mirror of
				https://github.com/RetroDECK/Duckstation.git
				synced 2025-04-10 19:15:14 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			523 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			523 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2017, VIXL authors
 | |
| // All rights reserved.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistributions of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //   * Redistributions in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //   * Neither the name of ARM Limited nor the names of its contributors may be
 | |
| //     used to endorse or promote products derived from this software without
 | |
| //     specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
 | |
| // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 | |
| // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 | |
| // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
 | |
| // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
| // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 | |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 | |
| // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| 
 | |
| #ifndef VIXL_POOL_MANAGER_IMPL_H_
 | |
| #define VIXL_POOL_MANAGER_IMPL_H_
 | |
| 
 | |
| #include "pool-manager.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include "assembler-base-vixl.h"
 | |
| 
 | |
| namespace vixl {
 | |
| 
 | |
| 
 | |
| template <typename T>
 | |
| T PoolManager<T>::Emit(MacroAssemblerInterface* masm,
 | |
|                        T pc,
 | |
|                        int num_bytes,
 | |
|                        ForwardReference<T>* new_reference,
 | |
|                        LocationBase<T>* new_object,
 | |
|                        EmitOption option) {
 | |
|   // Make sure that the buffer still has the alignment we think it does.
 | |
|   VIXL_ASSERT(IsAligned(masm->AsAssemblerBase()
 | |
|                             ->GetBuffer()
 | |
|                             ->GetStartAddress<uintptr_t>(),
 | |
|                         buffer_alignment_));
 | |
| 
 | |
|   // We should not call this method when the pools are blocked.
 | |
|   VIXL_ASSERT(!IsBlocked());
 | |
|   if (objects_.empty()) return pc;
 | |
| 
 | |
|   // Emit header.
 | |
|   if (option == kBranchRequired) {
 | |
|     masm->EmitPoolHeader();
 | |
|     // TODO: The pc at this point might not actually be aligned according to
 | |
|     // alignment_. This is to support the current AARCH32 MacroAssembler which
 | |
|     // does not have a fixed size instruction set. In practice, the pc will be
 | |
|     // aligned to the alignment instructions need for the current instruction
 | |
|     // set, so we do not need to align it here. All other calculations do take
 | |
|     // the alignment into account, which only makes the checkpoint calculations
 | |
|     // more conservative when we use T32. Uncomment the following assertion if
 | |
|     // the AARCH32 MacroAssembler is modified to only support one ISA at the
 | |
|     // time.
 | |
|     // VIXL_ASSERT(pc == AlignUp(pc, alignment_));
 | |
|     pc += header_size_;
 | |
|   } else {
 | |
|     // If the header is optional, we might need to add some extra padding to
 | |
|     // meet the minimum location of the first object.
 | |
|     if (pc < objects_[0].min_location_) {
 | |
|       int32_t padding = objects_[0].min_location_ - pc;
 | |
|       masm->EmitNopBytes(padding);
 | |
|       pc += padding;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   PoolObject<T>* existing_object = GetObjectIfTracked(new_object);
 | |
| 
 | |
|   // Go through all objects and emit one by one.
 | |
|   for (objects_iter iter = objects_.begin(); iter != objects_.end();) {
 | |
|     PoolObject<T>& current = *iter;
 | |
|     if (ShouldSkipObject(¤t,
 | |
|                          pc,
 | |
|                          num_bytes,
 | |
|                          new_reference,
 | |
|                          new_object,
 | |
|                          existing_object)) {
 | |
|       ++iter;
 | |
|       continue;
 | |
|     }
 | |
|     LocationBase<T>* label_base = current.label_base_;
 | |
|     T aligned_pc = AlignUp(pc, current.alignment_);
 | |
|     masm->EmitPaddingBytes(aligned_pc - pc);
 | |
|     pc = aligned_pc;
 | |
|     VIXL_ASSERT(pc >= current.min_location_);
 | |
|     VIXL_ASSERT(pc <= current.max_location_);
 | |
|     // First call SetLocation, which will also resolve the references, and then
 | |
|     // call EmitPoolObject, which might add a new reference.
 | |
|     label_base->SetLocation(masm->AsAssemblerBase(), pc);
 | |
|     label_base->EmitPoolObject(masm);
 | |
|     int object_size = label_base->GetPoolObjectSizeInBytes();
 | |
|     if (label_base->ShouldDeletePoolObjectOnPlacement()) {
 | |
|       label_base->MarkBound();
 | |
|       iter = RemoveAndDelete(iter);
 | |
|     } else {
 | |
|       VIXL_ASSERT(!current.label_base_->ShouldDeletePoolObjectOnPlacement());
 | |
|       current.label_base_->UpdatePoolObject(¤t);
 | |
|       VIXL_ASSERT(current.alignment_ >= label_base->GetPoolObjectAlignment());
 | |
|       ++iter;
 | |
|     }
 | |
|     pc += object_size;
 | |
|   }
 | |
| 
 | |
|   // Recalculate the checkpoint before emitting the footer. The footer might
 | |
|   // call Bind() which will check if we need to emit.
 | |
|   RecalculateCheckpoint();
 | |
| 
 | |
|   // Always emit footer - this might add some padding.
 | |
|   masm->EmitPoolFooter();
 | |
|   pc = AlignUp(pc, alignment_);
 | |
| 
 | |
|   return pc;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| bool PoolManager<T>::ShouldSkipObject(PoolObject<T>* pool_object,
 | |
|                                       T pc,
 | |
|                                       int num_bytes,
 | |
|                                       ForwardReference<T>* new_reference,
 | |
|                                       LocationBase<T>* new_object,
 | |
|                                       PoolObject<T>* existing_object) const {
 | |
|   // We assume that all objects before this have been skipped and all objects
 | |
|   // after this will be emitted, therefore we will emit the whole pool. Add
 | |
|   // the header size and alignment, as well as the number of bytes we are
 | |
|   // planning to emit.
 | |
|   T max_actual_location = pc + num_bytes + max_pool_size_;
 | |
| 
 | |
|   if (new_reference != NULL) {
 | |
|     // If we're adding a new object, also assume that it will have to be emitted
 | |
|     // before the object we are considering to skip.
 | |
|     VIXL_ASSERT(new_object != NULL);
 | |
|     T new_object_alignment = std::max(new_reference->object_alignment_,
 | |
|                                       new_object->GetPoolObjectAlignment());
 | |
|     if ((existing_object != NULL) &&
 | |
|         (existing_object->alignment_ > new_object_alignment)) {
 | |
|       new_object_alignment = existing_object->alignment_;
 | |
|     }
 | |
|     max_actual_location +=
 | |
|         (new_object->GetPoolObjectSizeInBytes() + new_object_alignment - 1);
 | |
|   }
 | |
| 
 | |
|   // Hard limit.
 | |
|   if (max_actual_location >= pool_object->max_location_) return false;
 | |
| 
 | |
|   // Use heuristic.
 | |
|   return (pc < pool_object->skip_until_location_hint_);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| T PoolManager<T>::UpdateCheckpointForObject(T checkpoint,
 | |
|                                             const PoolObject<T>* object) {
 | |
|   checkpoint -= object->label_base_->GetPoolObjectSizeInBytes();
 | |
|   if (checkpoint > object->max_location_) checkpoint = object->max_location_;
 | |
|   checkpoint = AlignDown(checkpoint, object->alignment_);
 | |
|   return checkpoint;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| static T MaxCheckpoint() {
 | |
|   return std::numeric_limits<T>::max();
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| static inline bool CheckCurrentPC(T pc, T checkpoint) {
 | |
|   VIXL_ASSERT(pc <= checkpoint);
 | |
|   // We must emit the pools if we are at the checkpoint now.
 | |
|   return pc == checkpoint;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| static inline bool CheckFuturePC(T pc, T checkpoint) {
 | |
|   // We do not need to emit the pools now if the projected future PC will be
 | |
|   // equal to the checkpoint (we will need to emit the pools then).
 | |
|   return pc > checkpoint;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| bool PoolManager<T>::MustEmit(T pc,
 | |
|                               int num_bytes,
 | |
|                               ForwardReference<T>* reference,
 | |
|                               LocationBase<T>* label_base) const {
 | |
|   // Check if we are at or past the checkpoint.
 | |
|   if (CheckCurrentPC(pc, checkpoint_)) return true;
 | |
| 
 | |
|   // Check if the future PC will be past the checkpoint.
 | |
|   pc += num_bytes;
 | |
|   if (CheckFuturePC(pc, checkpoint_)) return true;
 | |
| 
 | |
|   // No new reference - nothing to do.
 | |
|   if (reference == NULL) {
 | |
|     VIXL_ASSERT(label_base == NULL);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (objects_.empty()) {
 | |
|     // Basic assertions that restrictions on the new (and only) reference are
 | |
|     // possible to satisfy.
 | |
|     VIXL_ASSERT(AlignUp(pc + header_size_, alignment_) >=
 | |
|                 reference->min_object_location_);
 | |
|     VIXL_ASSERT(pc <= reference->max_object_location_);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Check if the object is already being tracked.
 | |
|   const PoolObject<T>* existing_object = GetObjectIfTracked(label_base);
 | |
|   if (existing_object != NULL) {
 | |
|     // If the existing_object is already in existing_objects_ and its new
 | |
|     // alignment and new location restrictions are not stricter, skip the more
 | |
|     // expensive check.
 | |
|     if ((reference->min_object_location_ <= existing_object->min_location_) &&
 | |
|         (reference->max_object_location_ >= existing_object->max_location_) &&
 | |
|         (reference->object_alignment_ <= existing_object->alignment_)) {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Create a temporary object.
 | |
|   PoolObject<T> temp(label_base);
 | |
|   temp.RestrictRange(reference->min_object_location_,
 | |
|                      reference->max_object_location_);
 | |
|   temp.RestrictAlignment(reference->object_alignment_);
 | |
|   if (existing_object != NULL) {
 | |
|     temp.RestrictRange(existing_object->min_location_,
 | |
|                        existing_object->max_location_);
 | |
|     temp.RestrictAlignment(existing_object->alignment_);
 | |
|   }
 | |
| 
 | |
|   // Check if the new reference can be added after the end of the current pool.
 | |
|   // If yes, we don't need to emit.
 | |
|   T last_reachable = AlignDown(temp.max_location_, temp.alignment_);
 | |
|   const PoolObject<T>& last = objects_.back();
 | |
|   T after_pool = AlignDown(last.max_location_, last.alignment_) +
 | |
|                  last.label_base_->GetPoolObjectSizeInBytes();
 | |
|   // The current object can be placed at the end of the pool, even if the last
 | |
|   // object is placed at the last possible location.
 | |
|   if (last_reachable >= after_pool) return false;
 | |
|   // The current object can be placed after the code we are about to emit and
 | |
|   // after the existing pool (with a pessimistic size estimate).
 | |
|   if (last_reachable >= pc + num_bytes + max_pool_size_) return false;
 | |
| 
 | |
|   // We're not in a trivial case, so we need to recalculate the checkpoint.
 | |
| 
 | |
|   // Check (conservatively) if we can fit it into the objects_ array, without
 | |
|   // breaking our assumptions. Here we want to recalculate the checkpoint as
 | |
|   // if the new reference was added to the PoolManager but without actually
 | |
|   // adding it (as removing it is non-trivial).
 | |
| 
 | |
|   T checkpoint = MaxCheckpoint<T>();
 | |
|   // Will temp be the last object in objects_?
 | |
|   if (PoolObjectLessThan(last, temp)) {
 | |
|     checkpoint = UpdateCheckpointForObject(checkpoint, &temp);
 | |
|     if (checkpoint < temp.min_location_) return true;
 | |
|   }
 | |
| 
 | |
|   bool tempNotPlacedYet = true;
 | |
|   for (int i = static_cast<int>(objects_.size()) - 1; i >= 0; --i) {
 | |
|     const PoolObject<T>& current = objects_[i];
 | |
|     if (tempNotPlacedYet && PoolObjectLessThan(current, temp)) {
 | |
|       checkpoint = UpdateCheckpointForObject(checkpoint, &temp);
 | |
|       if (checkpoint < temp.min_location_) return true;
 | |
|       if (CheckFuturePC(pc, checkpoint)) return true;
 | |
|       tempNotPlacedYet = false;
 | |
|     }
 | |
|     if (current.label_base_ == label_base) continue;
 | |
|     checkpoint = UpdateCheckpointForObject(checkpoint, ¤t);
 | |
|     if (checkpoint < current.min_location_) return true;
 | |
|     if (CheckFuturePC(pc, checkpoint)) return true;
 | |
|   }
 | |
|   // temp is the object with the smallest max_location_.
 | |
|   if (tempNotPlacedYet) {
 | |
|     checkpoint = UpdateCheckpointForObject(checkpoint, &temp);
 | |
|     if (checkpoint < temp.min_location_) return true;
 | |
|   }
 | |
| 
 | |
|   // Take the header into account.
 | |
|   checkpoint -= header_size_;
 | |
|   checkpoint = AlignDown(checkpoint, alignment_);
 | |
| 
 | |
|   return CheckFuturePC(pc, checkpoint);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void PoolManager<T>::RecalculateCheckpoint(SortOption sort_option) {
 | |
|   // TODO: Improve the max_pool_size_ estimate by starting from the
 | |
|   // min_location_ of the first object, calculating the end of the pool as if
 | |
|   // all objects were placed starting from there, and in the end adding the
 | |
|   // maximum object alignment found minus one (which is the maximum extra
 | |
|   // padding we would need if we were to relocate the pool to a different
 | |
|   // address).
 | |
|   max_pool_size_ = 0;
 | |
| 
 | |
|   if (objects_.empty()) {
 | |
|     checkpoint_ = MaxCheckpoint<T>();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Sort objects by their max_location_.
 | |
|   if (sort_option == kSortRequired) {
 | |
|     std::sort(objects_.begin(), objects_.end(), PoolObjectLessThan);
 | |
|   }
 | |
| 
 | |
|   // Add the header size and header and footer max alignment to the maximum
 | |
|   // pool size.
 | |
|   max_pool_size_ += header_size_ + 2 * (alignment_ - 1);
 | |
| 
 | |
|   T checkpoint = MaxCheckpoint<T>();
 | |
|   int last_object_index = static_cast<int>(objects_.size()) - 1;
 | |
|   for (int i = last_object_index; i >= 0; --i) {
 | |
|     // Bring back the checkpoint by the size of the current object, unless
 | |
|     // we need to bring it back more, then align.
 | |
|     PoolObject<T>& current = objects_[i];
 | |
|     checkpoint = UpdateCheckpointForObject(checkpoint, ¤t);
 | |
|     VIXL_ASSERT(checkpoint >= current.min_location_);
 | |
|     max_pool_size_ += (current.alignment_ - 1 +
 | |
|                        current.label_base_->GetPoolObjectSizeInBytes());
 | |
|   }
 | |
|   // Take the header into account.
 | |
|   checkpoint -= header_size_;
 | |
|   checkpoint = AlignDown(checkpoint, alignment_);
 | |
| 
 | |
|   // Update the checkpoint of the pool manager.
 | |
|   checkpoint_ = checkpoint;
 | |
| 
 | |
|   // NOTE: To handle min_location_ in the generic case, we could make a second
 | |
|   // pass of the objects_ vector, increasing the checkpoint as needed, while
 | |
|   // maintaining the alignment requirements.
 | |
|   // It should not be possible to have any issues with min_location_ with actual
 | |
|   // code, since there should always be some kind of branch over the pool,
 | |
|   // whether introduced by the pool emission or by the user, which will make
 | |
|   // sure the min_location_ requirement is satisfied. It's possible that the
 | |
|   // user could emit code in the literal pool and intentionally load the first
 | |
|   // value and then fall-through into the pool, but that is not a supported use
 | |
|   // of VIXL and we will assert in that case.
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| bool PoolManager<T>::PoolObjectLessThan(const PoolObject<T>& a,
 | |
|                                         const PoolObject<T>& b) {
 | |
|   if (a.max_location_ != b.max_location_)
 | |
|     return (a.max_location_ < b.max_location_);
 | |
|   int a_size = a.label_base_->GetPoolObjectSizeInBytes();
 | |
|   int b_size = b.label_base_->GetPoolObjectSizeInBytes();
 | |
|   if (a_size != b_size) return (a_size < b_size);
 | |
|   if (a.alignment_ != b.alignment_) return (a.alignment_ < b.alignment_);
 | |
|   if (a.min_location_ != b.min_location_)
 | |
|     return (a.min_location_ < b.min_location_);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void PoolManager<T>::AddObjectReference(const ForwardReference<T>* reference,
 | |
|                                         LocationBase<T>* label_base) {
 | |
|   VIXL_ASSERT(reference->object_alignment_ <= buffer_alignment_);
 | |
|   VIXL_ASSERT(label_base->GetPoolObjectAlignment() <= buffer_alignment_);
 | |
| 
 | |
|   PoolObject<T>* object = GetObjectIfTracked(label_base);
 | |
| 
 | |
|   if (object == NULL) {
 | |
|     PoolObject<T> new_object(label_base);
 | |
|     new_object.RestrictRange(reference->min_object_location_,
 | |
|                              reference->max_object_location_);
 | |
|     new_object.RestrictAlignment(reference->object_alignment_);
 | |
|     Insert(new_object);
 | |
|   } else {
 | |
|     object->RestrictRange(reference->min_object_location_,
 | |
|                           reference->max_object_location_);
 | |
|     object->RestrictAlignment(reference->object_alignment_);
 | |
| 
 | |
|     // Move the object, if needed.
 | |
|     if (objects_.size() != 1) {
 | |
|       PoolObject<T> new_object(*object);
 | |
|       ptrdiff_t distance = std::distance(objects_.data(), object);
 | |
|       objects_.erase(objects_.begin() + distance);
 | |
|       Insert(new_object);
 | |
|     }
 | |
|   }
 | |
|   // No need to sort, we inserted the object in an already sorted array.
 | |
|   RecalculateCheckpoint(kNoSortRequired);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void PoolManager<T>::Insert(const PoolObject<T>& new_object) {
 | |
|   bool inserted = false;
 | |
|   // Place the object in the right position.
 | |
|   for (objects_iter iter = objects_.begin(); iter != objects_.end(); ++iter) {
 | |
|     PoolObject<T>& current = *iter;
 | |
|     if (!PoolObjectLessThan(current, new_object)) {
 | |
|       objects_.insert(iter, new_object);
 | |
|       inserted = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (!inserted) {
 | |
|     objects_.push_back(new_object);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void PoolManager<T>::RemoveAndDelete(PoolObject<T>* object) {
 | |
|   for (objects_iter iter = objects_.begin(); iter != objects_.end(); ++iter) {
 | |
|     PoolObject<T>& current = *iter;
 | |
|     if (current.label_base_ == object->label_base_) {
 | |
|       (void)RemoveAndDelete(iter);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   VIXL_UNREACHABLE();
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| typename PoolManager<T>::objects_iter PoolManager<T>::RemoveAndDelete(
 | |
|     objects_iter iter) {
 | |
|   PoolObject<T>& object = *iter;
 | |
|   LocationBase<T>* label_base = object.label_base_;
 | |
| 
 | |
|   // Check if we also need to delete the LocationBase object.
 | |
|   if (label_base->ShouldBeDeletedOnPoolManagerDestruction()) {
 | |
|     delete_on_destruction_.push_back(label_base);
 | |
|   }
 | |
|   if (label_base->ShouldBeDeletedOnPlacementByPoolManager()) {
 | |
|     VIXL_ASSERT(!label_base->ShouldBeDeletedOnPoolManagerDestruction());
 | |
|     delete label_base;
 | |
|   }
 | |
| 
 | |
|   return objects_.erase(iter);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| T PoolManager<T>::Bind(MacroAssemblerInterface* masm,
 | |
|                        LocationBase<T>* object,
 | |
|                        T location) {
 | |
|   PoolObject<T>* existing_object = GetObjectIfTracked(object);
 | |
|   int alignment;
 | |
|   T min_location;
 | |
|   if (existing_object == NULL) {
 | |
|     alignment = object->GetMaxAlignment();
 | |
|     min_location = object->GetMinLocation();
 | |
|   } else {
 | |
|     alignment = existing_object->alignment_;
 | |
|     min_location = existing_object->min_location_;
 | |
|   }
 | |
| 
 | |
|   // Align if needed, and add necessary padding to reach the min_location_.
 | |
|   T aligned_location = AlignUp(location, alignment);
 | |
|   masm->EmitNopBytes(aligned_location - location);
 | |
|   location = aligned_location;
 | |
|   while (location < min_location) {
 | |
|     masm->EmitNopBytes(alignment);
 | |
|     location += alignment;
 | |
|   }
 | |
| 
 | |
|   object->SetLocation(masm->AsAssemblerBase(), location);
 | |
|   object->MarkBound();
 | |
| 
 | |
|   if (existing_object != NULL) {
 | |
|     RemoveAndDelete(existing_object);
 | |
|     // No need to sort, we removed the object from a sorted array.
 | |
|     RecalculateCheckpoint(kNoSortRequired);
 | |
|   }
 | |
| 
 | |
|   // We assume that the maximum padding we can possibly add here is less
 | |
|   // than the header alignment - hence that we're not going to go past our
 | |
|   // checkpoint.
 | |
|   VIXL_ASSERT(!CheckFuturePC(location, checkpoint_));
 | |
|   return location;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void PoolManager<T>::Release(T pc) {
 | |
|   USE(pc);
 | |
|   if (--monitor_ == 0) {
 | |
|     // Ensure the pool has not been blocked for too long.
 | |
|     VIXL_ASSERT(pc <= checkpoint_);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| PoolManager<T>::~PoolManager<T>() {
 | |
| #ifdef VIXL_DEBUG
 | |
|   // Check for unbound objects.
 | |
|   for (objects_iter iter = objects_.begin(); iter != objects_.end(); ++iter) {
 | |
|     // There should not be any bound objects left in the pool. For unbound
 | |
|     // objects, we will check in the destructor of the object itself.
 | |
|     VIXL_ASSERT(!(*iter).label_base_->IsBound());
 | |
|   }
 | |
| #endif
 | |
|   // Delete objects the pool manager owns.
 | |
|   for (typename std::vector<LocationBase<T> *>::iterator
 | |
|            iter = delete_on_destruction_.begin(),
 | |
|            end = delete_on_destruction_.end();
 | |
|        iter != end;
 | |
|        ++iter) {
 | |
|     delete *iter;
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| int PoolManager<T>::GetPoolSizeForTest() const {
 | |
|   // Iterate over objects and return their cumulative size. This does not take
 | |
|   // any padding into account, just the size of the objects themselves.
 | |
|   int size = 0;
 | |
|   for (const_objects_iter iter = objects_.begin(); iter != objects_.end();
 | |
|        ++iter) {
 | |
|     size += (*iter).label_base_->GetPoolObjectSizeInBytes();
 | |
|   }
 | |
|   return size;
 | |
| }
 | |
| }
 | |
| 
 | |
| #endif  // VIXL_POOL_MANAGER_IMPL_H_
 | 
