mirror of
https://github.com/RetroDECK/Duckstation.git
synced 2025-01-20 23:35:39 +00:00
91962508fe
* Fix crt-cyclon and update others - Fix some crt-cyclon parameters; - Update bicubic and lanczos3. * Update crt-geom.fx and geom.fx - Added image center X and Y to crt-geom.fx and geom.fx.
660 lines
20 KiB
HLSL
660 lines
20 KiB
HLSL
#include "ReShade.fxh"
|
|
|
|
/*
|
|
CRT-interlaced
|
|
|
|
Copyright (C) 2010-2012 cgwg, Themaister and DOLLS
|
|
|
|
This program is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 2 of the License, or (at your option)
|
|
any later version.
|
|
|
|
(cgwg gave their consent to have the original version of this shader
|
|
distributed under the GPL in this message:
|
|
|
|
http://board.byuu.org/viewtopic.php?p=26075#p26075
|
|
|
|
"Feel free to distribute my shaders under the GPL. After all, the
|
|
barrel distortion code was taken from the Curvature shader, which is
|
|
under the GPL."
|
|
)
|
|
This shader variant is pre-configured with screen curvature
|
|
*/
|
|
|
|
|
|
uniform float CRTgamma <
|
|
ui_type = "drag";
|
|
ui_min = 0.1;
|
|
ui_max = 5.0;
|
|
ui_step = 0.1;
|
|
ui_label = "CRTGeom Target Gamma";
|
|
> = 2.4;
|
|
|
|
uniform float monitorgamma <
|
|
ui_type = "drag";
|
|
ui_min = 0.1;
|
|
ui_max = 5.0;
|
|
ui_step = 0.1;
|
|
ui_label = "CRTGeom Monitor Gamma";
|
|
> = 2.2;
|
|
|
|
uniform float d <
|
|
ui_type = "drag";
|
|
ui_category = "Curvature";
|
|
ui_min = 0.1;
|
|
ui_max = 3.0;
|
|
ui_step = 0.1;
|
|
ui_label = "CRTGeom Distance";
|
|
> = 1.5;
|
|
|
|
uniform bool CURVATURE <
|
|
ui_category = "Curvature";
|
|
ui_type = "radio";
|
|
ui_label = "CRTGeom Curvature Toggle";
|
|
> = 1.0;
|
|
|
|
uniform float invert_aspect <
|
|
ui_type = "drag";
|
|
ui_category = "Curvature";
|
|
ui_min = 0.0;
|
|
ui_max = 1.0;
|
|
ui_step = 1.0;
|
|
ui_label = "CRTGeom Curvature Aspect Inversion";
|
|
> = 0.0;
|
|
|
|
uniform float R <
|
|
ui_type = "drag";
|
|
ui_category = "Curvature";
|
|
ui_min = 0.1;
|
|
ui_max = 10.0;
|
|
ui_step = 0.1;
|
|
ui_label = "CRTGeom Curvature Radius";
|
|
> = 2.0;
|
|
|
|
uniform float cornersize <
|
|
ui_type = "drag";
|
|
ui_category = "Curvature";
|
|
ui_min = 0.001;
|
|
ui_max = 1.0;
|
|
ui_step = 0.005;
|
|
ui_label = "CRTGeom Corner Size";
|
|
> = 0.03;
|
|
|
|
uniform float cornersmooth <
|
|
ui_type = "drag";
|
|
ui_category = "Curvature";
|
|
ui_min = 80.0;
|
|
ui_max = 2000.0;
|
|
ui_step = 100.0;
|
|
ui_label = "CRTGeom Corner Smoothness";
|
|
> = 1000.0;
|
|
|
|
uniform float x_tilt <
|
|
ui_type = "drag";
|
|
ui_category = "Curvature";
|
|
ui_min = -0.5;
|
|
ui_max = 0.5;
|
|
ui_step = 0.05;
|
|
ui_label = "CRTGeom Horizontal Tilt";
|
|
> = 0.0;
|
|
|
|
uniform float y_tilt <
|
|
ui_type = "drag";
|
|
ui_category = "Curvature";
|
|
ui_min = -0.5;
|
|
ui_max = 0.5;
|
|
ui_step = 0.05;
|
|
ui_label = "CRTGeom Vertical Tilt";
|
|
> = 0.0;
|
|
|
|
uniform float overscan_x <
|
|
ui_type = "drag";
|
|
ui_min = -125.0;
|
|
ui_max = 125.0;
|
|
ui_step = 0.5;
|
|
ui_label = "CRTGeom Horiz. Overscan %";
|
|
> = 100.0;
|
|
|
|
uniform float overscan_y <
|
|
ui_type = "drag";
|
|
ui_min = -125.0;
|
|
ui_max = 125.0;
|
|
ui_step = 0.5;
|
|
ui_label = "CRTGeom Vert. Overscan %";
|
|
> = 100.0;
|
|
|
|
uniform float centerx <
|
|
ui_type = "drag";
|
|
ui_min = -9.99;
|
|
ui_max = 9.99;
|
|
ui_step = 0.01;
|
|
ui_label = "Image Center X";
|
|
> = 0.00;
|
|
|
|
uniform float centery <
|
|
ui_type = "drag";
|
|
ui_min = -9.99;
|
|
ui_max = 9.99;
|
|
ui_step = 0.01;
|
|
ui_label = "Image Center Y";
|
|
> = 0.00;
|
|
|
|
uniform float DOTMASK <
|
|
ui_type = "drag";
|
|
ui_min = 0.0;
|
|
ui_max = 1.0;
|
|
ui_step = 0.05;
|
|
ui_label = "CRTGeom Dot Mask Strength";
|
|
> = 0.3;
|
|
|
|
uniform float SHARPER <
|
|
ui_type = "drag";
|
|
ui_min = 1.0;
|
|
ui_max = 3.0;
|
|
ui_step = 1.0;
|
|
ui_label = "CRTGeom Sharpness";
|
|
> = 1.0;
|
|
|
|
uniform float scanline_weight <
|
|
ui_type = "drag";
|
|
ui_min = 0.1;
|
|
ui_max = 0.5;
|
|
ui_step = 0.05;
|
|
ui_label = "CRTGeom Scanline Weight";
|
|
> = 0.3;
|
|
|
|
uniform float vertical_scanlines <
|
|
ui_type = "drag";
|
|
ui_min = 0.0;
|
|
ui_max = 1.0;
|
|
ui_step = 1.0;
|
|
ui_label = "CRTGeom Vertical Scanlines";
|
|
> = 0.0;
|
|
|
|
uniform float lum <
|
|
ui_type = "drag";
|
|
ui_min = 0.0;
|
|
ui_max = 1.0;
|
|
ui_step = 0.01;
|
|
ui_label = "CRTGeom Luminance";
|
|
> = 0.0;
|
|
|
|
uniform float interlace_detect <
|
|
ui_type = "drag";
|
|
ui_min = 0.0;
|
|
ui_max = 1.0;
|
|
ui_step = 1.0;
|
|
ui_label = "CRTGeom Interlacing Simulation";
|
|
> = 1.0;
|
|
|
|
|
|
|
|
uniform float FrameCount < source = "framecount"; >;
|
|
uniform float2 BufferViewportRatio < source = "buffer_to_viewport_ratio"; >;
|
|
uniform float2 InternalPixelSize < source = "internal_pixel_size"; >;
|
|
uniform float2 NativePixelSize < source = "native_pixel_size"; >;
|
|
uniform float2 NormalizedInternalPixelSize < source = "normalized_internal_pixel_size"; >;
|
|
uniform float2 NormalizedNativePixelSize < source = "normalized_native_pixel_size"; >;
|
|
uniform float UpscaleMultiplier < source = "upscale_multiplier"; >;
|
|
uniform float2 ViewportSize < source = "viewportsize"; >;
|
|
|
|
sampler2D sBackBuffer{Texture=ReShade::BackBufferTex;AddressU=BORDER;AddressV=BORDER;AddressW=BORDER;MagFilter=POINT;MinFilter=POINT;};
|
|
|
|
// Comment the next line to disable interpolation in linear gamma (and
|
|
// gain speed).
|
|
#define LINEAR_PROCESSING
|
|
|
|
// Enable 3x oversampling of the beam profile; improves moire effect caused by scanlines+curvature
|
|
#define OVERSAMPLE
|
|
|
|
// Use the older, purely gaussian beam profile; uncomment for speed
|
|
//#define USEGAUSSIAN
|
|
|
|
// Macros.
|
|
#define FIX(c) max(abs(c), 1e-5);
|
|
#define PI 3.141592653589
|
|
|
|
#ifdef LINEAR_PROCESSING
|
|
# define TEX2D(c) pow(tex2D(sBackBuffer, (c)), float4(CRTgamma,CRTgamma,CRTgamma,CRTgamma))
|
|
#else
|
|
# define TEX2D(c) tex2D(sBackBuffer, (c))
|
|
#endif
|
|
|
|
// aspect ratio
|
|
#define aspect (invert_aspect>0.5?float2(0.75,1.0):float2(1.0,0.75))
|
|
#define overscan (float2(1.01,1.01));
|
|
|
|
|
|
struct ST_VertexOut
|
|
{
|
|
float2 sinangle : TEXCOORD1;
|
|
float2 cosangle : TEXCOORD2;
|
|
float3 stretch : TEXCOORD3;
|
|
float2 ilfac : TEXCOORD4;
|
|
float2 one : TEXCOORD5;
|
|
float mod_factor : TEXCOORD6;
|
|
float2 TextureSize : TEXCOORD7;
|
|
};
|
|
|
|
|
|
float vs_intersect(float2 xy, float2 sinangle, float2 cosangle)
|
|
{
|
|
float A = dot(xy,xy) + d*d;
|
|
float B = 2.0*(R*(dot(xy,sinangle)-d*cosangle.x*cosangle.y)-d*d);
|
|
float C = d*d + 2.0*R*d*cosangle.x*cosangle.y;
|
|
|
|
return (-B-sqrt(B*B-4.0*A*C))/(2.0*A);
|
|
}
|
|
|
|
float2 vs_bkwtrans(float2 xy, float2 sinangle, float2 cosangle)
|
|
{
|
|
float c = vs_intersect(xy, sinangle, cosangle);
|
|
float2 point = (float2(c, c)*xy - float2(-R, -R)*sinangle) / float2(R, R);
|
|
float2 poc = point/cosangle;
|
|
|
|
float2 tang = sinangle/cosangle;
|
|
float A = dot(tang, tang) + 1.0;
|
|
float B = -2.0*dot(poc, tang);
|
|
float C = dot(poc, poc) - 1.0;
|
|
|
|
float a = (-B + sqrt(B*B - 4.0*A*C))/(2.0*A);
|
|
float2 uv = (point - a*sinangle)/cosangle;
|
|
float r = FIX(R*acos(a));
|
|
|
|
return uv*r/sin(r/R);
|
|
}
|
|
|
|
float2 vs_fwtrans(float2 uv, float2 sinangle, float2 cosangle)
|
|
{
|
|
float r = FIX(sqrt(dot(uv,uv)));
|
|
uv *= sin(r/R)/r;
|
|
float x = 1.0-cos(r/R);
|
|
float D = d/R + x*cosangle.x*cosangle.y+dot(uv,sinangle);
|
|
|
|
return d*(uv*cosangle-x*sinangle)/D;
|
|
}
|
|
|
|
float3 vs_maxscale(float2 sinangle, float2 cosangle)
|
|
{
|
|
float2 c = vs_bkwtrans(-R * sinangle / (1.0 + R/d*cosangle.x*cosangle.y), sinangle, cosangle);
|
|
float2 a = float2(0.5,0.5)*aspect;
|
|
|
|
float2 lo = float2(vs_fwtrans(float2(-a.x, c.y), sinangle, cosangle).x,
|
|
vs_fwtrans(float2( c.x, -a.y), sinangle, cosangle).y)/aspect;
|
|
|
|
float2 hi = float2(vs_fwtrans(float2(+a.x, c.y), sinangle, cosangle).x,
|
|
vs_fwtrans(float2( c.x, +a.y), sinangle, cosangle).y)/aspect;
|
|
|
|
return float3((hi+lo)*aspect*0.5,max(hi.x-lo.x,hi.y-lo.y));
|
|
}
|
|
|
|
// Code snippet borrowed from crt-cyclon. (credits to DariusG)
|
|
float2 Warp(float2 pos)
|
|
{
|
|
pos = pos*2.0 - 1.0;
|
|
pos *= float2(1.0 + pos.y*pos.y*0, 1.0 + pos.x*pos.x*0);
|
|
pos = pos*0.5 + 0.5;
|
|
|
|
return pos;
|
|
}
|
|
|
|
|
|
// Vertex shader generating a triangle covering the entire screen
|
|
void VS_CRT_Geom(in uint id : SV_VertexID, out float4 position : SV_Position, out float2 texcoord : TEXCOORD, out ST_VertexOut vVARS)
|
|
{
|
|
texcoord.x = (id == 2) ? 2.0 : 0.0;
|
|
texcoord.y = (id == 1) ? 2.0 : 0.0;
|
|
position = float4(texcoord * float2(2.0, -2.0) + float2(-1.0, 1.0), 0.0, 1.0);
|
|
|
|
// center screen
|
|
texcoord = Warp(texcoord - float2(centerx,centery)/100.0);
|
|
|
|
float2 SourceSize = 1.0/NormalizedNativePixelSize;
|
|
float2 OutputSize = ViewportSize*BufferViewportRatio;
|
|
|
|
// Precalculate a bunch of useful values we'll need in the fragment
|
|
// shader.
|
|
vVARS.sinangle = sin(float2(x_tilt, y_tilt));
|
|
vVARS.cosangle = cos(float2(x_tilt, y_tilt));
|
|
vVARS.stretch = vs_maxscale(vVARS.sinangle, vVARS.cosangle);
|
|
|
|
if(vertical_scanlines < 0.5)
|
|
{
|
|
vVARS.TextureSize = float2(SHARPER * SourceSize.x, SourceSize.y);
|
|
|
|
vVARS.ilfac = float2(1.0, clamp(floor(SourceSize.y/(interlace_detect > 0.5 ? 200.0 : 1000)), 1.0, 2.0));
|
|
|
|
// The size of one texel, in texture-coordinates.
|
|
vVARS.one = vVARS.ilfac / vVARS.TextureSize;
|
|
|
|
// Resulting X pixel-coordinate of the pixel we're drawing.
|
|
vVARS.mod_factor = texcoord.x * SourceSize.x * OutputSize.x / SourceSize.x;
|
|
}else{
|
|
vVARS.TextureSize = float2(SourceSize.x, SHARPER * SourceSize.y);
|
|
|
|
vVARS.ilfac = float2(clamp(floor(SourceSize.x/(interlace_detect > 0.5 ? 200.0 : 1000)), 1.0, 2.0), 1.0);
|
|
|
|
// The size of one texel, in texture-coordinates.
|
|
vVARS.one = vVARS.ilfac / vVARS.TextureSize;
|
|
|
|
// Resulting X pixel-coordinate of the pixel we're drawing.
|
|
vVARS.mod_factor = texcoord.y * SourceSize.y * OutputSize.y / SourceSize.y;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
float intersect(float2 xy, float2 sinangle, float2 cosangle)
|
|
{
|
|
float A = dot(xy,xy) + d*d;
|
|
float B, C;
|
|
|
|
if(vertical_scanlines < 0.5)
|
|
{
|
|
B = 2.0*(R*(dot(xy,sinangle) - d*cosangle.x*cosangle.y) - d*d);
|
|
C = d*d + 2.0*R*d*cosangle.x*cosangle.y;
|
|
}else{
|
|
B = 2.0*(R*(dot(xy,sinangle) - d*cosangle.y*cosangle.x) - d*d);
|
|
C = d*d + 2.0*R*d*cosangle.y*cosangle.x;
|
|
}
|
|
|
|
return (-B-sqrt(B*B - 4.0*A*C))/(2.0*A);
|
|
}
|
|
|
|
float2 bkwtrans(float2 xy, float2 sinangle, float2 cosangle)
|
|
{
|
|
float c = intersect(xy, sinangle, cosangle);
|
|
float2 point = (float2(c, c)*xy - float2(-R, -R)*sinangle) / float2(R, R);
|
|
float2 poc = point/cosangle;
|
|
float2 tang = sinangle/cosangle;
|
|
|
|
float A = dot(tang, tang) + 1.0;
|
|
float B = -2.0*dot(poc, tang);
|
|
float C = dot(poc, poc) - 1.0;
|
|
|
|
float a = (-B + sqrt(B*B - 4.0*A*C)) / (2.0*A);
|
|
float2 uv = (point - a*sinangle) / cosangle;
|
|
float r = FIX(R*acos(a));
|
|
|
|
return uv*r/sin(r/R);
|
|
}
|
|
|
|
float2 fwtrans(float2 uv, float2 sinangle, float2 cosangle)
|
|
{
|
|
float r = FIX(sqrt(dot(uv, uv)));
|
|
uv *= sin(r/R)/r;
|
|
float x = 1.0 - cos(r/R);
|
|
float D;
|
|
|
|
if(vertical_scanlines < 0.5)
|
|
D = d/R + x*cosangle.x*cosangle.y + dot(uv,sinangle);
|
|
else
|
|
D = d/R + x*cosangle.y*cosangle.x + dot(uv,sinangle);
|
|
|
|
return d*(uv*cosangle - x*sinangle)/D;
|
|
}
|
|
|
|
float3 maxscale(float2 sinangle, float2 cosangle)
|
|
{
|
|
if(vertical_scanlines < 0.5)
|
|
{
|
|
float2 c = bkwtrans(-R * sinangle / (1.0 + R/d*cosangle.x*cosangle.y), sinangle, cosangle);
|
|
float2 a = float2(0.5, 0.5)*aspect;
|
|
|
|
float2 lo = float2(fwtrans(float2(-a.x, c.y), sinangle, cosangle).x,
|
|
fwtrans(float2( c.x, -a.y), sinangle, cosangle).y)/aspect;
|
|
float2 hi = float2(fwtrans(float2(+a.x, c.y), sinangle, cosangle).x,
|
|
fwtrans(float2( c.x, +a.y), sinangle, cosangle).y)/aspect;
|
|
|
|
return float3((hi+lo)*aspect*0.5,max(hi.x-lo.x, hi.y-lo.y));
|
|
}else{
|
|
float2 c = bkwtrans(-R * sinangle / (1.0 + R/d*cosangle.y*cosangle.x), sinangle, cosangle);
|
|
float2 a = float2(0.5, 0.5)*aspect;
|
|
|
|
float2 lo = float2(fwtrans(float2(-a.y, c.x), sinangle, cosangle).y,
|
|
fwtrans(float2( c.y, -a.x), sinangle, cosangle).x)/aspect;
|
|
float2 hi = float2(fwtrans(float2(+a.y, c.x), sinangle, cosangle).y,
|
|
fwtrans(float2( c.y, +a.x), sinangle, cosangle).x)/aspect;
|
|
|
|
return float3((hi+lo)*aspect*0.5,max(hi.y-lo.y, hi.x-lo.x));
|
|
}
|
|
}
|
|
|
|
// Calculate the influence of a scanline on the current pixel.
|
|
//
|
|
// 'distance' is the distance in texture coordinates from the current
|
|
// pixel to the scanline in question.
|
|
// 'color' is the colour of the scanline at the horizontal location of
|
|
// the current pixel.
|
|
float4 scanlineWeights(float distance, float4 color)
|
|
{
|
|
// "wid" controls the width of the scanline beam, for each RGB
|
|
// channel The "weights" lines basically specify the formula
|
|
// that gives you the profile of the beam, i.e. the intensity as
|
|
// a function of distance from the vertical center of the
|
|
// scanline. In this case, it is gaussian if width=2, and
|
|
// becomes nongaussian for larger widths. Ideally this should
|
|
// be normalized so that the integral across the beam is
|
|
// independent of its width. That is, for a narrower beam
|
|
// "weights" should have a higher peak at the center of the
|
|
// scanline than for a wider beam.
|
|
#ifdef USEGAUSSIAN
|
|
float4 wid = 0.3 + 0.1 * pow(color, float4(3.0, 3.0, 3.0, 3.0));
|
|
float dsw = distance / scanline_weight;
|
|
float4 weights = float4(dsw, dsw, dsw, dsw);
|
|
|
|
return (lum + 0.4) * exp(-weights * weights) / wid;
|
|
#else
|
|
float4 wid = 2.0 + 2.0 * pow(color, float4(4.0, 4.0, 4.0, 4.0));
|
|
float dsw = distance / scanline_weight;
|
|
float4 weights = float4(dsw, dsw, dsw, dsw);
|
|
|
|
return (lum + 1.4) * exp(-pow(weights * rsqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid);
|
|
#endif
|
|
}
|
|
|
|
float2 transform(float2 coord, float2 sinangle, float2 cosangle, float3 stretch)
|
|
{
|
|
coord = (coord - float2(0.5, 0.5))*aspect*stretch.z + stretch.xy;
|
|
|
|
return (bkwtrans(coord, sinangle, cosangle) /
|
|
float2(overscan_x / 100.0, overscan_y / 100.0)/aspect + float2(0.5, 0.5));
|
|
}
|
|
|
|
float corner(float2 coord)
|
|
{
|
|
coord = (coord - float2(0.5, 0.5)) * float2(overscan_x / 100.0, overscan_y / 100.0) + float2(0.5, 0.5);
|
|
coord = min(coord, float2(1.0, 1.0) - coord) * aspect;
|
|
float2 cdist = float2(cornersize, cornersize);
|
|
coord = (cdist - min(coord, cdist));
|
|
float dist = sqrt(dot(coord, coord));
|
|
|
|
if(vertical_scanlines < 0.5)
|
|
return clamp((cdist.x - dist)*cornersmooth, 0.0, 1.0);
|
|
else
|
|
return clamp((cdist.y - dist)*cornersmooth, 0.0, 1.0);
|
|
}
|
|
|
|
float fwidth(float value){
|
|
return abs(ddx(value)) + abs(ddy(value));
|
|
}
|
|
|
|
|
|
|
|
float4 PS_CRT_Geom(float4 vpos: SV_Position, float2 vTexCoord : TEXCOORD, in ST_VertexOut vVARS) : SV_Target
|
|
{
|
|
// Here's a helpful diagram to keep in mind while trying to
|
|
// understand the code:
|
|
//
|
|
// | | | | |
|
|
// -------------------------------
|
|
// | | | | |
|
|
// | 01 | 11 | 21 | 31 | <-- current scanline
|
|
// | | @ | | |
|
|
// -------------------------------
|
|
// | | | | |
|
|
// | 02 | 12 | 22 | 32 | <-- next scanline
|
|
// | | | | |
|
|
// -------------------------------
|
|
// | | | | |
|
|
//
|
|
// Each character-cell represents a pixel on the output
|
|
// surface, "@" represents the current pixel (always somewhere
|
|
// in the bottom half of the current scan-line, or the top-half
|
|
// of the next scanline). The grid of lines represents the
|
|
// edges of the texels of the underlying texture.
|
|
|
|
// Texture coordinates of the texel containing the active pixel.
|
|
float2 xy;
|
|
|
|
if (CURVATURE > 0.5)
|
|
xy = transform(vTexCoord, vVARS.sinangle, vVARS.cosangle, vVARS.stretch);
|
|
else
|
|
xy = vTexCoord;
|
|
|
|
float cval = corner(xy);
|
|
|
|
// Of all the pixels that are mapped onto the texel we are
|
|
// currently rendering, which pixel are we currently rendering?
|
|
float2 ilvec;
|
|
if(vertical_scanlines < 0.5)
|
|
ilvec = float2(0.0, vVARS.ilfac.y * interlace_detect > 1.5 ? (float(FrameCount) % 2.0) : 0.0);
|
|
else
|
|
ilvec = float2(vVARS.ilfac.x * interlace_detect > 1.5 ? (float(FrameCount) % 2.0) : 0.0, 0.0);
|
|
|
|
float2 ratio_scale = (xy * vVARS.TextureSize - float2(0.5, 0.5) + ilvec) / vVARS.ilfac;
|
|
float2 uv_ratio = frac(ratio_scale);
|
|
|
|
// Snap to the center of the underlying texel.
|
|
xy = (floor(ratio_scale)*vVARS.ilfac + float2(0.5, 0.5) - ilvec) / vVARS.TextureSize;
|
|
|
|
// Calculate Lanczos scaling coefficients describing the effect
|
|
// of various neighbour texels in a scanline on the current
|
|
// pixel.
|
|
float4 coeffs;
|
|
if(vertical_scanlines < 0.5)
|
|
coeffs = PI * float4(1.0 + uv_ratio.x, uv_ratio.x, 1.0 - uv_ratio.x, 2.0 - uv_ratio.x);
|
|
else
|
|
coeffs = PI * float4(1.0 + uv_ratio.y, uv_ratio.y, 1.0 - uv_ratio.y, 2.0 - uv_ratio.y);
|
|
|
|
// Prevent division by zero.
|
|
coeffs = FIX(coeffs);
|
|
|
|
// Lanczos2 kernel.
|
|
coeffs = 2.0 * sin(coeffs) * sin(coeffs / 2.0) / (coeffs * coeffs);
|
|
|
|
// Normalize.
|
|
coeffs /= dot(coeffs, float4(1.0, 1.0, 1.0, 1.0));
|
|
|
|
// Calculate the effective colour of the current and next
|
|
// scanlines at the horizontal location of the current pixel,
|
|
// using the Lanczos coefficients above.
|
|
float4 col, col2;
|
|
if(vertical_scanlines < 0.5)
|
|
{
|
|
col = clamp(
|
|
mul(coeffs, float4x4(
|
|
TEX2D(xy + float2(-vVARS.one.x, 0.0)),
|
|
TEX2D(xy),
|
|
TEX2D(xy + float2(vVARS.one.x, 0.0)),
|
|
TEX2D(xy + float2(2.0 * vVARS.one.x, 0.0))
|
|
)),
|
|
0.0, 1.0
|
|
);
|
|
col2 = clamp(
|
|
mul(coeffs, float4x4(
|
|
TEX2D(xy + float2(-vVARS.one.x, vVARS.one.y)),
|
|
TEX2D(xy + float2(0.0, vVARS.one.y)),
|
|
TEX2D(xy + vVARS.one),
|
|
TEX2D(xy + float2(2.0 * vVARS.one.x, vVARS.one.y))
|
|
)),
|
|
0.0, 1.0
|
|
);
|
|
}else{
|
|
col = clamp(
|
|
mul(coeffs, float4x4(
|
|
TEX2D(xy + float2(0.0, -vVARS.one.y)),
|
|
TEX2D(xy),
|
|
TEX2D(xy + float2(0.0, vVARS.one.y)),
|
|
TEX2D(xy + float2(0.0, 2.0 * vVARS.one.y))
|
|
)),
|
|
0.0, 1.0
|
|
);
|
|
col2 = clamp(
|
|
mul(coeffs, float4x4(
|
|
TEX2D(xy + float2(vVARS.one.x, -vVARS.one.y)),
|
|
TEX2D(xy + float2(vVARS.one.x, 0.0)),
|
|
TEX2D(xy + vVARS.one),
|
|
TEX2D(xy + float2(vVARS.one.x, 2.0 * vVARS.one.y))
|
|
)),
|
|
0.0, 1.0
|
|
);
|
|
}
|
|
|
|
#ifndef LINEAR_PROCESSING
|
|
col = pow(col , float4(CRTgamma, CRTgamma, CRTgamma, CRTgamma));
|
|
col2 = pow(col2, float4(CRTgamma, CRTgamma, CRTgamma, CRTgamma));
|
|
#endif
|
|
|
|
// Calculate the influence of the current and next scanlines on
|
|
// the current pixel.
|
|
float4 weights, weights2;
|
|
if(vertical_scanlines < 0.5)
|
|
{
|
|
weights = scanlineWeights(uv_ratio.y, col);
|
|
weights2 = scanlineWeights(1.0 - uv_ratio.y, col2);
|
|
|
|
#ifdef OVERSAMPLE
|
|
float filter = fwidth(ratio_scale.y);
|
|
uv_ratio.y = uv_ratio.y + 1.0/3.0*filter;
|
|
weights = (weights + scanlineWeights(uv_ratio.y, col))/3.0;
|
|
weights2 = (weights2 + scanlineWeights(abs(1.0 - uv_ratio.y), col2))/3.0;
|
|
uv_ratio.y = uv_ratio.y - 2.0/3.0*filter;
|
|
weights = weights + scanlineWeights(abs(uv_ratio.y), col)/3.0;
|
|
weights2 = weights2 + scanlineWeights(abs(1.0 - uv_ratio.y), col2)/3.0;
|
|
#endif
|
|
}else{
|
|
weights = scanlineWeights(uv_ratio.x, col);
|
|
weights2 = scanlineWeights(1.0 - uv_ratio.x, col2);
|
|
|
|
#ifdef OVERSAMPLE
|
|
float filter = fwidth(ratio_scale.x);
|
|
uv_ratio.x = uv_ratio.x + 1.0/3.0*filter;
|
|
weights = (weights + scanlineWeights(uv_ratio.x, col))/3.0;
|
|
weights2 = (weights2 + scanlineWeights(abs(1.0 - uv_ratio.x), col2))/3.0;
|
|
uv_ratio.x = uv_ratio.x - 2.0/3.0*filter;
|
|
weights = weights + scanlineWeights(abs(uv_ratio.x), col)/3.0;
|
|
weights2 = weights2 + scanlineWeights(abs(1.0 - uv_ratio.x), col2)/3.0;
|
|
#endif
|
|
}
|
|
|
|
float3 mul_res = (col * weights + col2 * weights2).rgb;
|
|
mul_res *= float3(cval, cval, cval);
|
|
|
|
// dot-mask emulation:
|
|
// Output pixels are alternately tinted green and magenta.
|
|
float3 dotMaskWeights = lerp(
|
|
float3(1.0, 1.0 - DOTMASK, 1.0),
|
|
float3(1.0 - DOTMASK, 1.0, 1.0 - DOTMASK),
|
|
floor((vVARS.mod_factor % 2.0))
|
|
);
|
|
|
|
mul_res *= dotMaskWeights;
|
|
|
|
// Convert the image gamma for display on our output device.
|
|
mul_res = pow(mul_res, float3(1.0 / monitorgamma, 1.0 / monitorgamma, 1.0 / monitorgamma));
|
|
|
|
return float4(mul_res, 1.0);
|
|
}
|
|
|
|
|
|
technique CRT_Geom
|
|
{
|
|
pass
|
|
{
|
|
VertexShader = VS_CRT_Geom;
|
|
PixelShader = PS_CRT_Geom;
|
|
}
|
|
}
|