float2 sinangle, float2 cosangle)
|
|
{
|
|
float A = dot(xy,xy) + geom_d*geom_d;
|
|
float B, C;
|
|
|
|
B = 2.0*(geom_R*(dot(xy,sinangle) - geom_d*cosangle.x*cosangle.y) - geom_d*geom_d);
|
|
C = geom_d*geom_d + 2.0*geom_R*geom_d*cosangle.x*cosangle.y;
|
|
|
|
return (-B-sqrt(B*B - 4.0*A*C))/(2.0*A);
|
|
}
|
|
|
|
float2 bkwtrans(float2 xy, float2 sinangle, float2 cosangle)
|
|
{
|
|
float c = intersect(xy, sinangle, cosangle);
|
|
float2 point = (c.xx*xy + geom_R.xx*sinangle) / geom_R.xx;
|
|
float2 poc = point/cosangle;
|
|
float2 tang = sinangle/cosangle;
|
|
|
|
float A = dot(tang, tang) + 1.0;
|
|
float B = -2.0*dot(poc, tang);
|
|
float C = dot(poc, poc) - 1.0;
|
|
|
|
float a = (-B + sqrt(B*B - 4.0*A*C)) / (2.0*A);
|
|
float2 uv = (point - a*sinangle) / cosangle;
|
|
float r = FIX(geom_R*acos(a));
|
|
|
|
return uv*r/sin(r/geom_R);
|
|
}
|
|
|
|
float2 fwtrans(float2 uv, float2 sinangle, float2 cosangle)
|
|
{
|
|
float r = FIX(sqrt(dot(uv, uv)));
|
|
uv *= sin(r/geom_R)/r;
|
|
float x = 1.0 - cos(r/geom_R);
|
|
float D;
|
|
|
|
D = geom_d/geom_R + x*cosangle.x*cosangle.y + dot(uv,sinangle);
|
|
|
|
return geom_d*(uv*cosangle - x*sinangle)/D;
|
|
}
|
|
|
|
float3 maxscale(float2 sinangle, float2 cosangle)
|
|
{
|
|
float2 c = bkwtrans(-geom_R * sinangle / (1.0 + geom_R/geom_d*cosangle.x*cosangle.y), sinangle, cosangle);
|
|
float2 a = 0.5.xx*aspect;
|
|
|
|
float2 lo = float2(fwtrans(float2(-a.x, c.y), sinangle, cosangle).x,
|
|
fwtrans(float2( c.x, -a.y), sinangle, cosangle).y)/aspect;
|
|
float2 hi = float2(fwtrans(float2(+a.x, c.y), sinangle, cosangle).x,
|
|
fwtrans(float2( c.x, +a.y), sinangle, cosangle).y)/aspect;
|
|
|
|
return float3((hi+lo)*aspect*0.5,max(hi.x-lo.x, hi.y-lo.y));
|
|
}
|
|
|
|
float2 transform(float2 coord, float2 sinangle, float2 cosangle, float3 stretch)
|
|
{
|
|
coord = (coord - 0.5.xx)*aspect*stretch.z + stretch.xy;
|
|
|
|
return (bkwtrans(coord, sinangle, cosangle) /
|
|
float2(geom_overscan_x / 100.0, geom_overscan_y / 100.0)/aspect + 0.5.xx);
|
|
}
|
|
|
|
|
|
// Vertex shader generating a triangle covering the entire screen
|
|
void VS_CRT_Geom(in uint id : SV_VertexID, out float4 position : SV_Position, out float2 texcoord : TEXCOORD, out ST_VertexOut vVARS)
|
|
{
|
|
texcoord.x = (id == 2) ? 2.0 : 0.0;
|
|
texcoord.y = (id == 1) ? 2.0 : 0.0;
|
|
position = float4(texcoord * float2(2.0, -2.0) + float2(-1.0, 1.0), 0.0, 1.0);
|
|
|
|
// Screen centering
|
|
texcoord = texcoord - float2(centerx,centery)/100.0;
|
|
|
|
float2 SourceSize = 1.0/NormalizedNativePixelSize;
|
|
|
|
// Precalculate a bunch of useful values we'll need in the fragment
|
|
// shader.
|
|
vVARS.sinangle = sin(float2(geom_x_tilt, geom_y_tilt));
|
|
vVARS.cosangle = cos(float2(geom_x_tilt, geom_y_tilt));
|
|
vVARS.stretch = maxscale(vVARS.sinangle, vVARS.cosangle);
|
|
vVARS.TextureSize = float2(SourceSize.x, SourceSize.y);
|
|
}
|
|
|
|
|
|
float corner(float2 coord)
|
|
{
|
|
coord = min(coord, 1.0.xx - coord) * aspect;
|
|
float2 cdist = geom_cornersize.xx;
|
|
coord = (cdist - min(coord, cdist));
|
|
float dist = sqrt(dot(coord, coord));
|
|
|
|
return clamp((cdist.x - dist)*geom_cornersmooth, 0.0, 1.0);
|
|
}
|
|
|
|
float fwidth(float value)
|
|
{
|
|
return abs(ddx(value)) + abs(ddy(value));
|
|
}
|
|
|
|
|
|
float4 PS_CRT_Geom(float4 vpos: SV_Position, float2 vTexCoord : TEXCOORD, in ST_VertexOut vVARS) : SV_Target
|
|
{
|
|
// Texture coordinates of the texel containing the active pixel.
|
|
float2 xy = (geom_curvature == true) ? transform(vTexCoord, vVARS.sinangle, vVARS.cosangle, vVARS.stretch) : vTexCoord;
|
|
|
|
float cval = corner((xy-0.5.xx) * BufferToViewportRatio + 0.5.xx);
|
|
|
|
float2 uv_ratio = frac((xy * vVARS.TextureSize - 0.5.xx) / vVARS.TextureSize);
|
|
|
|
float4 col = TEX2D(xy);
|
|
|
|
#ifndef LINEAR_PROCESSING
|
|
col = pow(col, geom_target_gamma.xxxx);
|
|
#endif
|
|
|
|
col.rgb *= (geom_lum * step(0.0, uv_ratio.y));
|
|
|
|
float3 mul_res = col.rgb * cval.xxx;
|
|
|
|
// Convert the image gamma for display on our output device.
|
|
mul_res = pow(mul_res, 1.0 / geom_monitor_gamma.xxx);
|
|
|
|
return float4(mul_res, 1.0);
|
|
}
|
|
|
|
|
|
technique CRT_Geom
|
|
{
|
|
pass
|
|
{
|
|
VertexShader = VS_CRT_Geom;
|
|
PixelShader = PS_CRT_Geom;
|
|
}
|
|
}
|