Duckstation/src/core/timers.cpp
Connor McLaughlin 27697d0508 System: Implement CPU overclocking [SAVEVERSION+]
Partial credit to @CookiePLMonster as well.
2020-09-30 23:48:34 +10:00

456 lines
12 KiB
C++

#include "timers.h"
#include "common/log.h"
#include "common/state_wrapper.h"
#include "gpu.h"
#include "interrupt_controller.h"
#include "system.h"
#ifdef WITH_IMGUI
#include "imgui.h"
#endif
Log_SetChannel(Timers);
Timers g_timers;
Timers::Timers() = default;
Timers::~Timers() = default;
void Timers::Initialize()
{
m_sysclk_event = TimingEvents::CreateTimingEvent(
"Timer SysClk Interrupt", 1, 1, std::bind(&Timers::AddSysClkTicks, this, std::placeholders::_1), false);
Reset();
}
void Timers::Shutdown()
{
m_sysclk_event.reset();
}
void Timers::Reset()
{
for (CounterState& cs : m_states)
{
cs.mode.bits = 0;
cs.mode.interrupt_request_n = true;
cs.counter = 0;
cs.target = 0;
cs.gate = false;
cs.external_counting_enabled = false;
cs.counting_enabled = true;
cs.irq_done = false;
}
m_syclk_ticks_carry = 0;
m_sysclk_div_8_carry = 0;
UpdateSysClkEvent();
}
bool Timers::DoState(StateWrapper& sw)
{
for (CounterState& cs : m_states)
{
sw.Do(&cs.mode.bits);
sw.Do(&cs.counter);
sw.Do(&cs.target);
sw.Do(&cs.gate);
sw.Do(&cs.use_external_clock);
sw.Do(&cs.external_counting_enabled);
sw.Do(&cs.counting_enabled);
sw.Do(&cs.irq_done);
}
sw.Do(&m_syclk_ticks_carry);
sw.Do(&m_sysclk_div_8_carry);
if (sw.IsReading())
UpdateSysClkEvent();
return !sw.HasError();
}
void Timers::CPUClocksChanged()
{
m_syclk_ticks_carry = 0;
}
void Timers::SetGate(u32 timer, bool state)
{
CounterState& cs = m_states[timer];
if (cs.gate == state)
return;
cs.gate = state;
if (cs.mode.sync_enable)
{
if (state)
{
switch (cs.mode.sync_mode)
{
case SyncMode::ResetOnGate:
case SyncMode::ResetAndRunOnGate:
cs.counter = 0;
break;
case SyncMode::FreeRunOnGate:
cs.mode.sync_enable = false;
break;
}
}
UpdateCountingEnabled(cs);
}
}
TickCount Timers::GetTicksUntilIRQ(u32 timer) const
{
const CounterState& cs = m_states[timer];
if (!cs.counting_enabled)
return std::numeric_limits<TickCount>::max();
TickCount ticks_until_irq = std::numeric_limits<TickCount>::max();
if (cs.mode.irq_at_target && cs.counter < cs.target)
ticks_until_irq = static_cast<TickCount>(cs.target - cs.counter);
if (cs.mode.irq_on_overflow)
ticks_until_irq = std::min(ticks_until_irq, static_cast<TickCount>(0xFFFFu - cs.counter));
return ticks_until_irq;
}
void Timers::AddTicks(u32 timer, TickCount count)
{
CounterState& cs = m_states[timer];
const u32 old_counter = cs.counter;
cs.counter += static_cast<u32>(count);
bool interrupt_request = false;
if (cs.counter >= cs.target && old_counter < cs.target)
{
interrupt_request |= cs.mode.irq_at_target;
cs.mode.reached_target = true;
if (cs.mode.reset_at_target)
{
if (cs.target > 0)
cs.counter %= cs.target;
else
cs.counter = 0;
}
}
if (cs.counter >= 0xFFFF)
{
interrupt_request |= cs.mode.irq_on_overflow;
cs.mode.reached_overflow = true;
cs.counter %= 0xFFFFu;
}
if (interrupt_request)
{
if (!cs.mode.irq_pulse_n)
{
// this is actually low for a few cycles
cs.mode.interrupt_request_n = false;
UpdateIRQ(timer);
cs.mode.interrupt_request_n = true;
}
else
{
cs.mode.interrupt_request_n ^= true;
UpdateIRQ(timer);
}
}
}
void Timers::AddSysClkTicks(TickCount sysclk_ticks)
{
sysclk_ticks = System::UnscaleTicksToOverclock(sysclk_ticks, &m_syclk_ticks_carry);
if (!m_states[0].external_counting_enabled && m_states[0].counting_enabled)
AddTicks(0, sysclk_ticks);
if (!m_states[1].external_counting_enabled && m_states[1].counting_enabled)
AddTicks(1, sysclk_ticks);
if (m_states[2].external_counting_enabled)
{
TickCount sysclk_div_8_ticks = (sysclk_ticks + m_sysclk_div_8_carry) / 8;
m_sysclk_div_8_carry = (sysclk_ticks + m_sysclk_div_8_carry) % 8;
AddTicks(2, sysclk_div_8_ticks);
}
else if (m_states[2].counting_enabled)
{
AddTicks(2, sysclk_ticks);
}
UpdateSysClkEvent();
}
u32 Timers::ReadRegister(u32 offset)
{
const u32 timer_index = (offset >> 4) & u32(0x03);
const u32 port_offset = offset & u32(0x0F);
if (timer_index >= 3)
{
Log_ErrorPrintf("Timer read out of range: offset 0x%02X", offset);
return UINT32_C(0xFFFFFFFF);
}
CounterState& cs = m_states[timer_index];
switch (port_offset)
{
case 0x00:
{
if (timer_index < 2 && cs.external_counting_enabled)
{
// timers 0/1 depend on the GPU
if (timer_index == 0 || g_gpu->IsCRTCScanlinePending())
g_gpu->SynchronizeCRTC();
}
m_sysclk_event->InvokeEarly();
return cs.counter;
}
case 0x04:
{
if (timer_index < 2 && cs.external_counting_enabled)
{
// timers 0/1 depend on the GPU
if (timer_index == 0 || g_gpu->IsCRTCScanlinePending())
g_gpu->SynchronizeCRTC();
}
m_sysclk_event->InvokeEarly();
const u32 bits = cs.mode.bits;
cs.mode.reached_overflow = false;
cs.mode.reached_target = false;
return bits;
}
case 0x08:
return cs.target;
default:
Log_ErrorPrintf("Read unknown register in timer %u (offset 0x%02X)", offset);
return UINT32_C(0xFFFFFFFF);
}
}
void Timers::WriteRegister(u32 offset, u32 value)
{
const u32 timer_index = (offset >> 4) & u32(0x03);
const u32 port_offset = offset & u32(0x0F);
if (timer_index >= 3)
{
Log_ErrorPrintf("Timer write out of range: offset 0x%02X value 0x%08X", offset, value);
return;
}
CounterState& cs = m_states[timer_index];
if (timer_index < 2 && cs.external_counting_enabled)
{
// timers 0/1 depend on the GPU
if (timer_index == 0 || g_gpu->IsCRTCScanlinePending())
g_gpu->SynchronizeCRTC();
}
m_sysclk_event->InvokeEarly();
switch (port_offset)
{
case 0x00:
{
Log_DebugPrintf("Timer %u write counter %u", timer_index, value);
cs.counter = value & u32(0xFFFF);
if (timer_index == 2 || !cs.external_counting_enabled)
UpdateSysClkEvent();
}
break;
case 0x04:
{
static constexpr u32 WRITE_MASK = 0b1110001111111111;
Log_DebugPrintf("Timer %u write mode register 0x%04X", timer_index, value);
cs.mode.bits = (value & WRITE_MASK) | (cs.mode.bits & ~WRITE_MASK);
cs.use_external_clock = (cs.mode.clock_source & (timer_index == 2 ? 2 : 1)) != 0;
cs.counter = 0;
cs.irq_done = false;
UpdateCountingEnabled(cs);
UpdateIRQ(timer_index);
UpdateSysClkEvent();
}
break;
case 0x08:
{
Log_DebugPrintf("Timer %u write target 0x%04X", timer_index, ZeroExtend32(Truncate16(value)));
cs.target = value & u32(0xFFFF);
if (timer_index == 2 || !cs.external_counting_enabled)
UpdateSysClkEvent();
}
break;
default:
Log_ErrorPrintf("Write unknown register in timer %u (offset 0x%02X, value 0x%X)", offset, value);
break;
}
}
void Timers::UpdateCountingEnabled(CounterState& cs)
{
if (cs.mode.sync_enable)
{
switch (cs.mode.sync_mode)
{
case SyncMode::PauseOnGate:
cs.counting_enabled = !cs.gate;
break;
case SyncMode::ResetOnGate:
cs.counting_enabled = true;
break;
case SyncMode::ResetAndRunOnGate:
case SyncMode::FreeRunOnGate:
cs.counting_enabled = cs.gate;
break;
}
}
else
{
cs.counting_enabled = true;
}
cs.external_counting_enabled = cs.use_external_clock && cs.counting_enabled;
}
void Timers::UpdateIRQ(u32 index)
{
CounterState& cs = m_states[index];
if (cs.mode.interrupt_request_n || (!cs.mode.irq_repeat && cs.irq_done))
return;
Log_DebugPrintf("Raising timer %u IRQ", index);
cs.irq_done = true;
g_interrupt_controller.InterruptRequest(
static_cast<InterruptController::IRQ>(static_cast<u32>(InterruptController::IRQ::TMR0) + index));
}
TickCount Timers::GetTicksUntilNextInterrupt() const
{
TickCount min_ticks = std::numeric_limits<TickCount>::max();
for (u32 i = 0; i < NUM_TIMERS; i++)
{
const CounterState& cs = m_states[i];
if (!cs.counting_enabled || (i < 2 && cs.external_counting_enabled) ||
(!cs.mode.irq_at_target && !cs.mode.irq_on_overflow))
{
continue;
}
TickCount min_ticks_for_this_timer = std::numeric_limits<TickCount>::max();
if (cs.mode.irq_at_target && cs.counter < cs.target)
min_ticks_for_this_timer = static_cast<TickCount>(cs.target - cs.counter);
if (cs.mode.irq_on_overflow && cs.counter < cs.target)
min_ticks_for_this_timer = std::min(min_ticks_for_this_timer, static_cast<TickCount>(0xFFFF - cs.counter));
if (cs.external_counting_enabled) // sysclk/8 for timer 2
min_ticks_for_this_timer = std::max<TickCount>(1, System::ScaleTicksToOverclock(min_ticks_for_this_timer * 8));
else
min_ticks_for_this_timer = std::max<TickCount>(1, System::ScaleTicksToOverclock(min_ticks_for_this_timer));
min_ticks = std::min(min_ticks, min_ticks_for_this_timer);
}
return min_ticks;
}
void Timers::UpdateSysClkEvent()
{
// Still update once every 100ms. If we get polled we'll execute sooner.
const TickCount ticks = GetTicksUntilNextInterrupt();
if (ticks == std::numeric_limits<TickCount>::max())
m_sysclk_event->Schedule(System::GetMaxSliceTicks());
else
m_sysclk_event->Schedule(ticks);
}
void Timers::DrawDebugStateWindow()
{
#ifdef WITH_IMGUI
static constexpr u32 NUM_COLUMNS = 10;
static constexpr std::array<const char*, NUM_COLUMNS> column_names = {
{"#", "Value", "Target", "Sync", "Reset", "IRQ", "IRQRepeat", "IRQToggle", "Clock Source", "Reached"}};
static constexpr std::array<const char*, 4> sync_mode_names = {
{"PauseOnGate", "ResetOnGate", "ResetAndRunOnGate", "FreeRunOnGate"}};
static constexpr std::array<std::array<const char*, 4>, 3> clock_source_names = {
{{{"SysClk", "DotClk", "SysClk", "DotClk"}},
{{"SysClk", "HBlank", "SysClk", "HBlank"}},
{{"SysClk", "DotClk", "SysClk/8", "SysClk/8"}}}};
const float framebuffer_scale = ImGui::GetIO().DisplayFramebufferScale.x;
ImGui::SetNextWindowSize(ImVec2(800.0f * framebuffer_scale, 100.0f * framebuffer_scale), ImGuiCond_FirstUseEver);
if (!ImGui::Begin("Timer State", &g_settings.debugging.show_timers_state))
{
ImGui::End();
return;
}
ImGui::Columns(NUM_COLUMNS);
ImGui::SetColumnWidth(0, 20.0f * framebuffer_scale);
ImGui::SetColumnWidth(1, 50.0f * framebuffer_scale);
ImGui::SetColumnWidth(2, 50.0f * framebuffer_scale);
ImGui::SetColumnWidth(3, 100.0f * framebuffer_scale);
ImGui::SetColumnWidth(4, 80.0f * framebuffer_scale);
ImGui::SetColumnWidth(5, 80.0f * framebuffer_scale);
ImGui::SetColumnWidth(6, 80.0f * framebuffer_scale);
ImGui::SetColumnWidth(7, 80.0f * framebuffer_scale);
ImGui::SetColumnWidth(8, 80.0f * framebuffer_scale);
ImGui::SetColumnWidth(9, 80.0f * framebuffer_scale);
for (const char* title : column_names)
{
ImGui::TextUnformatted(title);
ImGui::NextColumn();
}
for (u32 i = 0; i < NUM_TIMERS; i++)
{
const CounterState& cs = m_states[i];
ImGui::PushStyleColor(ImGuiCol_Text,
cs.counting_enabled ? ImVec4(1.0f, 1.0f, 1.0f, 1.0f) : ImVec4(0.5f, 0.5f, 0.5f, 1.0f));
ImGui::Text("%u", i);
ImGui::NextColumn();
ImGui::Text("%u", cs.counter);
ImGui::NextColumn();
ImGui::Text("%u", cs.target);
ImGui::NextColumn();
ImGui::Text("%s",
cs.mode.sync_enable ? sync_mode_names[static_cast<u8>(cs.mode.sync_mode.GetValue())] : "Disabled");
ImGui::NextColumn();
ImGui::Text("%s", cs.mode.reset_at_target ? "@Target" : "@Overflow");
ImGui::NextColumn();
ImGui::Text("%s%s", cs.mode.irq_at_target ? "Target " : "", cs.mode.irq_on_overflow ? "Overflow" : "");
ImGui::NextColumn();
ImGui::Text("%s", cs.mode.irq_repeat ? "Yes" : "No");
ImGui::NextColumn();
ImGui::Text("%s", cs.mode.irq_pulse_n ? "Yes" : "No");
ImGui::NextColumn();
ImGui::Text("%s%s", clock_source_names[i][cs.mode.clock_source], cs.external_counting_enabled ? " (External)" : "");
ImGui::NextColumn();
ImGui::Text("%s%s", cs.mode.reached_target ? "Target " : "", cs.mode.reached_overflow ? "Overflow" : "");
ImGui::NextColumn();
ImGui::PopStyleColor();
}
ImGui::Columns(1);
ImGui::End();
#endif
}