Duckstation/src/util/page_fault_handler.cpp
2023-11-24 20:35:52 +10:00

313 lines
9.7 KiB
C++

// SPDX-FileCopyrightText: 2019-2023 Connor McLaughlin <stenzek@gmail.com>
// SPDX-License-Identifier: (GPL-3.0 OR CC-BY-NC-ND-4.0)
#include "page_fault_handler.h"
#include "common/assert.h"
#include "common/log.h"
#include <algorithm>
#include <cstring>
#include <mutex>
#include <vector>
Log_SetChannel(Common::PageFaultHandler);
#if defined(_WIN32)
#include "common/windows_headers.h"
#elif defined(__linux__) || defined(__ANDROID__)
#include <signal.h>
#include <ucontext.h>
#include <unistd.h>
#define USE_SIGSEGV 1
#elif defined(__APPLE__) || defined(__FreeBSD__)
#include <signal.h>
#include <unistd.h>
#define USE_SIGSEGV 1
#endif
#ifdef __APPLE__
#include <mach/mach_init.h>
#include <mach/mach_port.h>
#include <mach/task.h>
#endif
namespace Common::PageFaultHandler {
static std::recursive_mutex s_exception_handler_mutex;
static Handler s_exception_handler_callback;
static bool s_in_exception_handler;
#if defined(CPU_ARCH_ARM64)
static bool IsStoreInstruction(const void* ptr)
{
u32 bits;
std::memcpy(&bits, ptr, sizeof(bits));
// Based on vixl's disassembler Instruction::IsStore().
// if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed)
if ((bits & 0x0a000000) != 0x08000000)
return false;
// if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed)
if ((bits & 0x3a000000) == 0x28000000)
{
// return Mask(LoadStorePairLBit) == 0
return (bits & (1 << 22)) == 0;
}
switch (bits & 0xC4C00000)
{
case 0x00000000: // STRB_w
case 0x40000000: // STRH_w
case 0x80000000: // STR_w
case 0xC0000000: // STR_x
case 0x04000000: // STR_b
case 0x44000000: // STR_h
case 0x84000000: // STR_s
case 0xC4000000: // STR_d
case 0x04800000: // STR_q
return true;
default:
return false;
}
}
#elif defined(CPU_ARCH_RISCV64)
static bool IsStoreInstruction(const void* ptr)
{
u32 bits;
std::memcpy(&bits, ptr, sizeof(bits));
return ((bits & 0x7Fu) == 0b0100011u);
}
#endif
#if defined(_WIN32) && (defined(CPU_ARCH_X64) || defined(CPU_ARCH_ARM64))
static PVOID s_veh_handle;
static LONG ExceptionHandler(PEXCEPTION_POINTERS exi)
{
// Executing the handler concurrently from multiple threads wouldn't go down well.
std::unique_lock lock(s_exception_handler_mutex);
// Prevent recursive exception filtering.
if (s_in_exception_handler)
return EXCEPTION_CONTINUE_SEARCH;
// Only interested in page faults.
if (exi->ExceptionRecord->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)
return EXCEPTION_CONTINUE_SEARCH;
#if defined(_M_AMD64)
void* const exception_pc = reinterpret_cast<void*>(exi->ContextRecord->Rip);
#elif defined(_M_ARM64)
void* const exception_pc = reinterpret_cast<void*>(exi->ContextRecord->Pc);
#else
void* const exception_pc = nullptr;
#endif
void* const exception_address = reinterpret_cast<void*>(exi->ExceptionRecord->ExceptionInformation[1]);
const bool is_write = exi->ExceptionRecord->ExceptionInformation[0] == 1;
s_in_exception_handler = true;
const HandlerResult handled = s_exception_handler_callback(exception_pc, exception_address, is_write);
s_in_exception_handler = false;
return (handled == HandlerResult::ContinueExecution) ? EXCEPTION_CONTINUE_EXECUTION : EXCEPTION_CONTINUE_SEARCH;
}
#elif defined(USE_SIGSEGV)
static struct sigaction s_old_sigsegv_action;
#if defined(__APPLE__) || defined(__aarch64__)
static struct sigaction s_old_sigbus_action;
#endif
static void CallExistingSignalHandler(int signal, siginfo_t* siginfo, void* ctx)
{
#if defined(__aarch64__)
const struct sigaction& sa = (signal == SIGBUS) ? s_old_sigbus_action : s_old_sigsegv_action;
#elif defined(__APPLE__)
const struct sigaction& sa = s_old_sigbus_action;
#else
const struct sigaction& sa = s_old_sigsegv_action;
#endif
if (sa.sa_flags & SA_SIGINFO)
{
sa.sa_sigaction(signal, siginfo, ctx);
}
else if (sa.sa_handler == SIG_DFL)
{
// Re-raising the signal would just queue it, and since we'd restore the handler back to us,
// we'd end up right back here again. So just abort, because that's probably what it'd do anyway.
abort();
}
else if (sa.sa_handler != SIG_IGN)
{
sa.sa_handler(signal);
}
}
static void SignalHandler(int sig, siginfo_t* info, void* ctx)
{
// Executing the handler concurrently from multiple threads wouldn't go down well.
std::unique_lock lock(s_exception_handler_mutex);
// Prevent recursive exception filtering.
if (s_in_exception_handler)
{
lock.unlock();
CallExistingSignalHandler(sig, info, ctx);
return;
}
#if defined(__linux__) || defined(__ANDROID__)
void* const exception_address = reinterpret_cast<void*>(info->si_addr);
#if defined(CPU_ARCH_X64)
void* const exception_pc = reinterpret_cast<void*>(static_cast<ucontext_t*>(ctx)->uc_mcontext.gregs[REG_RIP]);
const bool is_write = (static_cast<ucontext_t*>(ctx)->uc_mcontext.gregs[REG_ERR] & 2) != 0;
#elif defined(CPU_ARCH_ARM32)
void* const exception_pc = reinterpret_cast<void*>(static_cast<ucontext_t*>(ctx)->uc_mcontext.arm_pc);
const bool is_write = (static_cast<ucontext_t*>(ctx)->uc_mcontext.error_code & (1 << 11)) != 0; // DFSR.WnR
#elif defined(CPU_ARCH_ARM64)
void* const exception_pc = reinterpret_cast<void*>(static_cast<ucontext_t*>(ctx)->uc_mcontext.pc);
const bool is_write = IsStoreInstruction(exception_pc);
#elif defined(CPU_ARCH_RISCV64)
void* const exception_pc = reinterpret_cast<void*>(static_cast<ucontext_t*>(ctx)->uc_mcontext.__gregs[REG_PC]);
const bool is_write = IsStoreInstruction(exception_pc);
#else
void* const exception_pc = nullptr;
const bool is_write = false;
#endif
#elif defined(__APPLE__)
#if defined(CPU_ARCH_X64)
void* const exception_address =
reinterpret_cast<void*>(static_cast<ucontext_t*>(ctx)->uc_mcontext->__es.__faultvaddr);
void* const exception_pc = reinterpret_cast<void*>(static_cast<ucontext_t*>(ctx)->uc_mcontext->__ss.__rip);
const bool is_write = (static_cast<ucontext_t*>(ctx)->uc_mcontext->__es.__err & 2) != 0;
#elif defined(CPU_ARCH_ARM64)
void* const exception_address = reinterpret_cast<void*>(static_cast<ucontext_t*>(ctx)->uc_mcontext->__es.__far);
void* const exception_pc = reinterpret_cast<void*>(static_cast<ucontext_t*>(ctx)->uc_mcontext->__ss.__pc);
const bool is_write = IsStoreInstruction(exception_pc);
#else
void* const exception_address = reinterpret_cast<void*>(info->si_addr);
void* const exception_pc = nullptr;
const bool is_write = false;
#endif
#elif defined(__FreeBSD__)
#if defined(CPU_ARCH_X64)
void* const exception_address = reinterpret_cast<void*>(static_cast<ucontext_t*>(ctx)->uc_mcontext.mc_addr);
void* const exception_pc = reinterpret_cast<void*>(static_cast<ucontext_t*>(ctx)->uc_mcontext.mc_rip);
const bool is_write = (static_cast<ucontext_t*>(ctx)->uc_mcontext.mc_err & 2) != 0;
#elif defined(CPU_ARCH_ARM64)
void* const exception_address = reinterpret_cast<void*>(static_cast<ucontext_t*>(ctx)->uc_mcontext->__es.__far);
void* const exception_pc = reinterpret_cast<void*>(static_cast<ucontext_t*>(ctx)->uc_mcontext->__ss.__pc);
const bool is_write = IsStoreInstruction(exception_pc);
#else
void* const exception_address = reinterpret_cast<void*>(info->si_addr);
void* const exception_pc = nullptr;
const bool is_write = false;
#endif
#endif
s_in_exception_handler = true;
const HandlerResult result = s_exception_handler_callback(exception_pc, exception_address, is_write);
s_in_exception_handler = false;
// Resumes execution right where we left off (re-executes instruction that caused the SIGSEGV).
if (result == HandlerResult::ContinueExecution)
return;
// Call old signal handler, which will likely dump core.
lock.unlock();
CallExistingSignalHandler(sig, info, ctx);
}
#endif
bool InstallHandler(Handler handler)
{
std::unique_lock lock(s_exception_handler_mutex);
AssertMsg(!s_exception_handler_callback, "A page fault handler is already registered.");
if (!s_exception_handler_callback)
{
#if defined(_WIN32) && (defined(CPU_ARCH_X64) || defined(CPU_ARCH_ARM64))
s_veh_handle = AddVectoredExceptionHandler(1, ExceptionHandler);
if (!s_veh_handle)
{
Log_ErrorPrint("Failed to add vectored exception handler");
return false;
}
#elif defined(USE_SIGSEGV)
struct sigaction sa;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_SIGINFO;
sa.sa_sigaction = SignalHandler;
#ifdef __linux__
// Don't block the signal from executing recursively, we want to fire the original handler.
sa.sa_flags |= SA_NODEFER;
#endif
if (sigaction(SIGSEGV, &sa, &s_old_sigsegv_action) != 0)
return false;
#if defined(__APPLE__) || defined(__aarch64__)
// MacOS uses SIGBUS for memory permission violations
if (sigaction(SIGBUS, &sa, &s_old_sigbus_action) != 0)
return false;
#endif
#ifdef __APPLE__
task_set_exception_ports(mach_task_self(), EXC_MASK_BAD_ACCESS, MACH_PORT_NULL, EXCEPTION_DEFAULT, 0);
#endif
#else
return false;
#endif
}
s_exception_handler_callback = handler;
return true;
}
bool RemoveHandler(Handler handler)
{
std::unique_lock lock(s_exception_handler_mutex);
AssertMsg(!s_exception_handler_callback || s_exception_handler_callback == handler,
"Not removing the same handler previously registered.");
if (!s_exception_handler_callback)
return false;
s_exception_handler_callback = nullptr;
#if defined(_WIN32) && (defined(CPU_ARCH_X64) || defined(CPU_ARCH_ARM64))
RemoveVectoredExceptionHandler(s_veh_handle);
s_veh_handle = nullptr;
#elif defined(USE_SIGSEGV)
struct sigaction sa;
#if defined(__APPLE__) || defined(__aarch64__)
sigaction(SIGBUS, &s_old_sigbus_action, &sa);
s_old_sigbus_action = {};
#endif
#if !defined(__APPLE__) || defined(__aarch64__)
sigaction(SIGSEGV, &s_old_sigsegv_action, &sa);
s_old_sigsegv_action = {};
#endif
#else
return false;
#endif
return true;
}
} // namespace Common::PageFaultHandler