Duckstation/src/core/pad.cpp
Connor McLaughlin 6a82333d8f Pad: Only buffer a single byte
Fixes Croc 2 memory card access freezing.
2019-11-12 01:32:06 +10:00

385 lines
9.3 KiB
C++

#include "pad.h"
#include "YBaseLib/Log.h"
#include "common/state_wrapper.h"
#include "host_interface.h"
#include "interrupt_controller.h"
#include "memory_card.h"
#include "pad_device.h"
#include "system.h"
Log_SetChannel(Pad);
Pad::Pad() = default;
Pad::~Pad() = default;
void Pad::Initialize(System* system, InterruptController* interrupt_controller)
{
m_system = system;
m_interrupt_controller = interrupt_controller;
}
void Pad::Reset()
{
SoftReset();
for (u32 i = 0; i < NUM_SLOTS; i++)
{
if (m_controllers[i])
m_controllers[i]->Reset();
if (m_memory_cards[i])
m_memory_cards[i]->Reset();
}
}
bool Pad::DoState(StateWrapper& sw)
{
for (u32 i = 0; i < NUM_SLOTS; i++)
{
if (m_controllers[i])
{
if (!sw.DoMarker("Controller") || !m_controllers[i]->DoState(sw))
return false;
}
else
{
if (!sw.DoMarker("NoController"))
return false;
}
bool card_present = static_cast<bool>(m_memory_cards[i]);
sw.Do(&card_present);
if (card_present && !m_memory_cards[i])
{
const TinyString message = TinyString::FromFormat(
"Memory card %c present in save state but not in system. Creating temporary card.", 'A' + i);
m_system->GetHostInterface()->AddOSDMessage(message);
Log_WarningPrint(message);
m_memory_cards[i] = MemoryCard::Create(m_system);
}
else if (!card_present && m_memory_cards[i])
{
const TinyString message =
TinyString::FromFormat("Memory card %u present system but not save state. Removing card.", 'A' + i);
m_system->GetHostInterface()->AddOSDMessage(message);
Log_WarningPrint(message);
m_memory_cards[i].reset();
}
if (m_memory_cards[i])
{
if (!sw.DoMarker("MemoryCard") || !m_memory_cards[i]->DoState(sw))
return false;
}
else
{
if (!sw.DoMarker("NoController"))
return false;
}
}
sw.Do(&m_state);
sw.Do(&m_ticks_remaining);
sw.Do(&m_JOY_CTRL.bits);
sw.Do(&m_JOY_STAT.bits);
sw.Do(&m_JOY_MODE.bits);
sw.Do(&m_JOY_BAUD);
sw.Do(&m_receive_buffer);
sw.Do(&m_transmit_buffer);
sw.Do(&m_receive_buffer_full);
sw.Do(&m_transmit_buffer_full);
return !sw.HasError();
}
u32 Pad::ReadRegister(u32 offset)
{
switch (offset)
{
case 0x00: // JOY_DATA
{
if (!m_transmit_buffer_full)
Log_DevPrintf("Read from RX fifo when empty");
const u8 value = m_receive_buffer;
m_receive_buffer_full = false;
UpdateJoyStat();
Log_DebugPrintf("JOY_DATA (R) -> 0x%02X", ZeroExtend32(value));
return (ZeroExtend32(value) | (ZeroExtend32(value) << 8) | (ZeroExtend32(value) << 16) |
(ZeroExtend32(value) << 24));
}
case 0x04: // JOY_STAT
{
const u32 bits = m_JOY_STAT.bits;
m_JOY_STAT.ACKINPUT = false;
return bits;
}
case 0x08: // JOY_MODE
return ZeroExtend32(m_JOY_MODE.bits);
case 0x0A: // JOY_CTRL
return ZeroExtend32(m_JOY_CTRL.bits);
case 0x0E: // JOY_BAUD
return ZeroExtend32(m_JOY_BAUD);
default:
Log_ErrorPrintf("Unknown register read: 0x%X", offset);
return UINT32_C(0xFFFFFFFF);
}
}
void Pad::WriteRegister(u32 offset, u32 value)
{
switch (offset)
{
case 0x00: // JOY_DATA
{
Log_DebugPrintf("JOY_DATA (W) <- 0x%02X", value);
if (m_transmit_buffer_full)
Log_WarningPrint("TX FIFO overrun");
m_transmit_buffer = Truncate8(value);
m_transmit_buffer_full = true;
if (!IsTransmitting() && CanTransfer())
BeginTransfer();
return;
}
case 0x0A: // JOY_CTRL
{
Log_DebugPrintf("JOY_CTRL <- 0x%04X", value);
const bool old_select = m_JOY_CTRL.SELECT;
m_JOY_CTRL.bits = Truncate16(value);
if (m_JOY_CTRL.RESET)
SoftReset();
if (m_JOY_CTRL.ACK)
{
// reset stat bits
m_JOY_STAT.INTR = false;
}
if (!m_JOY_CTRL.SELECT)
ResetDeviceTransferState();
if (!m_JOY_CTRL.SELECT || !m_JOY_CTRL.TXEN)
{
if (IsTransmitting())
EndTransfer();
}
else
{
if (!IsTransmitting() && CanTransfer())
BeginTransfer();
}
UpdateJoyStat();
return;
}
case 0x08: // JOY_MODE
{
Log_DebugPrintf("JOY_MODE <- 0x%08X", value);
m_JOY_MODE.bits = Truncate16(value);
return;
}
case 0x0E:
{
Log_DebugPrintf("JOY_BAUD <- 0x%08X", value);
m_JOY_BAUD = Truncate16(value);
return;
}
default:
Log_ErrorPrintf("Unknown register write: 0x%X <- 0x%08X", offset, value);
return;
}
}
void Pad::Execute(TickCount ticks)
{
switch (m_state)
{
case State::Idle:
break;
case State::Transmitting:
{
m_ticks_remaining -= ticks;
if (m_ticks_remaining <= 0)
DoTransfer();
else
m_system->SetDowncount(m_ticks_remaining);
}
break;
}
}
void Pad::SoftReset()
{
if (IsTransmitting())
EndTransfer();
m_JOY_CTRL.bits = 0;
m_JOY_STAT.bits = 0;
m_JOY_MODE.bits = 0;
m_receive_buffer = 0;
m_receive_buffer_full = false;
m_transmit_buffer = 0;
m_transmit_buffer_full = false;
ResetDeviceTransferState();
UpdateJoyStat();
}
void Pad::UpdateJoyStat()
{
m_JOY_STAT.RXFIFONEMPTY = m_receive_buffer_full;
m_JOY_STAT.TXDONE = !m_transmit_buffer_full && m_state == State::Idle;
m_JOY_STAT.TXRDY = !m_transmit_buffer_full;
}
void Pad::BeginTransfer()
{
DebugAssert(m_state == State::Idle && CanTransfer());
Log_DebugPrintf("Starting transfer");
m_JOY_CTRL.RXEN = true;
m_transmit_value = m_transmit_buffer;
m_transmit_buffer_full = false;
// The transfer or the interrupt must be delayed, otherwise the BIOS thinks there's no device detected.
// It seems to do something resembling the following:
// 1) Sets the control register up for transmitting, interrupt on ACK.
// 2) Writes 0x01 to the TX FIFO.
// 3) Delays for a bit.
// 4) Writes ACK to the control register, clearing the interrupt flag.
// 5) Clears IRQ7 in the interrupt controller.
// 6) Waits until the RX FIFO is not empty, reads the first byte to $zero.
// 7) Checks if the interrupt status register had IRQ7 set. If not, no device connected.
//
// Performing the transfer immediately will result in both the INTR bit and the bit in the interrupt
// controller being discarded in (4)/(5), but this bit was set by the *new* transfer. Therefore, the
// test in (7) will fail, and it won't send any more data. So, the transfer/interrupt must be delayed
// until after (4) and (5) have been completed.
m_system->Synchronize();
m_state = State::Transmitting;
m_ticks_remaining = GetTransferTicks();
m_system->SetDowncount(m_ticks_remaining);
}
void Pad::DoTransfer()
{
Log_DebugPrintf("Transferring slot %d", m_JOY_CTRL.SLOT.GetValue());
const std::shared_ptr<PadDevice>& controller = m_controllers[m_JOY_CTRL.SLOT];
const std::shared_ptr<PadDevice>& memory_card = m_memory_cards[m_JOY_CTRL.SLOT];
// set rx?
m_JOY_CTRL.RXEN = true;
const u8 data_out = m_transmit_value;
u8 data_in = 0xFF;
bool ack = false;
switch (m_active_device)
{
case ActiveDevice::None:
{
if (!controller || (ack = controller->Transfer(data_out, &data_in)) == false)
{
if (!memory_card || (ack = memory_card->Transfer(data_out, &data_in)) == false)
{
// nothing connected to this port
Log_TracePrintf("Nothing connected or ACK'ed");
}
else
{
// memory card responded, make it the active device until non-ack
Log_TracePrintf("Transfer to memory card, data_out=0x%02X, data_in=0x%02X", data_out, data_in);
m_active_device = ActiveDevice::MemoryCard;
}
}
else
{
// controller responded, make it the active device until non-ack
Log_TracePrintf("Transfer to controller, data_out=0x%02X, data_in=0x%02X", data_out, data_in);
m_active_device = ActiveDevice::Controller;
}
}
break;
case ActiveDevice::Controller:
{
if (controller)
{
ack = controller->Transfer(data_out, &data_in);
Log_TracePrintf("Transfer to controller, data_out=0x%02X, data_in=0x%02X", data_out, data_in);
}
}
break;
case ActiveDevice::MemoryCard:
{
if (memory_card)
{
ack = memory_card->Transfer(data_out, &data_in);
Log_TracePrintf("Transfer to memory card, data_out=0x%02X, data_in=0x%02X", data_out, data_in);
}
}
break;
}
m_receive_buffer = data_in;
m_receive_buffer_full = true;
m_JOY_STAT.ACKINPUT |= ack;
// device no longer active?
if (!ack)
m_active_device = ActiveDevice::None;
if (m_JOY_STAT.ACKINPUT && m_JOY_CTRL.ACKINTEN)
{
Log_DebugPrintf("Triggering interrupt");
m_JOY_STAT.INTR = true;
m_interrupt_controller->InterruptRequest(InterruptController::IRQ::IRQ7);
}
EndTransfer();
UpdateJoyStat();
}
void Pad::EndTransfer()
{
DebugAssert(m_state == State::Transmitting);
Log_DebugPrintf("Ending transfer");
m_state = State::Idle;
m_ticks_remaining = 0;
}
void Pad::ResetDeviceTransferState()
{
for (u32 i = 0; i < NUM_SLOTS; i++)
{
if (m_controllers[i])
m_controllers[i]->ResetTransferState();
if (m_memory_cards[i])
m_memory_cards[i]->ResetTransferState();
m_active_device = ActiveDevice::None;
}
}