Duckstation/dep/fast_float/include/fast_float/digit_comparison.h
2023-01-15 15:13:54 +10:00

408 lines
13 KiB
C++

#ifndef FASTFLOAT_DIGIT_COMPARISON_H
#define FASTFLOAT_DIGIT_COMPARISON_H
#include <algorithm>
#include <cstdint>
#include <cstring>
#include <iterator>
#include "float_common.h"
#include "bigint.h"
#include "ascii_number.h"
namespace fast_float {
// 1e0 to 1e19
constexpr static uint64_t powers_of_ten_uint64[] = {
1UL, 10UL, 100UL, 1000UL, 10000UL, 100000UL, 1000000UL, 10000000UL, 100000000UL,
1000000000UL, 10000000000UL, 100000000000UL, 1000000000000UL, 10000000000000UL,
100000000000000UL, 1000000000000000UL, 10000000000000000UL, 100000000000000000UL,
1000000000000000000UL, 10000000000000000000UL};
// calculate the exponent, in scientific notation, of the number.
// this algorithm is not even close to optimized, but it has no practical
// effect on performance: in order to have a faster algorithm, we'd need
// to slow down performance for faster algorithms, and this is still fast.
fastfloat_really_inline int32_t scientific_exponent(parsed_number_string& num) noexcept {
uint64_t mantissa = num.mantissa;
int32_t exponent = int32_t(num.exponent);
while (mantissa >= 10000) {
mantissa /= 10000;
exponent += 4;
}
while (mantissa >= 100) {
mantissa /= 100;
exponent += 2;
}
while (mantissa >= 10) {
mantissa /= 10;
exponent += 1;
}
return exponent;
}
// this converts a native floating-point number to an extended-precision float.
template <typename T>
fastfloat_really_inline adjusted_mantissa to_extended(T value) noexcept {
using equiv_uint = typename binary_format<T>::equiv_uint;
constexpr equiv_uint exponent_mask = binary_format<T>::exponent_mask();
constexpr equiv_uint mantissa_mask = binary_format<T>::mantissa_mask();
constexpr equiv_uint hidden_bit_mask = binary_format<T>::hidden_bit_mask();
adjusted_mantissa am;
int32_t bias = binary_format<T>::mantissa_explicit_bits() - binary_format<T>::minimum_exponent();
equiv_uint bits;
::memcpy(&bits, &value, sizeof(T));
if ((bits & exponent_mask) == 0) {
// denormal
am.power2 = 1 - bias;
am.mantissa = bits & mantissa_mask;
} else {
// normal
am.power2 = int32_t((bits & exponent_mask) >> binary_format<T>::mantissa_explicit_bits());
am.power2 -= bias;
am.mantissa = (bits & mantissa_mask) | hidden_bit_mask;
}
return am;
}
// get the extended precision value of the halfway point between b and b+u.
// we are given a native float that represents b, so we need to adjust it
// halfway between b and b+u.
template <typename T>
fastfloat_really_inline adjusted_mantissa to_extended_halfway(T value) noexcept {
adjusted_mantissa am = to_extended(value);
am.mantissa <<= 1;
am.mantissa += 1;
am.power2 -= 1;
return am;
}
// round an extended-precision float to the nearest machine float.
template <typename T, typename callback>
fastfloat_really_inline void round(adjusted_mantissa& am, callback cb) noexcept {
int32_t mantissa_shift = 64 - binary_format<T>::mantissa_explicit_bits() - 1;
if (-am.power2 >= mantissa_shift) {
// have a denormal float
int32_t shift = -am.power2 + 1;
cb(am, std::min<int32_t>(shift, 64));
// check for round-up: if rounding-nearest carried us to the hidden bit.
am.power2 = (am.mantissa < (uint64_t(1) << binary_format<T>::mantissa_explicit_bits())) ? 0 : 1;
return;
}
// have a normal float, use the default shift.
cb(am, mantissa_shift);
// check for carry
if (am.mantissa >= (uint64_t(2) << binary_format<T>::mantissa_explicit_bits())) {
am.mantissa = (uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
am.power2++;
}
// check for infinite: we could have carried to an infinite power
am.mantissa &= ~(uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
if (am.power2 >= binary_format<T>::infinite_power()) {
am.power2 = binary_format<T>::infinite_power();
am.mantissa = 0;
}
}
template <typename callback>
fastfloat_really_inline
void round_nearest_tie_even(adjusted_mantissa& am, int32_t shift, callback cb) noexcept {
uint64_t mask;
uint64_t halfway;
if (shift == 64) {
mask = UINT64_MAX;
} else {
mask = (uint64_t(1) << shift) - 1;
}
if (shift == 0) {
halfway = 0;
} else {
halfway = uint64_t(1) << (shift - 1);
}
uint64_t truncated_bits = am.mantissa & mask;
bool is_above = truncated_bits > halfway;
bool is_halfway = truncated_bits == halfway;
// shift digits into position
if (shift == 64) {
am.mantissa = 0;
} else {
am.mantissa >>= shift;
}
am.power2 += shift;
bool is_odd = (am.mantissa & 1) == 1;
am.mantissa += uint64_t(cb(is_odd, is_halfway, is_above));
}
fastfloat_really_inline void round_down(adjusted_mantissa& am, int32_t shift) noexcept {
if (shift == 64) {
am.mantissa = 0;
} else {
am.mantissa >>= shift;
}
am.power2 += shift;
}
fastfloat_really_inline void skip_zeros(const char*& first, const char* last) noexcept {
uint64_t val;
while (std::distance(first, last) >= 8) {
::memcpy(&val, first, sizeof(uint64_t));
if (val != 0x3030303030303030) {
break;
}
first += 8;
}
while (first != last) {
if (*first != '0') {
break;
}
first++;
}
}
// determine if any non-zero digits were truncated.
// all characters must be valid digits.
fastfloat_really_inline bool is_truncated(const char* first, const char* last) noexcept {
// do 8-bit optimizations, can just compare to 8 literal 0s.
uint64_t val;
while (std::distance(first, last) >= 8) {
::memcpy(&val, first, sizeof(uint64_t));
if (val != 0x3030303030303030) {
return true;
}
first += 8;
}
while (first != last) {
if (*first != '0') {
return true;
}
first++;
}
return false;
}
fastfloat_really_inline bool is_truncated(byte_span s) noexcept {
return is_truncated(s.ptr, s.ptr + s.len());
}
fastfloat_really_inline
void parse_eight_digits(const char*& p, limb& value, size_t& counter, size_t& count) noexcept {
value = value * 100000000 + parse_eight_digits_unrolled(p);
p += 8;
counter += 8;
count += 8;
}
fastfloat_really_inline
void parse_one_digit(const char*& p, limb& value, size_t& counter, size_t& count) noexcept {
value = value * 10 + limb(*p - '0');
p++;
counter++;
count++;
}
fastfloat_really_inline
void add_native(bigint& big, limb power, limb value) noexcept {
big.mul(power);
big.add(value);
}
fastfloat_really_inline void round_up_bigint(bigint& big, size_t& count) noexcept {
// need to round-up the digits, but need to avoid rounding
// ....9999 to ...10000, which could cause a false halfway point.
add_native(big, 10, 1);
count++;
}
// parse the significant digits into a big integer
inline void parse_mantissa(bigint& result, parsed_number_string& num, size_t max_digits, size_t& digits) noexcept {
// try to minimize the number of big integer and scalar multiplication.
// therefore, try to parse 8 digits at a time, and multiply by the largest
// scalar value (9 or 19 digits) for each step.
size_t counter = 0;
digits = 0;
limb value = 0;
#ifdef FASTFLOAT_64BIT_LIMB
size_t step = 19;
#else
size_t step = 9;
#endif
// process all integer digits.
const char* p = num.integer.ptr;
const char* pend = p + num.integer.len();
skip_zeros(p, pend);
// process all digits, in increments of step per loop
while (p != pend) {
while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) {
parse_eight_digits(p, value, counter, digits);
}
while (counter < step && p != pend && digits < max_digits) {
parse_one_digit(p, value, counter, digits);
}
if (digits == max_digits) {
// add the temporary value, then check if we've truncated any digits
add_native(result, limb(powers_of_ten_uint64[counter]), value);
bool truncated = is_truncated(p, pend);
if (num.fraction.ptr != nullptr) {
truncated |= is_truncated(num.fraction);
}
if (truncated) {
round_up_bigint(result, digits);
}
return;
} else {
add_native(result, limb(powers_of_ten_uint64[counter]), value);
counter = 0;
value = 0;
}
}
// add our fraction digits, if they're available.
if (num.fraction.ptr != nullptr) {
p = num.fraction.ptr;
pend = p + num.fraction.len();
if (digits == 0) {
skip_zeros(p, pend);
}
// process all digits, in increments of step per loop
while (p != pend) {
while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) {
parse_eight_digits(p, value, counter, digits);
}
while (counter < step && p != pend && digits < max_digits) {
parse_one_digit(p, value, counter, digits);
}
if (digits == max_digits) {
// add the temporary value, then check if we've truncated any digits
add_native(result, limb(powers_of_ten_uint64[counter]), value);
bool truncated = is_truncated(p, pend);
if (truncated) {
round_up_bigint(result, digits);
}
return;
} else {
add_native(result, limb(powers_of_ten_uint64[counter]), value);
counter = 0;
value = 0;
}
}
}
if (counter != 0) {
add_native(result, limb(powers_of_ten_uint64[counter]), value);
}
}
template <typename T>
inline adjusted_mantissa positive_digit_comp(bigint& bigmant, int32_t exponent) noexcept {
FASTFLOAT_ASSERT(bigmant.pow10(uint32_t(exponent)));
adjusted_mantissa answer;
bool truncated;
answer.mantissa = bigmant.hi64(truncated);
int bias = binary_format<T>::mantissa_explicit_bits() - binary_format<T>::minimum_exponent();
answer.power2 = bigmant.bit_length() - 64 + bias;
round<T>(answer, [truncated](adjusted_mantissa& a, int32_t shift) {
round_nearest_tie_even(a, shift, [truncated](bool is_odd, bool is_halfway, bool is_above) -> bool {
return is_above || (is_halfway && truncated) || (is_odd && is_halfway);
});
});
return answer;
}
// the scaling here is quite simple: we have, for the real digits `m * 10^e`,
// and for the theoretical digits `n * 2^f`. Since `e` is always negative,
// to scale them identically, we do `n * 2^f * 5^-f`, so we now have `m * 2^e`.
// we then need to scale by `2^(f- e)`, and then the two significant digits
// are of the same magnitude.
template <typename T>
inline adjusted_mantissa negative_digit_comp(bigint& bigmant, adjusted_mantissa am, int32_t exponent) noexcept {
bigint& real_digits = bigmant;
int32_t real_exp = exponent;
// get the value of `b`, rounded down, and get a bigint representation of b+h
adjusted_mantissa am_b = am;
// gcc7 buf: use a lambda to remove the noexcept qualifier bug with -Wnoexcept-type.
round<T>(am_b, [](adjusted_mantissa&a, int32_t shift) { round_down(a, shift); });
T b;
to_float(false, am_b, b);
adjusted_mantissa theor = to_extended_halfway(b);
bigint theor_digits(theor.mantissa);
int32_t theor_exp = theor.power2;
// scale real digits and theor digits to be same power.
int32_t pow2_exp = theor_exp - real_exp;
uint32_t pow5_exp = uint32_t(-real_exp);
if (pow5_exp != 0) {
FASTFLOAT_ASSERT(theor_digits.pow5(pow5_exp));
}
if (pow2_exp > 0) {
FASTFLOAT_ASSERT(theor_digits.pow2(uint32_t(pow2_exp)));
} else if (pow2_exp < 0) {
FASTFLOAT_ASSERT(real_digits.pow2(uint32_t(-pow2_exp)));
}
// compare digits, and use it to director rounding
int ord = real_digits.compare(theor_digits);
adjusted_mantissa answer = am;
round<T>(answer, [ord](adjusted_mantissa& a, int32_t shift) {
round_nearest_tie_even(a, shift, [ord](bool is_odd, bool _, bool __) -> bool {
(void)_; // not needed, since we've done our comparison
(void)__; // not needed, since we've done our comparison
if (ord > 0) {
return true;
} else if (ord < 0) {
return false;
} else {
return is_odd;
}
});
});
return answer;
}
// parse the significant digits as a big integer to unambiguously round the
// the significant digits. here, we are trying to determine how to round
// an extended float representation close to `b+h`, halfway between `b`
// (the float rounded-down) and `b+u`, the next positive float. this
// algorithm is always correct, and uses one of two approaches. when
// the exponent is positive relative to the significant digits (such as
// 1234), we create a big-integer representation, get the high 64-bits,
// determine if any lower bits are truncated, and use that to direct
// rounding. in case of a negative exponent relative to the significant
// digits (such as 1.2345), we create a theoretical representation of
// `b` as a big-integer type, scaled to the same binary exponent as
// the actual digits. we then compare the big integer representations
// of both, and use that to direct rounding.
template <typename T>
inline adjusted_mantissa digit_comp(parsed_number_string& num, adjusted_mantissa am) noexcept {
// remove the invalid exponent bias
am.power2 -= invalid_am_bias;
int32_t sci_exp = scientific_exponent(num);
size_t max_digits = binary_format<T>::max_digits();
size_t digits = 0;
bigint bigmant;
parse_mantissa(bigmant, num, max_digits, digits);
// can't underflow, since digits is at most max_digits.
int32_t exponent = sci_exp + 1 - int32_t(digits);
if (exponent >= 0) {
return positive_digit_comp<T>(bigmant, exponent);
} else {
return negative_digit_comp<T>(bigmant, am, exponent);
}
}
} // namespace fast_float
#endif