mirror of
				https://github.com/RetroDECK/Duckstation.git
				synced 2025-04-10 19:15:14 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			2113 lines
		
	
	
		
			85 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2113 lines
		
	
	
		
			85 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * xxHash - Extremely Fast Hash algorithm
 | |
|  * Development source file for `xxh3`
 | |
|  * Copyright (C) 2019-present, Yann Collet
 | |
|  *
 | |
|  * BSD 2-Clause License (https://www.opensource.org/licenses/bsd-license.php)
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions are
 | |
|  * met:
 | |
|  *
 | |
|  *    * Redistributions of source code must retain the above copyright
 | |
|  *      notice, this list of conditions and the following disclaimer.
 | |
|  *    * Redistributions in binary form must reproduce the above
 | |
|  *      copyright notice, this list of conditions and the following disclaimer
 | |
|  *      in the documentation and/or other materials provided with the
 | |
|  *      distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
|  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
|  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
|  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
|  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
|  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
|  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
|  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
|  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
|  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
|  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  *
 | |
|  * You can contact the author at:
 | |
|  *   - xxHash homepage: https://www.xxhash.com
 | |
|  *   - xxHash source repository: https://github.com/Cyan4973/xxHash
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Note: This file is separated for development purposes.
 | |
|  * It will be integrated into `xxhash.h` when development stage is completed.
 | |
|  *
 | |
|  * Credit: most of the work on vectorial and asm variants comes from @easyaspi314
 | |
|  */
 | |
| 
 | |
| #ifndef XXH3_H_1397135465
 | |
| #define XXH3_H_1397135465
 | |
| 
 | |
| /* ===   Dependencies   === */
 | |
| #ifndef XXHASH_H_5627135585666179
 | |
| /* special: when including `xxh3.h` directly, turn on XXH_INLINE_ALL */
 | |
| #  undef XXH_INLINE_ALL   /* avoid redefinition */
 | |
| #  define XXH_INLINE_ALL
 | |
| #endif
 | |
| #include "xxhash.h"
 | |
| 
 | |
| 
 | |
| /* ===   Compiler specifics   === */
 | |
| 
 | |
| #if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* >= C99 */
 | |
| #  define XXH_RESTRICT   restrict
 | |
| #else
 | |
| /* Note: it might be useful to define __restrict or __restrict__ for some C++ compilers */
 | |
| #  define XXH_RESTRICT   /* disable */
 | |
| #endif
 | |
| 
 | |
| #if (defined(__GNUC__) && (__GNUC__ >= 3))  \
 | |
|   || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \
 | |
|   || defined(__clang__)
 | |
| #    define XXH_likely(x) __builtin_expect(x, 1)
 | |
| #    define XXH_unlikely(x) __builtin_expect(x, 0)
 | |
| #else
 | |
| #    define XXH_likely(x) (x)
 | |
| #    define XXH_unlikely(x) (x)
 | |
| #endif
 | |
| 
 | |
| #if defined(__GNUC__)
 | |
| #  if defined(__AVX2__)
 | |
| #    include <immintrin.h>
 | |
| #  elif defined(__SSE2__)
 | |
| #    include <emmintrin.h>
 | |
| #  elif defined(__ARM_NEON__) || defined(__ARM_NEON)
 | |
| #    define inline __inline__  /* clang bug */
 | |
| #    include <arm_neon.h>
 | |
| #    undef inline
 | |
| #  endif
 | |
| #elif defined(_MSC_VER)
 | |
| #  include <intrin.h>
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while
 | |
|  * remaining a true 64-bit/128-bit hash function.
 | |
|  *
 | |
|  * This is done by prioritizing a subset of 64-bit operations that can be
 | |
|  * emulated without too many steps on the average 32-bit machine.
 | |
|  *
 | |
|  * For example, these two lines seem similar, and run equally fast on 64-bit:
 | |
|  *
 | |
|  *   xxh_u64 x;
 | |
|  *   x ^= (x >> 47); // good
 | |
|  *   x ^= (x >> 13); // bad
 | |
|  *
 | |
|  * However, to a 32-bit machine, there is a major difference.
 | |
|  *
 | |
|  * x ^= (x >> 47) looks like this:
 | |
|  *
 | |
|  *   x.lo ^= (x.hi >> (47 - 32));
 | |
|  *
 | |
|  * while x ^= (x >> 13) looks like this:
 | |
|  *
 | |
|  *   // note: funnel shifts are not usually cheap.
 | |
|  *   x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13));
 | |
|  *   x.hi ^= (x.hi >> 13);
 | |
|  *
 | |
|  * The first one is significantly faster than the second, simply because the
 | |
|  * shift is larger than 32. This means:
 | |
|  *  - All the bits we need are in the upper 32 bits, so we can ignore the lower
 | |
|  *    32 bits in the shift.
 | |
|  *  - The shift result will always fit in the lower 32 bits, and therefore,
 | |
|  *    we can ignore the upper 32 bits in the xor.
 | |
|  *
 | |
|  * Thanks to this optimization, XXH3 only requires these features to be efficient:
 | |
|  *
 | |
|  *  - Usable unaligned access
 | |
|  *  - A 32-bit or 64-bit ALU
 | |
|  *      - If 32-bit, a decent ADC instruction
 | |
|  *  - A 32 or 64-bit multiply with a 64-bit result
 | |
|  *  - For the 128-bit variant, a decent byteswap helps short inputs.
 | |
|  *
 | |
|  * The first two are already required by XXH32, and almost all 32-bit and 64-bit
 | |
|  * platforms which can run XXH32 can run XXH3 efficiently.
 | |
|  *
 | |
|  * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one
 | |
|  * notable exception.
 | |
|  *
 | |
|  * First of all, Thumb-1 lacks support for the UMULL instruction which
 | |
|  * performs the important long multiply. This means numerous __aeabi_lmul
 | |
|  * calls.
 | |
|  *
 | |
|  * Second of all, the 8 functional registers are just not enough.
 | |
|  * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
 | |
|  * Lo registers, and this shuffling results in thousands more MOVs than A32.
 | |
|  *
 | |
|  * A32 and T32 don't have this limitation. They can access all 14 registers,
 | |
|  * do a 32->64 multiply with UMULL, and the flexible operand allowing free
 | |
|  * shifts is helpful, too.
 | |
|  *
 | |
|  * Therefore, we do a quick sanity check.
 | |
|  *
 | |
|  * If compiling Thumb-1 for a target which supports ARM instructions, we will
 | |
|  * emit a warning, as it is not a "sane" platform to compile for.
 | |
|  *
 | |
|  * Usually, if this happens, it is because of an accident and you probably need
 | |
|  * to specify -march, as you likely meant to compile for a newer architecture.
 | |
|  */
 | |
| #if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
 | |
| #   warning "XXH3 is highly inefficient without ARM or Thumb-2."
 | |
| #endif
 | |
| 
 | |
| /* ==========================================
 | |
|  * Vectorization detection
 | |
|  * ========================================== */
 | |
| #define XXH_SCALAR 0 /* Portable scalar version */
 | |
| #define XXH_SSE2   1 /* SSE2 for Pentium 4 and all x86_64 */
 | |
| #define XXH_AVX2   2 /* AVX2 for Haswell and Bulldozer */
 | |
| #define XXH_NEON   3 /* NEON for most ARMv7-A and all AArch64 */
 | |
| #define XXH_VSX    4 /* VSX and ZVector for POWER8/z13 */
 | |
| 
 | |
| #ifndef XXH_VECTOR    /* can be defined on command line */
 | |
| #  if defined(__AVX2__)
 | |
| #    define XXH_VECTOR XXH_AVX2
 | |
| #  elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
 | |
| #    define XXH_VECTOR XXH_SSE2
 | |
| #  elif defined(__GNUC__) /* msvc support maybe later */ \
 | |
|   && (defined(__ARM_NEON__) || defined(__ARM_NEON)) \
 | |
|   && (defined(__LITTLE_ENDIAN__) /* We only support little endian NEON */ \
 | |
|     || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
 | |
| #    define XXH_VECTOR XXH_NEON
 | |
| #  elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \
 | |
|      || (defined(__s390x__) && defined(__VEC__)) \
 | |
|      && defined(__GNUC__) /* TODO: IBM XL */
 | |
| #    define XXH_VECTOR XXH_VSX
 | |
| #  else
 | |
| #    define XXH_VECTOR XXH_SCALAR
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Controls the alignment of the accumulator.
 | |
|  * This is for compatibility with aligned vector loads, which are usually faster.
 | |
|  */
 | |
| #ifndef XXH_ACC_ALIGN
 | |
| #  if XXH_VECTOR == XXH_SCALAR  /* scalar */
 | |
| #     define XXH_ACC_ALIGN 8
 | |
| #  elif XXH_VECTOR == XXH_SSE2  /* sse2 */
 | |
| #     define XXH_ACC_ALIGN 16
 | |
| #  elif XXH_VECTOR == XXH_AVX2  /* avx2 */
 | |
| #     define XXH_ACC_ALIGN 32
 | |
| #  elif XXH_VECTOR == XXH_NEON  /* neon */
 | |
| #     define XXH_ACC_ALIGN 16
 | |
| #  elif XXH_VECTOR == XXH_VSX   /* vsx */
 | |
| #     define XXH_ACC_ALIGN 16
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * UGLY HACK:
 | |
|  * GCC usually generates the best code with -O3 for xxHash.
 | |
|  *
 | |
|  * However, when targeting AVX2, it is overzealous in its unrolling resulting
 | |
|  * in code roughly 3/4 the speed of Clang.
 | |
|  *
 | |
|  * There are other issues, such as GCC splitting _mm256_loadu_si256 into
 | |
|  * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which
 | |
|  * only applies to Sandy and Ivy Bridge... which don't even support AVX2.
 | |
|  *
 | |
|  * That is why when compiling the AVX2 version, it is recommended to use either
 | |
|  *   -O2 -mavx2 -march=haswell
 | |
|  * or
 | |
|  *   -O2 -mavx2 -mno-avx256-split-unaligned-load
 | |
|  * for decent performance, or to use Clang instead.
 | |
|  *
 | |
|  * Fortunately, we can control the first one with a pragma that forces GCC into
 | |
|  * -O2, but the other one we can't control without "failed to inline always
 | |
|  * inline function due to target mismatch" warnings.
 | |
|  */
 | |
| #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
 | |
|   && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
 | |
|   && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
 | |
| #  pragma GCC push_options
 | |
| #  pragma GCC optimize("-O2")
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #if XXH_VECTOR == XXH_NEON
 | |
| /*
 | |
|  * NEON's setup for vmlal_u32 is a little more complicated than it is on
 | |
|  * SSE2, AVX2, and VSX.
 | |
|  *
 | |
|  * While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an upcast.
 | |
|  *
 | |
|  * To do the same operation, the 128-bit 'Q' register needs to be split into
 | |
|  * two 64-bit 'D' registers, performing this operation::
 | |
|  *
 | |
|  *   [                a                 |                 b                ]
 | |
|  *            |              '---------. .--------'                |
 | |
|  *            |                         x                          |
 | |
|  *            |              .---------' '--------.                |
 | |
|  *   [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[    a >> 32     |     b >> 32    ]
 | |
|  *
 | |
|  * Due to significant changes in aarch64, the fastest method for aarch64 is
 | |
|  * completely different than the fastest method for ARMv7-A.
 | |
|  *
 | |
|  * ARMv7-A treats D registers as unions overlaying Q registers, so modifying
 | |
|  * D11 will modify the high half of Q5. This is similar to how modifying AH
 | |
|  * will only affect bits 8-15 of AX on x86.
 | |
|  *
 | |
|  * VZIP takes two registers, and puts even lanes in one register and odd lanes
 | |
|  * in the other.
 | |
|  *
 | |
|  * On ARMv7-A, this strangely modifies both parameters in place instead of
 | |
|  * taking the usual 3-operand form.
 | |
|  *
 | |
|  * Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the
 | |
|  * lower and upper halves of the Q register to end up with the high and low
 | |
|  * halves where we want - all in one instruction.
 | |
|  *
 | |
|  *   vzip.32   d10, d11       @ d10 = { d10[0], d11[0] }; d11 = { d10[1], d11[1] }
 | |
|  *
 | |
|  * Unfortunately we need inline assembly for this: Instructions modifying two
 | |
|  * registers at once is not possible in GCC or Clang's IR, and they have to
 | |
|  * create a copy.
 | |
|  *
 | |
|  * aarch64 requires a different approach.
 | |
|  *
 | |
|  * In order to make it easier to write a decent compiler for aarch64, many
 | |
|  * quirks were removed, such as conditional execution.
 | |
|  *
 | |
|  * NEON was also affected by this.
 | |
|  *
 | |
|  * aarch64 cannot access the high bits of a Q-form register, and writes to a
 | |
|  * D-form register zero the high bits, similar to how writes to W-form scalar
 | |
|  * registers (or DWORD registers on x86_64) work.
 | |
|  *
 | |
|  * The formerly free vget_high intrinsics now require a vext (with a few
 | |
|  * exceptions)
 | |
|  *
 | |
|  * Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent
 | |
|  * of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one
 | |
|  * operand.
 | |
|  *
 | |
|  * The equivalent of the VZIP.32 on the lower and upper halves would be this
 | |
|  * mess:
 | |
|  *
 | |
|  *   ext     v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] }
 | |
|  *   zip1    v1.2s, v0.2s, v2.2s     // v1 = { v0[0], v2[0] }
 | |
|  *   zip2    v0.2s, v0.2s, v1.2s     // v0 = { v0[1], v2[1] }
 | |
|  *
 | |
|  * Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 (SHRN):
 | |
|  *
 | |
|  *   shrn    v1.2s, v0.2d, #32  // v1 = (uint32x2_t)(v0 >> 32);
 | |
|  *   xtn     v0.2s, v0.2d       // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF);
 | |
|  *
 | |
|  * This is available on ARMv7-A, but is less efficient than a single VZIP.32.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Function-like macro:
 | |
|  * void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t &outHi)
 | |
|  * {
 | |
|  *     outLo = (uint32x2_t)(in & 0xFFFFFFFF);
 | |
|  *     outHi = (uint32x2_t)(in >> 32);
 | |
|  *     in = UNDEFINED;
 | |
|  * }
 | |
|  */
 | |
| # if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \
 | |
|    && defined(__GNUC__) \
 | |
|    && !defined(__aarch64__) && !defined(__arm64__)
 | |
| #  define XXH_SPLIT_IN_PLACE(in, outLo, outHi)                                              \
 | |
|     do {                                                                                    \
 | |
|       /* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = upper D half */ \
 | |
|       /* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 */     \
 | |
|       /* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 */ \
 | |
|       __asm__("vzip.32  %e0, %f0" : "+w" (in));                                             \
 | |
|       (outLo) = vget_low_u32 (vreinterpretq_u32_u64(in));                                   \
 | |
|       (outHi) = vget_high_u32(vreinterpretq_u32_u64(in));                                   \
 | |
|    } while (0)
 | |
| # else
 | |
| #  define XXH_SPLIT_IN_PLACE(in, outLo, outHi)                                            \
 | |
|     do {                                                                                  \
 | |
|       (outLo) = vmovn_u64    (in);                                                        \
 | |
|       (outHi) = vshrn_n_u64  ((in), 32);                                                  \
 | |
|     } while (0)
 | |
| # endif
 | |
| #endif  /* XXH_VECTOR == XXH_NEON */
 | |
| 
 | |
| /*
 | |
|  * VSX and Z Vector helpers.
 | |
|  *
 | |
|  * This is very messy, and any pull requests to clean this up are welcome.
 | |
|  *
 | |
|  * There are a lot of problems with supporting VSX and s390x, due to
 | |
|  * inconsistent intrinsics, spotty coverage, and multiple endiannesses.
 | |
|  */
 | |
| #if XXH_VECTOR == XXH_VSX
 | |
| #  if defined(__s390x__)
 | |
| #    include <s390intrin.h>
 | |
| #  else
 | |
| #    include <altivec.h>
 | |
| #  endif
 | |
| 
 | |
| #  undef vector /* Undo the pollution */
 | |
| 
 | |
| typedef __vector unsigned long long xxh_u64x2;
 | |
| typedef __vector unsigned char xxh_u8x16;
 | |
| typedef __vector unsigned xxh_u32x4;
 | |
| 
 | |
| # ifndef XXH_VSX_BE
 | |
| #  if defined(__BIG_ENDIAN__) \
 | |
|   || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
 | |
| #    define XXH_VSX_BE 1
 | |
| #  elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
 | |
| #    warning "-maltivec=be is not recommended. Please use native endianness."
 | |
| #    define XXH_VSX_BE 1
 | |
| #  else
 | |
| #    define XXH_VSX_BE 0
 | |
| #  endif
 | |
| # endif /* !defined(XXH_VSX_BE) */
 | |
| 
 | |
| # if XXH_VSX_BE
 | |
| /* A wrapper for POWER9's vec_revb. */
 | |
| #  if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__))
 | |
| #    define XXH_vec_revb vec_revb
 | |
| #  else
 | |
| XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val)
 | |
| {
 | |
|     xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
 | |
|                                   0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 };
 | |
|     return vec_perm(val, val, vByteSwap);
 | |
| }
 | |
| #  endif
 | |
| # endif /* XXH_VSX_BE */
 | |
| 
 | |
| /*
 | |
|  * Performs an unaligned load and byte swaps it on big endian.
 | |
|  */
 | |
| XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr)
 | |
| {
 | |
|     xxh_u64x2 ret;
 | |
|     memcpy(&ret, ptr, sizeof(xxh_u64x2));
 | |
| # if XXH_VSX_BE
 | |
|     ret = XXH_vec_revb(ret);
 | |
| # endif
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * vec_mulo and vec_mule are very problematic intrinsics on PowerPC
 | |
|  *
 | |
|  * These intrinsics weren't added until GCC 8, despite existing for a while,
 | |
|  * and they are endian dependent. Also, their meaning swap depending on version.
 | |
|  * */
 | |
| # if defined(__s390x__)
 | |
|  /* s390x is always big endian, no issue on this platform */
 | |
| #  define XXH_vec_mulo vec_mulo
 | |
| #  define XXH_vec_mule vec_mule
 | |
| # elif defined(__clang__) && __has_builtin(__builtin_altivec_vmuleuw)
 | |
| /* Clang has a better way to control this, we can just use the builtin which doesn't swap. */
 | |
| #  define XXH_vec_mulo __builtin_altivec_vmulouw
 | |
| #  define XXH_vec_mule __builtin_altivec_vmuleuw
 | |
| # else
 | |
| /* gcc needs inline assembly */
 | |
| /* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
 | |
| XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b)
 | |
| {
 | |
|     xxh_u64x2 result;
 | |
|     __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
 | |
|     return result;
 | |
| }
 | |
| XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b)
 | |
| {
 | |
|     xxh_u64x2 result;
 | |
|     __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
 | |
|     return result;
 | |
| }
 | |
| # endif /* XXH_vec_mulo, XXH_vec_mule */
 | |
| #endif /* XXH_VECTOR == XXH_VSX */
 | |
| 
 | |
| 
 | |
| /* prefetch
 | |
|  * can be disabled, by declaring XXH_NO_PREFETCH build macro */
 | |
| #if defined(XXH_NO_PREFETCH)
 | |
| #  define XXH_PREFETCH(ptr)  (void)(ptr)  /* disabled */
 | |
| #else
 | |
| #  if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86))  /* _mm_prefetch() is not defined outside of x86/x64 */
 | |
| #    include <mmintrin.h>   /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
 | |
| #    define XXH_PREFETCH(ptr)  _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
 | |
| #  elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
 | |
| #    define XXH_PREFETCH(ptr)  __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
 | |
| #  else
 | |
| #    define XXH_PREFETCH(ptr) (void)(ptr)  /* disabled */
 | |
| #  endif
 | |
| #endif  /* XXH_NO_PREFETCH */
 | |
| 
 | |
| 
 | |
| /* ==========================================
 | |
|  * XXH3 default settings
 | |
|  * ========================================== */
 | |
| 
 | |
| #define XXH_SECRET_DEFAULT_SIZE 192   /* minimum XXH3_SECRET_SIZE_MIN */
 | |
| 
 | |
| #if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
 | |
| #  error "default keyset is not large enough"
 | |
| #endif
 | |
| 
 | |
| /* Pseudorandom secret taken directly from FARSH */
 | |
| XXH_ALIGN(64) static const xxh_u8 kSecret[XXH_SECRET_DEFAULT_SIZE] = {
 | |
|     0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
 | |
|     0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
 | |
|     0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
 | |
|     0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
 | |
|     0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
 | |
|     0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
 | |
|     0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
 | |
|     0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
 | |
| 
 | |
|     0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
 | |
|     0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
 | |
|     0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
 | |
|     0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Does a 32-bit to 64-bit long multiply.
 | |
|  *
 | |
|  * Wraps __emulu on MSVC x86 because it tends to call __allmul when it doesn't
 | |
|  * need to (but it shouldn't need to anyways, it is about 7 instructions to do
 | |
|  * a 64x64 multiply...). Since we know that this will _always_ emit MULL, we
 | |
|  * use that instead of the normal method.
 | |
|  *
 | |
|  * If you are compiling for platforms like Thumb-1 and don't have a better option,
 | |
|  * you may also want to write your own long multiply routine here.
 | |
|  *
 | |
|  * XXH_FORCE_INLINE xxh_u64 XXH_mult32to64(xxh_u64 x, xxh_u64 y)
 | |
|  * {
 | |
|  *    return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF);
 | |
|  * }
 | |
|  */
 | |
| #if defined(_MSC_VER) && defined(_M_IX86)
 | |
| #    include <intrin.h>
 | |
| #    define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y))
 | |
| #else
 | |
| /*
 | |
|  * Downcast + upcast is usually better than masking on older compilers like
 | |
|  * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers.
 | |
|  *
 | |
|  * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands
 | |
|  * and perform a full 64x64 multiply -- entirely redundant on 32-bit.
 | |
|  */
 | |
| #    define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y))
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Calculates a 64->128-bit long multiply.
 | |
|  *
 | |
|  * Uses __uint128_t and _umul128 if available, otherwise uses a scalar version.
 | |
|  */
 | |
| static XXH128_hash_t
 | |
| XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs)
 | |
| {
 | |
|     /*
 | |
|      * GCC/Clang __uint128_t method.
 | |
|      *
 | |
|      * On most 64-bit targets, GCC and Clang define a __uint128_t type.
 | |
|      * This is usually the best way as it usually uses a native long 64-bit
 | |
|      * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
 | |
|      *
 | |
|      * Usually.
 | |
|      *
 | |
|      * Despite being a 32-bit platform, Clang (and emscripten) define this type
 | |
|      * despite not having the arithmetic for it. This results in a laggy
 | |
|      * compiler builtin call which calculates a full 128-bit multiply.
 | |
|      * In that case it is best to use the portable one.
 | |
|      * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
 | |
|      */
 | |
| #if defined(__GNUC__) && !defined(__wasm__) \
 | |
|     && defined(__SIZEOF_INT128__) \
 | |
|     || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
 | |
| 
 | |
|     __uint128_t product = (__uint128_t)lhs * (__uint128_t)rhs;
 | |
|     XXH128_hash_t const r128 = { (xxh_u64)(product), (xxh_u64)(product >> 64) };
 | |
|     return r128;
 | |
| 
 | |
|     /*
 | |
|      * MSVC for x64's _umul128 method.
 | |
|      *
 | |
|      * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct);
 | |
|      *
 | |
|      * This compiles to single operand MUL on x64.
 | |
|      */
 | |
| #elif defined(_M_X64) || defined(_M_IA64)
 | |
| 
 | |
| #ifndef _MSC_VER
 | |
| #   pragma intrinsic(_umul128)
 | |
| #endif
 | |
|     xxh_u64 product_high;
 | |
|     xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
 | |
|     XXH128_hash_t const r128 = { product_low, product_high };
 | |
|     return r128;
 | |
| 
 | |
| #else
 | |
|     /*
 | |
|      * Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
 | |
|      *
 | |
|      * This is a fast and simple grade school multiply, which is shown below
 | |
|      * with base 10 arithmetic instead of base 0x100000000.
 | |
|      *
 | |
|      *           9 3 // D2 lhs = 93
 | |
|      *         x 7 5 // D2 rhs = 75
 | |
|      *     ----------
 | |
|      *           1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
 | |
|      *         4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
 | |
|      *         2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
 | |
|      *     + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
 | |
|      *     ---------
 | |
|      *         2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
 | |
|      *     + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
 | |
|      *     ---------
 | |
|      *       6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
 | |
|      *
 | |
|      * The reasons for adding the products like this are:
 | |
|      *  1. It avoids manual carry tracking. Just like how
 | |
|      *     (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
 | |
|      *     This avoids a lot of complexity.
 | |
|      *
 | |
|      *  2. It hints for, and on Clang, compiles to, the powerful UMAAL
 | |
|      *     instruction available in ARM's Digital Signal Processing extension
 | |
|      *     in 32-bit ARMv6 and later, which is shown below:
 | |
|      *
 | |
|      *         void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
 | |
|      *         {
 | |
|      *             xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
 | |
|      *             *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
 | |
|      *             *RdHi = (xxh_u32)(product >> 32);
 | |
|      *         }
 | |
|      *
 | |
|      *     This instruction was designed for efficient long multiplication, and
 | |
|      *     allows this to be calculated in only 4 instructions at speeds
 | |
|      *     comparable to some 64-bit ALUs.
 | |
|      *
 | |
|      *  3. It isn't terrible on other platforms. Usually this will be a couple
 | |
|      *     of 32-bit ADD/ADCs.
 | |
|      */
 | |
| 
 | |
|     /* First calculate all of the cross products. */
 | |
|     xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
 | |
|     xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32,        rhs & 0xFFFFFFFF);
 | |
|     xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
 | |
|     xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32,        rhs >> 32);
 | |
| 
 | |
|     /* Now add the products together. These will never overflow. */
 | |
|     xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
 | |
|     xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32)        + hi_hi;
 | |
|     xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
 | |
| 
 | |
|     XXH128_hash_t r128 = { lower, upper };
 | |
|     return r128;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Does a 64-bit to 128-bit multiply, then XOR folds it.
 | |
|  *
 | |
|  * The reason for the separate function is to prevent passing too many structs
 | |
|  * around by value. This will hopefully inline the multiply, but we don't force it.
 | |
|  */
 | |
| static xxh_u64
 | |
| XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs)
 | |
| {
 | |
|     XXH128_hash_t product = XXH_mult64to128(lhs, rhs);
 | |
|     return product.low64 ^ product.high64;
 | |
| }
 | |
| 
 | |
| /* Seems to produce slightly better code on GCC for some reason. */
 | |
| XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift)
 | |
| {
 | |
|     XXH_ASSERT(0 <= shift && shift < 64);
 | |
|     return v64 ^ (v64 >> shift);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We don't need to (or want to) mix as much as XXH64.
 | |
|  *
 | |
|  * Short hashes are more evenly distributed, so it isn't necessary.
 | |
|  */
 | |
| static XXH64_hash_t XXH3_avalanche(xxh_u64 h64)
 | |
| {
 | |
|     h64 = XXH_xorshift64(h64, 37);
 | |
|     h64 *= 0x165667919E3779F9ULL;
 | |
|     h64 = XXH_xorshift64(h64, 32);
 | |
|     return h64;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ==========================================
 | |
|  * Short keys
 | |
|  * ==========================================
 | |
|  * One of the shortcomings of XXH32 and XXH64 was that their performance was
 | |
|  * sub-optimal on short lengths. It used an iterative algorithm which strongly
 | |
|  * favored lengths that were a multiple of 4 or 8.
 | |
|  *
 | |
|  * Instead of iterating over individual inputs, we use a set of single shot
 | |
|  * functions which piece together a range of lengths and operate in constant time.
 | |
|  *
 | |
|  * Additionally, the number of multiplies has been significantly reduced. This
 | |
|  * reduces latency, especially when emulating 64-bit multiplies on 32-bit.
 | |
|  *
 | |
|  * Depending on the platform, this may or may not be faster than XXH32, but it
 | |
|  * is almost guaranteed to be faster than XXH64.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * At very short lengths, there isn't enough input to fully hide secrets, or use
 | |
|  * the entire secret.
 | |
|  *
 | |
|  * There is also only a limited amount of mixing we can do before significantly
 | |
|  * impacting performance.
 | |
|  *
 | |
|  * Therefore, we use different sections of the secret and always mix two secret
 | |
|  * samples with an XOR. This should have no effect on performance on the
 | |
|  * seedless or withSeed variants because everything _should_ be constant folded
 | |
|  * by modern compilers.
 | |
|  *
 | |
|  * The XOR mixing hides individual parts of the secret and increases entropy.
 | |
|  *
 | |
|  * This adds an extra layer of strength for custom secrets.
 | |
|  */
 | |
| XXH_FORCE_INLINE XXH64_hash_t
 | |
| XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
 | |
| {
 | |
|     XXH_ASSERT(input != NULL);
 | |
|     XXH_ASSERT(1 <= len && len <= 3);
 | |
|     XXH_ASSERT(secret != NULL);
 | |
|     /*
 | |
|      * len = 1: combined = { input[0], 0x01, input[0], input[0] }
 | |
|      * len = 2: combined = { input[1], 0x02, input[0], input[1] }
 | |
|      * len = 3: combined = { input[2], 0x03, input[0], input[1] }
 | |
|      */
 | |
|     {   xxh_u8 const c1 = input[0];
 | |
|         xxh_u8 const c2 = input[len >> 1];
 | |
|         xxh_u8 const c3 = input[len - 1];
 | |
|         xxh_u32 const combined = ((xxh_u32)c1<<16) | (((xxh_u32)c2) << 24) | (((xxh_u32)c3) << 0) | (((xxh_u32)len) << 8);
 | |
|         xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
 | |
|         xxh_u64 const keyed = (xxh_u64)combined ^ bitflip;
 | |
|         xxh_u64 const mixed = keyed * PRIME64_1;
 | |
|         return XXH3_avalanche(mixed);
 | |
|     }
 | |
| }
 | |
| 
 | |
| XXH_FORCE_INLINE XXH64_hash_t
 | |
| XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
 | |
| {
 | |
|     XXH_ASSERT(input != NULL);
 | |
|     XXH_ASSERT(secret != NULL);
 | |
|     XXH_ASSERT(4 <= len && len < 8);
 | |
|     seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
 | |
|     {   xxh_u32 const input1 = XXH_readLE32(input);
 | |
|         xxh_u32 const input2 = XXH_readLE32(input + len - 4);
 | |
|         xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed;
 | |
|         xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32);
 | |
|         xxh_u64 x = input64 ^ bitflip;
 | |
|         /* this mix is inspired by Pelle Evensen's rrmxmx */
 | |
|         x ^= XXH_rotl64(x, 49) ^ XXH_rotl64(x, 24);
 | |
|         x *= 0x9FB21C651E98DF25ULL;
 | |
|         x ^= (x >> 35) + len ;
 | |
|         x *= 0x9FB21C651E98DF25ULL;
 | |
|         return XXH_xorshift64(x, 28);
 | |
|     }
 | |
| }
 | |
| 
 | |
| XXH_FORCE_INLINE XXH64_hash_t
 | |
| XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
 | |
| {
 | |
|     XXH_ASSERT(input != NULL);
 | |
|     XXH_ASSERT(secret != NULL);
 | |
|     XXH_ASSERT(8 <= len && len <= 16);
 | |
|     {   xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed;
 | |
|         xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed;
 | |
|         xxh_u64 const input_lo = XXH_readLE64(input)           ^ bitflip1;
 | |
|         xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2;
 | |
|         xxh_u64 const acc = len
 | |
|                           + XXH_swap64(input_lo) + input_hi
 | |
|                           + XXH3_mul128_fold64(input_lo, input_hi);
 | |
|         return XXH3_avalanche(acc);
 | |
|     }
 | |
| }
 | |
| 
 | |
| XXH_FORCE_INLINE XXH64_hash_t
 | |
| XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
 | |
| {
 | |
|     XXH_ASSERT(len <= 16);
 | |
|     {   if (XXH_likely(len >  8)) return XXH3_len_9to16_64b(input, len, secret, seed);
 | |
|         if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed);
 | |
|         if (len) return XXH3_len_1to3_64b(input, len, secret, seed);
 | |
|         return XXH3_avalanche((PRIME64_1 + seed) ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64)));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * DISCLAIMER: There are known *seed-dependent* multicollisions here due to
 | |
|  * multiplication by zero, affecting hashes of lengths 17 to 240.
 | |
|  *
 | |
|  * However, they are very unlikely.
 | |
|  *
 | |
|  * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all
 | |
|  * unseeded non-cryptographic hashes, it does not attempt to defend itself
 | |
|  * against specially crafted inputs, only random inputs.
 | |
|  *
 | |
|  * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes
 | |
|  * cancelling out the secret is taken an arbitrary number of times (addressed
 | |
|  * in XXH3_accumulate_512), this collision is very unlikely with random inputs
 | |
|  * and/or proper seeding:
 | |
|  *
 | |
|  * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a
 | |
|  * function that is only called up to 16 times per hash with up to 240 bytes of
 | |
|  * input.
 | |
|  *
 | |
|  * This is not too bad for a non-cryptographic hash function, especially with
 | |
|  * only 64 bit outputs.
 | |
|  *
 | |
|  * The 128-bit variant (which trades some speed for strength) is NOT affected
 | |
|  * by this, although it is always a good idea to use a proper seed if you care
 | |
|  * about strength.
 | |
|  */
 | |
| XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input,
 | |
|                                      const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64)
 | |
| {
 | |
| #if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
 | |
|   && defined(__i386__) && defined(__SSE2__)  /* x86 + SSE2 */ \
 | |
|   && !defined(XXH_ENABLE_AUTOVECTORIZE)      /* Define to disable like XXH32 hack */
 | |
|     /*
 | |
|      * UGLY HACK:
 | |
|      * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in
 | |
|      * slower code.
 | |
|      *
 | |
|      * By forcing seed64 into a register, we disrupt the cost model and
 | |
|      * cause it to scalarize. See `XXH32_round()`
 | |
|      *
 | |
|      * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600,
 | |
|      * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on
 | |
|      * GCC 9.2, despite both emitting scalar code.
 | |
|      *
 | |
|      * GCC generates much better scalar code than Clang for the rest of XXH3,
 | |
|      * which is why finding a more optimal codepath is an interest.
 | |
|      */
 | |
|     __asm__ ("" : "+r" (seed64));
 | |
| #endif
 | |
|     {   xxh_u64 const input_lo = XXH_readLE64(input);
 | |
|         xxh_u64 const input_hi = XXH_readLE64(input+8);
 | |
|         return XXH3_mul128_fold64(
 | |
|             input_lo ^ (XXH_readLE64(secret)   + seed64),
 | |
|             input_hi ^ (XXH_readLE64(secret+8) - seed64)
 | |
|         );
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* For mid range keys, XXH3 uses a Mum-hash variant. */
 | |
| XXH_FORCE_INLINE XXH64_hash_t
 | |
| XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
 | |
|                      const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
 | |
|                      XXH64_hash_t seed)
 | |
| {
 | |
|     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
 | |
|     XXH_ASSERT(16 < len && len <= 128);
 | |
| 
 | |
|     {   xxh_u64 acc = len * PRIME64_1;
 | |
|         if (len > 32) {
 | |
|             if (len > 64) {
 | |
|                 if (len > 96) {
 | |
|                     acc += XXH3_mix16B(input+48, secret+96, seed);
 | |
|                     acc += XXH3_mix16B(input+len-64, secret+112, seed);
 | |
|                 }
 | |
|                 acc += XXH3_mix16B(input+32, secret+64, seed);
 | |
|                 acc += XXH3_mix16B(input+len-48, secret+80, seed);
 | |
|             }
 | |
|             acc += XXH3_mix16B(input+16, secret+32, seed);
 | |
|             acc += XXH3_mix16B(input+len-32, secret+48, seed);
 | |
|         }
 | |
|         acc += XXH3_mix16B(input+0, secret+0, seed);
 | |
|         acc += XXH3_mix16B(input+len-16, secret+16, seed);
 | |
| 
 | |
|         return XXH3_avalanche(acc);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define XXH3_MIDSIZE_MAX 240
 | |
| 
 | |
| XXH_NO_INLINE XXH64_hash_t
 | |
| XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
 | |
|                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
 | |
|                       XXH64_hash_t seed)
 | |
| {
 | |
|     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
 | |
|     XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
 | |
| 
 | |
|     #define XXH3_MIDSIZE_STARTOFFSET 3
 | |
|     #define XXH3_MIDSIZE_LASTOFFSET  17
 | |
| 
 | |
|     {   xxh_u64 acc = len * PRIME64_1;
 | |
|         int const nbRounds = (int)len / 16;
 | |
|         int i;
 | |
|         for (i=0; i<8; i++) {
 | |
|             acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed);
 | |
|         }
 | |
|         acc = XXH3_avalanche(acc);
 | |
|         XXH_ASSERT(nbRounds >= 8);
 | |
| #if defined(__clang__)                                /* Clang */ \
 | |
|     && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
 | |
|     && !defined(XXH_ENABLE_AUTOVECTORIZE)             /* Define to disable */
 | |
|         /*
 | |
|          * UGLY HACK:
 | |
|          * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86.
 | |
|          * In everywhere else, it uses scalar code.
 | |
|          *
 | |
|          * For 64->128-bit multiplies, even if the NEON was 100% optimal, it
 | |
|          * would still be slower than UMAAL (see XXH_mult64to128).
 | |
|          *
 | |
|          * Unfortunately, Clang doesn't handle the long multiplies properly and
 | |
|          * converts them to the nonexistent "vmulq_u64" intrinsic, which is then
 | |
|          * scalarized into an ugly mess of VMOV.32 instructions.
 | |
|          *
 | |
|          * This mess is difficult to avoid without turning autovectorization
 | |
|          * off completely, but they are usually relatively minor and/or not
 | |
|          * worth it to fix.
 | |
|          *
 | |
|          * This loop is the easiest to fix, as unlike XXH32, this pragma
 | |
|          * _actually works_ because it is a loop vectorization instead of an
 | |
|          * SLP vectorization.
 | |
|          */
 | |
|         #pragma clang loop vectorize(disable)
 | |
| #endif
 | |
|         for (i=8 ; i < nbRounds; i++) {
 | |
|             acc += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
 | |
|         }
 | |
|         /* last bytes */
 | |
|         acc += XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
 | |
|         return XXH3_avalanche(acc);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===    Long Keys    === */
 | |
| 
 | |
| #define STRIPE_LEN 64
 | |
| #define XXH_SECRET_CONSUME_RATE 8   /* nb of secret bytes consumed at each accumulation */
 | |
| #define ACC_NB (STRIPE_LEN / sizeof(xxh_u64))
 | |
| 
 | |
| typedef enum { XXH3_acc_64bits, XXH3_acc_128bits } XXH3_accWidth_e;
 | |
| 
 | |
| /*
 | |
|  * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized.
 | |
|  *
 | |
|  * It is a hardened version of UMAC, based off of FARSH's implementation.
 | |
|  *
 | |
|  * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD
 | |
|  * implementations, and it is ridiculously fast.
 | |
|  *
 | |
|  * We harden it by mixing the original input to the accumulators as well as the product.
 | |
|  *
 | |
|  * This means that in the (relatively likely) case of a multiply by zero, the
 | |
|  * original input is preserved.
 | |
|  *
 | |
|  * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve
 | |
|  * cross-pollination, as otherwise the upper and lower halves would be
 | |
|  * essentially independent.
 | |
|  *
 | |
|  * This doesn't matter on 64-bit hashes since they all get merged together in
 | |
|  * the end, so we skip the extra step.
 | |
|  *
 | |
|  * Both XXH3_64bits and XXH3_128bits use this subroutine.
 | |
|  */
 | |
| XXH_FORCE_INLINE void
 | |
| XXH3_accumulate_512(      void* XXH_RESTRICT acc,
 | |
|                     const void* XXH_RESTRICT input,
 | |
|                     const void* XXH_RESTRICT secret,
 | |
|                     XXH3_accWidth_e accWidth)
 | |
| {
 | |
| #if (XXH_VECTOR == XXH_AVX2)
 | |
| 
 | |
|     XXH_ASSERT((((size_t)acc) & 31) == 0);
 | |
|     {   XXH_ALIGN(32) __m256i* const xacc    =       (__m256i *) acc;
 | |
|         /* Unaligned. This is mainly for pointer arithmetic, and because
 | |
|          * _mm256_loadu_si256 requires  a const __m256i * pointer for some reason. */
 | |
|         const         __m256i* const xinput  = (const __m256i *) input;
 | |
|         /* Unaligned. This is mainly for pointer arithmetic, and because
 | |
|          * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
 | |
|         const         __m256i* const xsecret = (const __m256i *) secret;
 | |
| 
 | |
|         size_t i;
 | |
|         for (i=0; i < STRIPE_LEN/sizeof(__m256i); i++) {
 | |
|             /* data_vec    = xinput[i]; */
 | |
|             __m256i const data_vec    = _mm256_loadu_si256    (xinput+i);
 | |
|             /* key_vec     = xsecret[i]; */
 | |
|             __m256i const key_vec     = _mm256_loadu_si256   (xsecret+i);
 | |
|             /* data_key    = data_vec ^ key_vec; */
 | |
|             __m256i const data_key    = _mm256_xor_si256     (data_vec, key_vec);
 | |
|             /* data_key_lo = data_key >> 32; */
 | |
|             __m256i const data_key_lo = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
 | |
|             /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
 | |
|             __m256i const product     = _mm256_mul_epu32     (data_key, data_key_lo);
 | |
|             if (accWidth == XXH3_acc_128bits) {
 | |
|                 /* xacc[i] += swap(data_vec); */
 | |
|                 __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
 | |
|                 __m256i const sum       = _mm256_add_epi64(xacc[i], data_swap);
 | |
|                 /* xacc[i] += product; */
 | |
|                 xacc[i] = _mm256_add_epi64(product, sum);
 | |
|             } else {  /* XXH3_acc_64bits */
 | |
|                 /* xacc[i] += data_vec; */
 | |
|                 __m256i const sum = _mm256_add_epi64(xacc[i], data_vec);
 | |
|                 /* xacc[i] += product; */
 | |
|                 xacc[i] = _mm256_add_epi64(product, sum);
 | |
|             }
 | |
|     }   }
 | |
| 
 | |
| #elif (XXH_VECTOR == XXH_SSE2)
 | |
| 
 | |
|     /* SSE2 is just a half-scale version of the AVX2 version. */
 | |
|     XXH_ASSERT((((size_t)acc) & 15) == 0);
 | |
|     {   XXH_ALIGN(16) __m128i* const xacc    =       (__m128i *) acc;
 | |
|         /* Unaligned. This is mainly for pointer arithmetic, and because
 | |
|          * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
 | |
|         const         __m128i* const xinput  = (const __m128i *) input;
 | |
|         /* Unaligned. This is mainly for pointer arithmetic, and because
 | |
|          * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
 | |
|         const         __m128i* const xsecret = (const __m128i *) secret;
 | |
| 
 | |
|         size_t i;
 | |
|         for (i=0; i < STRIPE_LEN/sizeof(__m128i); i++) {
 | |
|             /* data_vec    = xinput[i]; */
 | |
|             __m128i const data_vec    = _mm_loadu_si128   (xinput+i);
 | |
|             /* key_vec     = xsecret[i]; */
 | |
|             __m128i const key_vec     = _mm_loadu_si128   (xsecret+i);
 | |
|             /* data_key    = data_vec ^ key_vec; */
 | |
|             __m128i const data_key    = _mm_xor_si128     (data_vec, key_vec);
 | |
|             /* data_key_lo = data_key >> 32; */
 | |
|             __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
 | |
|             /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
 | |
|             __m128i const product     = _mm_mul_epu32     (data_key, data_key_lo);
 | |
|             if (accWidth == XXH3_acc_128bits) {
 | |
|                 /* xacc[i] += swap(data_vec); */
 | |
|                 __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2));
 | |
|                 __m128i const sum       = _mm_add_epi64(xacc[i], data_swap);
 | |
|                 /* xacc[i] += product; */
 | |
|                 xacc[i] = _mm_add_epi64(product, sum);
 | |
|             } else {  /* XXH3_acc_64bits */
 | |
|                 /* xacc[i] += data_vec; */
 | |
|                 __m128i const sum = _mm_add_epi64(xacc[i], data_vec);
 | |
|                 /* xacc[i] += product; */
 | |
|                 xacc[i] = _mm_add_epi64(product, sum);
 | |
|             }
 | |
|     }   }
 | |
| 
 | |
| #elif (XXH_VECTOR == XXH_NEON)
 | |
| 
 | |
|     XXH_ASSERT((((size_t)acc) & 15) == 0);
 | |
|     {
 | |
|         XXH_ALIGN(16) uint64x2_t* const xacc = (uint64x2_t *) acc;
 | |
|         /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
 | |
|         uint8_t const* const xinput = (const uint8_t *) input;
 | |
|         uint8_t const* const xsecret  = (const uint8_t *) secret;
 | |
| 
 | |
|         size_t i;
 | |
|         for (i=0; i < STRIPE_LEN / sizeof(uint64x2_t); i++) {
 | |
|             /* data_vec = xinput[i]; */
 | |
|             uint8x16_t data_vec    = vld1q_u8(xinput  + (i * 16));
 | |
|             /* key_vec  = xsecret[i];  */
 | |
|             uint8x16_t key_vec     = vld1q_u8(xsecret + (i * 16));
 | |
|             /* data_key = data_vec ^ key_vec; */
 | |
|             uint64x2_t data_key    = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec));
 | |
|             uint32x2_t data_key_lo, data_key_hi;
 | |
|             if (accWidth == XXH3_acc_64bits) {
 | |
|                 /* xacc[i] += data_vec; */
 | |
|                 xacc[i] = vaddq_u64 (xacc[i], vreinterpretq_u64_u8(data_vec));
 | |
|             } else {  /* XXH3_acc_128bits */
 | |
|                 /* xacc[i] += swap(data_vec); */
 | |
|                 uint64x2_t const data64  = vreinterpretq_u64_u8(data_vec);
 | |
|                 uint64x2_t const swapped = vextq_u64(data64, data64, 1);
 | |
|                 xacc[i] = vaddq_u64 (xacc[i], swapped);
 | |
|             }
 | |
|             /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF);
 | |
|              * data_key_hi = (uint32x2_t) (data_key >> 32);
 | |
|              * data_key = UNDEFINED; */
 | |
|             XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
 | |
|             /* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */
 | |
|             xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi);
 | |
| 
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #elif (XXH_VECTOR == XXH_VSX)
 | |
|           xxh_u64x2* const xacc     =       (xxh_u64x2*) acc;    /* presumed aligned */
 | |
|     xxh_u64x2 const* const xinput   = (xxh_u64x2 const*) input;   /* no alignment restriction */
 | |
|     xxh_u64x2 const* const xsecret  = (xxh_u64x2 const*) secret;    /* no alignment restriction */
 | |
|     xxh_u64x2 const v32 = { 32, 32 };
 | |
|     size_t i;
 | |
|     for (i = 0; i < STRIPE_LEN / sizeof(xxh_u64x2); i++) {
 | |
|         /* data_vec = xinput[i]; */
 | |
|         xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i);
 | |
|         /* key_vec = xsecret[i]; */
 | |
|         xxh_u64x2 const key_vec  = XXH_vec_loadu(xsecret + i);
 | |
|         xxh_u64x2 const data_key = data_vec ^ key_vec;
 | |
|         /* shuffled = (data_key << 32) | (data_key >> 32); */
 | |
|         xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32);
 | |
|         /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */
 | |
|         xxh_u64x2 const product  = XXH_vec_mulo((xxh_u32x4)data_key, shuffled);
 | |
|         xacc[i] += product;
 | |
| 
 | |
|         if (accWidth == XXH3_acc_64bits) {
 | |
|             xacc[i] += data_vec;
 | |
|         } else {  /* XXH3_acc_128bits */
 | |
|             /* swap high and low halves */
 | |
| #ifdef __s390x__
 | |
|             xxh_u64x2 const data_swapped = vec_permi(data_vec, data_vec, 2);
 | |
| #else
 | |
|             xxh_u64x2 const data_swapped = vec_xxpermdi(data_vec, data_vec, 2);
 | |
| #endif
 | |
|             xacc[i] += data_swapped;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #else   /* scalar variant of Accumulator - universal */
 | |
| 
 | |
|     XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc; /* presumed aligned */
 | |
|     const xxh_u8* const xinput = (const xxh_u8*) input;  /* no alignment restriction */
 | |
|     const xxh_u8* const xsecret  = (const xxh_u8*) secret;   /* no alignment restriction */
 | |
|     size_t i;
 | |
|     XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0);
 | |
|     for (i=0; i < ACC_NB; i++) {
 | |
|         xxh_u64 const data_val = XXH_readLE64(xinput + 8*i);
 | |
|         xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + i*8);
 | |
| 
 | |
|         if (accWidth == XXH3_acc_64bits) {
 | |
|             xacc[i] += data_val;
 | |
|         } else {
 | |
|             xacc[i ^ 1] += data_val; /* swap adjacent lanes */
 | |
|         }
 | |
|         xacc[i] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing.
 | |
|  *
 | |
|  * Multiplication isn't perfect, as explained by Google in HighwayHash:
 | |
|  *
 | |
|  *  // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to
 | |
|  *  // varying degrees. In descending order of goodness, bytes
 | |
|  *  // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32.
 | |
|  *  // As expected, the upper and lower bytes are much worse.
 | |
|  *
 | |
|  * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291
 | |
|  *
 | |
|  * Since our algorithm uses a pseudorandom secret to add some variance into the
 | |
|  * mix, we don't need to (or want to) mix as often or as much as HighwayHash does.
 | |
|  *
 | |
|  * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid
 | |
|  * extraction.
 | |
|  *
 | |
|  * Both XXH3_64bits and XXH3_128bits use this subroutine.
 | |
|  */
 | |
| XXH_FORCE_INLINE void
 | |
| XXH3_scrambleAcc(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
 | |
| {
 | |
| #if (XXH_VECTOR == XXH_AVX2)
 | |
| 
 | |
|     XXH_ASSERT((((size_t)acc) & 31) == 0);
 | |
|     {   XXH_ALIGN(32) __m256i* const xacc = (__m256i*) acc;
 | |
|         /* Unaligned. This is mainly for pointer arithmetic, and because
 | |
|          * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
 | |
|         const         __m256i* const xsecret = (const __m256i *) secret;
 | |
|         const __m256i prime32 = _mm256_set1_epi32((int)PRIME32_1);
 | |
| 
 | |
|         size_t i;
 | |
|         for (i=0; i < STRIPE_LEN/sizeof(__m256i); i++) {
 | |
|             /* xacc[i] ^= (xacc[i] >> 47) */
 | |
|             __m256i const acc_vec     = xacc[i];
 | |
|             __m256i const shifted     = _mm256_srli_epi64    (acc_vec, 47);
 | |
|             __m256i const data_vec    = _mm256_xor_si256     (acc_vec, shifted);
 | |
|             /* xacc[i] ^= xsecret; */
 | |
|             __m256i const key_vec     = _mm256_loadu_si256   (xsecret+i);
 | |
|             __m256i const data_key    = _mm256_xor_si256     (data_vec, key_vec);
 | |
| 
 | |
|             /* xacc[i] *= PRIME32_1; */
 | |
|             __m256i const data_key_hi = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
 | |
|             __m256i const prod_lo     = _mm256_mul_epu32     (data_key, prime32);
 | |
|             __m256i const prod_hi     = _mm256_mul_epu32     (data_key_hi, prime32);
 | |
|             xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #elif (XXH_VECTOR == XXH_SSE2)
 | |
| 
 | |
|     XXH_ASSERT((((size_t)acc) & 15) == 0);
 | |
|     {   XXH_ALIGN(16) __m128i* const xacc = (__m128i*) acc;
 | |
|         /* Unaligned. This is mainly for pointer arithmetic, and because
 | |
|          * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
 | |
|         const         __m128i* const xsecret = (const __m128i *) secret;
 | |
|         const __m128i prime32 = _mm_set1_epi32((int)PRIME32_1);
 | |
| 
 | |
|         size_t i;
 | |
|         for (i=0; i < STRIPE_LEN/sizeof(__m128i); i++) {
 | |
|             /* xacc[i] ^= (xacc[i] >> 47) */
 | |
|             __m128i const acc_vec     = xacc[i];
 | |
|             __m128i const shifted     = _mm_srli_epi64    (acc_vec, 47);
 | |
|             __m128i const data_vec    = _mm_xor_si128     (acc_vec, shifted);
 | |
|             /* xacc[i] ^= xsecret[i]; */
 | |
|             __m128i const key_vec     = _mm_loadu_si128   (xsecret+i);
 | |
|             __m128i const data_key    = _mm_xor_si128     (data_vec, key_vec);
 | |
| 
 | |
|             /* xacc[i] *= PRIME32_1; */
 | |
|             __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
 | |
|             __m128i const prod_lo     = _mm_mul_epu32     (data_key, prime32);
 | |
|             __m128i const prod_hi     = _mm_mul_epu32     (data_key_hi, prime32);
 | |
|             xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #elif (XXH_VECTOR == XXH_NEON)
 | |
| 
 | |
|     XXH_ASSERT((((size_t)acc) & 15) == 0);
 | |
| 
 | |
|     {   uint64x2_t* xacc       = (uint64x2_t*) acc;
 | |
|         uint8_t const* xsecret = (uint8_t const*) secret;
 | |
|         uint32x2_t prime       = vdup_n_u32 (PRIME32_1);
 | |
| 
 | |
|         size_t i;
 | |
|         for (i=0; i < STRIPE_LEN/sizeof(uint64x2_t); i++) {
 | |
|             /* xacc[i] ^= (xacc[i] >> 47); */
 | |
|             uint64x2_t acc_vec  = xacc[i];
 | |
|             uint64x2_t shifted  = vshrq_n_u64 (acc_vec, 47);
 | |
|             uint64x2_t data_vec = veorq_u64   (acc_vec, shifted);
 | |
| 
 | |
|             /* xacc[i] ^= xsecret[i]; */
 | |
|             uint8x16_t key_vec  = vld1q_u8(xsecret + (i * 16));
 | |
|             uint64x2_t data_key = veorq_u64(data_vec, vreinterpretq_u64_u8(key_vec));
 | |
| 
 | |
|             /* xacc[i] *= PRIME32_1 */
 | |
|             uint32x2_t data_key_lo, data_key_hi;
 | |
|             /* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF);
 | |
|              * data_key_hi = (uint32x2_t) (xacc[i] >> 32);
 | |
|              * xacc[i] = UNDEFINED; */
 | |
|             XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
 | |
|             {   /*
 | |
|                  * prod_hi = (data_key >> 32) * PRIME32_1;
 | |
|                  *
 | |
|                  * Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will
 | |
|                  * incorrectly "optimize" this:
 | |
|                  *   tmp     = vmul_u32(vmovn_u64(a), vmovn_u64(b));
 | |
|                  *   shifted = vshll_n_u32(tmp, 32);
 | |
|                  * to this:
 | |
|                  *   tmp     = "vmulq_u64"(a, b); // no such thing!
 | |
|                  *   shifted = vshlq_n_u64(tmp, 32);
 | |
|                  *
 | |
|                  * However, unlike SSE, Clang lacks a 64-bit multiply routine
 | |
|                  * for NEON, and it scalarizes two 64-bit multiplies instead.
 | |
|                  *
 | |
|                  * vmull_u32 has the same timing as vmul_u32, and it avoids
 | |
|                  * this bug completely.
 | |
|                  * See https://bugs.llvm.org/show_bug.cgi?id=39967
 | |
|                  */
 | |
|                 uint64x2_t prod_hi = vmull_u32 (data_key_hi, prime);
 | |
|                 /* xacc[i] = prod_hi << 32; */
 | |
|                 xacc[i] = vshlq_n_u64(prod_hi, 32);
 | |
|                 /* xacc[i] += (prod_hi & 0xFFFFFFFF) * PRIME32_1; */
 | |
|                 xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime);
 | |
|             }
 | |
|     }   }
 | |
| 
 | |
| #elif (XXH_VECTOR == XXH_VSX)
 | |
| 
 | |
|     XXH_ASSERT((((size_t)acc) & 15) == 0);
 | |
| 
 | |
|     {         xxh_u64x2* const xacc    =       (xxh_u64x2*) acc;
 | |
|         const xxh_u64x2* const xsecret = (const xxh_u64x2*) secret;
 | |
|         /* constants */
 | |
|         xxh_u64x2 const v32  = { 32, 32 };
 | |
|         xxh_u64x2 const v47 = { 47, 47 };
 | |
|         xxh_u32x4 const prime = { PRIME32_1, PRIME32_1, PRIME32_1, PRIME32_1 };
 | |
|         size_t i;
 | |
|         for (i = 0; i < STRIPE_LEN / sizeof(xxh_u64x2); i++) {
 | |
|             /* xacc[i] ^= (xacc[i] >> 47); */
 | |
|             xxh_u64x2 const acc_vec  = xacc[i];
 | |
|             xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
 | |
| 
 | |
|             /* xacc[i] ^= xsecret[i]; */
 | |
|             xxh_u64x2 const key_vec  = XXH_vec_loadu(xsecret + i);
 | |
|             xxh_u64x2 const data_key = data_vec ^ key_vec;
 | |
| 
 | |
|             /* xacc[i] *= PRIME32_1 */
 | |
|             /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF);  */
 | |
|             xxh_u64x2 const prod_even  = XXH_vec_mule((xxh_u32x4)data_key, prime);
 | |
|             /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32);  */
 | |
|             xxh_u64x2 const prod_odd  = XXH_vec_mulo((xxh_u32x4)data_key, prime);
 | |
|             xacc[i] = prod_odd + (prod_even << v32);
 | |
|     }   }
 | |
| 
 | |
| #else   /* scalar variant of Scrambler - universal */
 | |
| 
 | |
|     XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64* const xacc = (xxh_u64*) acc;   /* presumed aligned */
 | |
|     const xxh_u8* const xsecret = (const xxh_u8*) secret;   /* no alignment restriction */
 | |
|     size_t i;
 | |
|     XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0);
 | |
|     for (i=0; i < ACC_NB; i++) {
 | |
|         xxh_u64 const key64 = XXH_readLE64(xsecret + 8*i);
 | |
|         xxh_u64 acc64 = xacc[i];
 | |
|         acc64 = XXH_xorshift64(acc64, 47);
 | |
|         acc64 ^= key64;
 | |
|         acc64 *= PRIME32_1;
 | |
|         xacc[i] = acc64;
 | |
|     }
 | |
| 
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #define XXH_PREFETCH_DIST 384
 | |
| 
 | |
| /*
 | |
|  * XXH3_accumulate()
 | |
|  * Loops over XXH3_accumulate_512().
 | |
|  * Assumption: nbStripes will not overflow the secret size
 | |
|  */
 | |
| XXH_FORCE_INLINE void
 | |
| XXH3_accumulate(     xxh_u64* XXH_RESTRICT acc,
 | |
|                 const xxh_u8* XXH_RESTRICT input,
 | |
|                 const xxh_u8* XXH_RESTRICT secret,
 | |
|                       size_t nbStripes,
 | |
|                       XXH3_accWidth_e accWidth)
 | |
| {
 | |
|     size_t n;
 | |
|     for (n = 0; n < nbStripes; n++ ) {
 | |
|         const xxh_u8* const in = input + n*STRIPE_LEN;
 | |
|         XXH_PREFETCH(in + XXH_PREFETCH_DIST);
 | |
|         XXH3_accumulate_512(acc,
 | |
|                             in,
 | |
|                             secret + n*XXH_SECRET_CONSUME_RATE,
 | |
|                             accWidth);
 | |
|     }
 | |
| }
 | |
| 
 | |
| XXH_FORCE_INLINE void
 | |
| XXH3_hashLong_internal_loop( xxh_u64* XXH_RESTRICT acc,
 | |
|                       const xxh_u8* XXH_RESTRICT input, size_t len,
 | |
|                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
 | |
|                             XXH3_accWidth_e accWidth)
 | |
| {
 | |
|     size_t const nb_rounds = (secretSize - STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
 | |
|     size_t const block_len = STRIPE_LEN * nb_rounds;
 | |
|     size_t const nb_blocks = len / block_len;
 | |
| 
 | |
|     size_t n;
 | |
| 
 | |
|     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
 | |
| 
 | |
|     for (n = 0; n < nb_blocks; n++) {
 | |
|         XXH3_accumulate(acc, input + n*block_len, secret, nb_rounds, accWidth);
 | |
|         XXH3_scrambleAcc(acc, secret + secretSize - STRIPE_LEN);
 | |
|     }
 | |
| 
 | |
|     /* last partial block */
 | |
|     XXH_ASSERT(len > STRIPE_LEN);
 | |
|     {   size_t const nbStripes = (len - (block_len * nb_blocks)) / STRIPE_LEN;
 | |
|         XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
 | |
|         XXH3_accumulate(acc, input + nb_blocks*block_len, secret, nbStripes, accWidth);
 | |
| 
 | |
|         /* last stripe */
 | |
|         if (len & (STRIPE_LEN - 1)) {
 | |
|             const xxh_u8* const p = input + len - STRIPE_LEN;
 | |
|             /* Do not align on 8, so that the secret is different from the scrambler */
 | |
| #define XXH_SECRET_LASTACC_START 7
 | |
|             XXH3_accumulate_512(acc, p, secret + secretSize - STRIPE_LEN - XXH_SECRET_LASTACC_START, accWidth);
 | |
|     }   }
 | |
| }
 | |
| 
 | |
| XXH_FORCE_INLINE xxh_u64
 | |
| XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret)
 | |
| {
 | |
|     return XXH3_mul128_fold64(
 | |
|                acc[0] ^ XXH_readLE64(secret),
 | |
|                acc[1] ^ XXH_readLE64(secret+8) );
 | |
| }
 | |
| 
 | |
| static XXH64_hash_t
 | |
| XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start)
 | |
| {
 | |
|     xxh_u64 result64 = start;
 | |
| 
 | |
|     result64 += XXH3_mix2Accs(acc+0, secret +  0);
 | |
|     result64 += XXH3_mix2Accs(acc+2, secret + 16);
 | |
|     result64 += XXH3_mix2Accs(acc+4, secret + 32);
 | |
|     result64 += XXH3_mix2Accs(acc+6, secret + 48);
 | |
| 
 | |
|     return XXH3_avalanche(result64);
 | |
| }
 | |
| 
 | |
| #define XXH3_INIT_ACC { PRIME32_3, PRIME64_1, PRIME64_2, PRIME64_3, \
 | |
|                         PRIME64_4, PRIME32_2, PRIME64_5, PRIME32_1 };
 | |
| 
 | |
| XXH_FORCE_INLINE XXH64_hash_t
 | |
| XXH3_hashLong_internal(const xxh_u8* XXH_RESTRICT input, size_t len,
 | |
|                        const xxh_u8* XXH_RESTRICT secret, size_t secretSize)
 | |
| {
 | |
|     XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[ACC_NB] = XXH3_INIT_ACC;
 | |
| 
 | |
|     XXH3_hashLong_internal_loop(acc, input, len, secret, secretSize, XXH3_acc_64bits);
 | |
| 
 | |
|     /* converge into final hash */
 | |
|     XXH_STATIC_ASSERT(sizeof(acc) == 64);
 | |
|     /* do not align on 8, so that the secret is different from the accumulator */
 | |
| #define XXH_SECRET_MERGEACCS_START 11
 | |
|     XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
 | |
|     return XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * PRIME64_1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * It's important for performance that XXH3_hashLong is not inlined. Not sure
 | |
|  * why (uop cache maybe?), but the difference is large and easily measurable.
 | |
|  */
 | |
| XXH_NO_INLINE XXH64_hash_t
 | |
| XXH3_hashLong_64b_defaultSecret(const xxh_u8* XXH_RESTRICT input, size_t len)
 | |
| {
 | |
|     return XXH3_hashLong_internal(input, len, kSecret, sizeof(kSecret));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * It's important for performance that XXH3_hashLong is not inlined. Not sure
 | |
|  * why (uop cache maybe?), but the difference is large and easily measurable.
 | |
|  */
 | |
| XXH_NO_INLINE XXH64_hash_t
 | |
| XXH3_hashLong_64b_withSecret(const xxh_u8* XXH_RESTRICT input, size_t len,
 | |
|                              const xxh_u8* XXH_RESTRICT secret, size_t secretSize)
 | |
| {
 | |
|     return XXH3_hashLong_internal(input, len, secret, secretSize);
 | |
| }
 | |
| 
 | |
| 
 | |
| XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64)
 | |
| {
 | |
|     if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
 | |
|     memcpy(dst, &v64, sizeof(v64));
 | |
| }
 | |
| 
 | |
| /* XXH3_initCustomSecret() :
 | |
|  * destination `customSecret` is presumed allocated and same size as `kSecret`.
 | |
|  */
 | |
| XXH_FORCE_INLINE void XXH3_initCustomSecret(xxh_u8* customSecret, xxh_u64 seed64)
 | |
| {
 | |
|     int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
 | |
|     int i;
 | |
| 
 | |
|     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
 | |
| 
 | |
|     for (i=0; i < nbRounds; i++) {
 | |
|         XXH_writeLE64(customSecret + 16*i,     XXH_readLE64(kSecret + 16*i)     + seed64);
 | |
|         XXH_writeLE64(customSecret + 16*i + 8, XXH_readLE64(kSecret + 16*i + 8) - seed64);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * XXH3_hashLong_64b_withSeed():
 | |
|  * Generate a custom key based on alteration of default kSecret with the seed,
 | |
|  * and then use this key for long mode hashing.
 | |
|  *
 | |
|  * This operation is decently fast but nonetheless costs a little bit of time.
 | |
|  * Try to avoid it whenever possible (typically when seed==0).
 | |
|  *
 | |
|  * It's important for performance that XXH3_hashLong is not inlined. Not sure
 | |
|  * why (uop cache maybe?), but the difference is large and easily measurable.
 | |
|  */
 | |
| XXH_NO_INLINE XXH64_hash_t
 | |
| XXH3_hashLong_64b_withSeed(const xxh_u8* input, size_t len, XXH64_hash_t seed)
 | |
| {
 | |
|     XXH_ALIGN(8) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
 | |
|     if (seed==0) return XXH3_hashLong_64b_defaultSecret(input, len);
 | |
|     XXH3_initCustomSecret(secret, seed);
 | |
|     return XXH3_hashLong_internal(input, len, secret, sizeof(secret));
 | |
| }
 | |
| 
 | |
| /* ===   Public entry point   === */
 | |
| 
 | |
| XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* input, size_t len)
 | |
| {
 | |
|     if (len <= 16) return XXH3_len_0to16_64b((const xxh_u8*)input, len, kSecret, 0);
 | |
|     if (len <= 128) return XXH3_len_17to128_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0);
 | |
|     if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0);
 | |
|     return XXH3_hashLong_64b_defaultSecret((const xxh_u8*)input, len);
 | |
| }
 | |
| 
 | |
| XXH_PUBLIC_API XXH64_hash_t
 | |
| XXH3_64bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
 | |
| {
 | |
|     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
 | |
|     /*
 | |
|      * If an action is to be taken if `secret` conditions are not respected,
 | |
|      * it should be done here.
 | |
|      * For now, it's a contract pre-condition.
 | |
|      * Adding a check and a branch here would cost performance at every hash.
 | |
|      */
 | |
|     if (len <= 16) return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, 0);
 | |
|     if (len <= 128) return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0);
 | |
|     if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0);
 | |
|     return XXH3_hashLong_64b_withSecret((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize);
 | |
| }
 | |
| 
 | |
| XXH_PUBLIC_API XXH64_hash_t
 | |
| XXH3_64bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
 | |
| {
 | |
|     if (len <= 16) return XXH3_len_0to16_64b((const xxh_u8*)input, len, kSecret, seed);
 | |
|     if (len <= 128) return XXH3_len_17to128_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed);
 | |
|     if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_64b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed);
 | |
|     return XXH3_hashLong_64b_withSeed((const xxh_u8*)input, len, seed);
 | |
| }
 | |
| 
 | |
| /* ===   XXH3 streaming   === */
 | |
| 
 | |
| XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void)
 | |
| {
 | |
|     return (XXH3_state_t*)XXH_malloc(sizeof(XXH3_state_t));
 | |
| }
 | |
| 
 | |
| XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr)
 | |
| {
 | |
|     XXH_free(statePtr);
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| XXH_PUBLIC_API void
 | |
| XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state)
 | |
| {
 | |
|     memcpy(dst_state, src_state, sizeof(*dst_state));
 | |
| }
 | |
| 
 | |
| static void
 | |
| XXH3_64bits_reset_internal(XXH3_state_t* statePtr,
 | |
|                            XXH64_hash_t seed,
 | |
|                            const xxh_u8* secret, size_t secretSize)
 | |
| {
 | |
|     XXH_ASSERT(statePtr != NULL);
 | |
|     memset(statePtr, 0, sizeof(*statePtr));
 | |
|     statePtr->acc[0] = PRIME32_3;
 | |
|     statePtr->acc[1] = PRIME64_1;
 | |
|     statePtr->acc[2] = PRIME64_2;
 | |
|     statePtr->acc[3] = PRIME64_3;
 | |
|     statePtr->acc[4] = PRIME64_4;
 | |
|     statePtr->acc[5] = PRIME32_2;
 | |
|     statePtr->acc[6] = PRIME64_5;
 | |
|     statePtr->acc[7] = PRIME32_1;
 | |
|     statePtr->seed = seed;
 | |
|     XXH_ASSERT(secret != NULL);
 | |
|     statePtr->secret = secret;
 | |
|     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
 | |
|     statePtr->secretLimit = (XXH32_hash_t)(secretSize - STRIPE_LEN);
 | |
|     statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
 | |
| }
 | |
| 
 | |
| XXH_PUBLIC_API XXH_errorcode
 | |
| XXH3_64bits_reset(XXH3_state_t* statePtr)
 | |
| {
 | |
|     if (statePtr == NULL) return XXH_ERROR;
 | |
|     XXH3_64bits_reset_internal(statePtr, 0, kSecret, XXH_SECRET_DEFAULT_SIZE);
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| XXH_PUBLIC_API XXH_errorcode
 | |
| XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
 | |
| {
 | |
|     if (statePtr == NULL) return XXH_ERROR;
 | |
|     XXH3_64bits_reset_internal(statePtr, 0, (const xxh_u8*)secret, secretSize);
 | |
|     if (secret == NULL) return XXH_ERROR;
 | |
|     if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| XXH_PUBLIC_API XXH_errorcode
 | |
| XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
 | |
| {
 | |
|     if (statePtr == NULL) return XXH_ERROR;
 | |
|     XXH3_64bits_reset_internal(statePtr, seed, kSecret, XXH_SECRET_DEFAULT_SIZE);
 | |
|     XXH3_initCustomSecret(statePtr->customSecret, seed);
 | |
|     statePtr->secret = statePtr->customSecret;
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| XXH_FORCE_INLINE void
 | |
| XXH3_consumeStripes( xxh_u64* acc,
 | |
|                     XXH32_hash_t* nbStripesSoFarPtr, XXH32_hash_t nbStripesPerBlock,
 | |
|                     const xxh_u8* input, size_t totalStripes,
 | |
|                     const xxh_u8* secret, size_t secretLimit,
 | |
|                     XXH3_accWidth_e accWidth)
 | |
| {
 | |
|     XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock);
 | |
|     if (nbStripesPerBlock - *nbStripesSoFarPtr <= totalStripes) {
 | |
|         /* need a scrambling operation */
 | |
|         size_t const nbStripes = nbStripesPerBlock - *nbStripesSoFarPtr;
 | |
|         XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes, accWidth);
 | |
|         XXH3_scrambleAcc(acc, secret + secretLimit);
 | |
|         XXH3_accumulate(acc, input + nbStripes * STRIPE_LEN, secret, totalStripes - nbStripes, accWidth);
 | |
|         *nbStripesSoFarPtr = (XXH32_hash_t)(totalStripes - nbStripes);
 | |
|     } else {
 | |
|         XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, totalStripes, accWidth);
 | |
|         *nbStripesSoFarPtr += (XXH32_hash_t)totalStripes;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Both XXH3_64bits_update and XXH3_128bits_update use this routine.
 | |
|  */
 | |
| XXH_FORCE_INLINE XXH_errorcode
 | |
| XXH3_update(XXH3_state_t* state, const xxh_u8* input, size_t len, XXH3_accWidth_e accWidth)
 | |
| {
 | |
|     if (input==NULL)
 | |
| #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
 | |
|         return XXH_OK;
 | |
| #else
 | |
|         return XXH_ERROR;
 | |
| #endif
 | |
| 
 | |
|     {   const xxh_u8* const bEnd = input + len;
 | |
| 
 | |
|         state->totalLen += len;
 | |
| 
 | |
|         if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) {  /* fill in tmp buffer */
 | |
|             XXH_memcpy(state->buffer + state->bufferedSize, input, len);
 | |
|             state->bufferedSize += (XXH32_hash_t)len;
 | |
|             return XXH_OK;
 | |
|         }
 | |
|         /* input is now > XXH3_INTERNALBUFFER_SIZE */
 | |
| 
 | |
|         #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / STRIPE_LEN)
 | |
|         XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % STRIPE_LEN == 0);   /* clean multiple */
 | |
| 
 | |
|         /*
 | |
|          * There is some input left inside the internal buffer.
 | |
|          * Fill it, then consume it.
 | |
|          */
 | |
|         if (state->bufferedSize) {
 | |
|             size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
 | |
|             XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
 | |
|             input += loadSize;
 | |
|             XXH3_consumeStripes(state->acc,
 | |
|                                &state->nbStripesSoFar, state->nbStripesPerBlock,
 | |
|                                 state->buffer, XXH3_INTERNALBUFFER_STRIPES,
 | |
|                                 state->secret, state->secretLimit,
 | |
|                                 accWidth);
 | |
|             state->bufferedSize = 0;
 | |
|         }
 | |
| 
 | |
|         /* Consume input by full buffer quantities */
 | |
|         if (input+XXH3_INTERNALBUFFER_SIZE <= bEnd) {
 | |
|             const xxh_u8* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE;
 | |
|             do {
 | |
|                 XXH3_consumeStripes(state->acc,
 | |
|                                    &state->nbStripesSoFar, state->nbStripesPerBlock,
 | |
|                                     input, XXH3_INTERNALBUFFER_STRIPES,
 | |
|                                     state->secret, state->secretLimit,
 | |
|                                     accWidth);
 | |
|                 input += XXH3_INTERNALBUFFER_SIZE;
 | |
|             } while (input<=limit);
 | |
|         }
 | |
| 
 | |
|         if (input < bEnd) { /* Some remaining input: buffer it */
 | |
|             XXH_memcpy(state->buffer, input, (size_t)(bEnd-input));
 | |
|             state->bufferedSize = (XXH32_hash_t)(bEnd-input);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| XXH_PUBLIC_API XXH_errorcode
 | |
| XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len)
 | |
| {
 | |
|     return XXH3_update(state, (const xxh_u8*)input, len, XXH3_acc_64bits);
 | |
| }
 | |
| 
 | |
| 
 | |
| XXH_FORCE_INLINE void
 | |
| XXH3_digest_long (XXH64_hash_t* acc, const XXH3_state_t* state, XXH3_accWidth_e accWidth)
 | |
| {
 | |
|     /*
 | |
|      * Digest on a local copy. This way, the state remains unaltered, and it can
 | |
|      * continue ingesting more input afterwards.
 | |
|      */
 | |
|     memcpy(acc, state->acc, sizeof(state->acc));
 | |
|     if (state->bufferedSize >= STRIPE_LEN) {
 | |
|         size_t const totalNbStripes = state->bufferedSize / STRIPE_LEN;
 | |
|         XXH32_hash_t nbStripesSoFar = state->nbStripesSoFar;
 | |
|         XXH3_consumeStripes(acc,
 | |
|                            &nbStripesSoFar, state->nbStripesPerBlock,
 | |
|                             state->buffer, totalNbStripes,
 | |
|                             state->secret, state->secretLimit,
 | |
|                             accWidth);
 | |
|         if (state->bufferedSize % STRIPE_LEN) {  /* one last partial stripe */
 | |
|             XXH3_accumulate_512(acc,
 | |
|                                 state->buffer + state->bufferedSize - STRIPE_LEN,
 | |
|                                 state->secret + state->secretLimit - XXH_SECRET_LASTACC_START,
 | |
|                                 accWidth);
 | |
|         }
 | |
|     } else {  /* bufferedSize < STRIPE_LEN */
 | |
|         if (state->bufferedSize) { /* one last stripe */
 | |
|             xxh_u8 lastStripe[STRIPE_LEN];
 | |
|             size_t const catchupSize = STRIPE_LEN - state->bufferedSize;
 | |
|             memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize);
 | |
|             memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
 | |
|             XXH3_accumulate_512(acc,
 | |
|                                 lastStripe,
 | |
|                                 state->secret + state->secretLimit - XXH_SECRET_LASTACC_START,
 | |
|                                 accWidth);
 | |
|     }   }
 | |
| }
 | |
| 
 | |
| XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state)
 | |
| {
 | |
|     if (state->totalLen > XXH3_MIDSIZE_MAX) {
 | |
|         XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[ACC_NB];
 | |
|         XXH3_digest_long(acc, state, XXH3_acc_64bits);
 | |
|         return XXH3_mergeAccs(acc, state->secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)state->totalLen * PRIME64_1);
 | |
|     }
 | |
|     /* len <= XXH3_MIDSIZE_MAX : short code */
 | |
|     if (state->seed)
 | |
|         return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
 | |
|     return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen), state->secret, state->secretLimit + STRIPE_LEN);
 | |
| }
 | |
| 
 | |
| /* ==========================================
 | |
|  * XXH3 128 bits (=> XXH128)
 | |
|  * ========================================== */
 | |
| 
 | |
| XXH_FORCE_INLINE XXH128_hash_t
 | |
| XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
 | |
| {
 | |
|     XXH_ASSERT(input != NULL);
 | |
|     XXH_ASSERT(1 <= len && len <= 3);
 | |
|     XXH_ASSERT(secret != NULL);
 | |
|     /*
 | |
|      * len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
 | |
|      * len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
 | |
|      * len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
 | |
|      */
 | |
|     {   xxh_u8 const c1 = input[0];
 | |
|         xxh_u8 const c2 = input[len >> 1];
 | |
|         xxh_u8 const c3 = input[len - 1];
 | |
|         xxh_u32 const combinedl = ((xxh_u32)c1<<16) | (((xxh_u32)c2) << 24) | (((xxh_u32)c3) << 0) | (((xxh_u32)len) << 8);
 | |
|         xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13);
 | |
|         xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
 | |
|         xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed;
 | |
|         xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl;
 | |
|         xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph;
 | |
|         xxh_u64 const mixedl = keyed_lo * PRIME64_1;
 | |
|         xxh_u64 const mixedh = keyed_hi * PRIME64_5;
 | |
|         XXH128_hash_t const h128 = { XXH3_avalanche(mixedl) /*low64*/, XXH3_avalanche(mixedh) /*high64*/ };
 | |
|         return h128;
 | |
|     }
 | |
| }
 | |
| 
 | |
| XXH_FORCE_INLINE XXH128_hash_t
 | |
| XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
 | |
| {
 | |
|     XXH_ASSERT(input != NULL);
 | |
|     XXH_ASSERT(secret != NULL);
 | |
|     XXH_ASSERT(4 <= len && len <= 8);
 | |
|     seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
 | |
|     {   xxh_u32 const input_lo = XXH_readLE32(input);
 | |
|         xxh_u32 const input_hi = XXH_readLE32(input + len - 4);
 | |
|         xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32);
 | |
|         xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed;
 | |
|         xxh_u64 const keyed = input_64 ^ bitflip;
 | |
| 
 | |
|         /* Shift len to the left to ensure it is even, this avoids even multiplies. */
 | |
|         XXH128_hash_t m128 = XXH_mult64to128(keyed, PRIME64_1 + (len << 2));
 | |
| 
 | |
|         m128.high64 += (m128.low64 << 1);
 | |
|         m128.low64  ^= (m128.high64 >> 3);
 | |
| 
 | |
|         m128.low64   = XXH_xorshift64(m128.low64, 35);
 | |
|         m128.low64  *= 0x9FB21C651E98DF25ULL;
 | |
|         m128.low64   = XXH_xorshift64(m128.low64, 28);
 | |
|         m128.high64  = XXH3_avalanche(m128.high64);
 | |
|         return m128;
 | |
|     }
 | |
| }
 | |
| 
 | |
| XXH_FORCE_INLINE XXH128_hash_t
 | |
| XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
 | |
| {
 | |
|     XXH_ASSERT(input != NULL);
 | |
|     XXH_ASSERT(secret != NULL);
 | |
|     XXH_ASSERT(9 <= len && len <= 16);
 | |
|     {   xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed;
 | |
|         xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed;
 | |
|         xxh_u64 const input_lo = XXH_readLE64(input);
 | |
|         xxh_u64       input_hi = XXH_readLE64(input + len - 8);
 | |
|         XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, PRIME64_1);
 | |
|         /*
 | |
|          * Put len in the middle of m128 to ensure that the length gets mixed to
 | |
|          * both the low and high bits in the 128x64 multiply below.
 | |
|          */
 | |
|         m128.low64  += (xxh_u64)(len - 1) << 54;
 | |
|         input_hi ^= bitfliph;
 | |
|         /*
 | |
|          * Add the high 32 bits of input_hi to the high 32 bits of m128, then
 | |
|          * add the long product of the low 32 bits of input_hi and PRIME32_2 to
 | |
|          * the high 64 bits of m128.
 | |
|          *
 | |
|          * The best approach to this operation is different on 32-bit and 64-bit.
 | |
|          */
 | |
|         if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */
 | |
|             /*
 | |
|              * 32-bit optimized version, which is more readable.
 | |
|              *
 | |
|              * On 32-bit, it removes an ADC and delays a dependency between the two
 | |
|              * halves of m128.high64, but it generates an extra mask on 64-bit.
 | |
|              */
 | |
|             m128.high64 += (input_hi & 0xFFFFFFFF00000000) + XXH_mult32to64((xxh_u32)input_hi, PRIME32_2);
 | |
|         } else {
 | |
|             /*
 | |
|              * 64-bit optimized (albeit more confusing) version.
 | |
|              *
 | |
|              * Uses some properties of addition and multiplication to remove the mask:
 | |
|              *
 | |
|              * Let:
 | |
|              *    a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
 | |
|              *    b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
 | |
|              *    c = PRIME32_2
 | |
|              *
 | |
|              *    a + (b * c)
 | |
|              * Inverse Property: x + y - x == y
 | |
|              *    a + (b * (1 + c - 1))
 | |
|              * Distributive Property: x * (y + z) == (x * y) + (x * z)
 | |
|              *    a + (b * 1) + (b * (c - 1))
 | |
|              * Identity Property: x * 1 == x
 | |
|              *    a + b + (b * (c - 1))
 | |
|              *
 | |
|              * Substitute a, b, and c:
 | |
|              *    input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (PRIME32_2 - 1))
 | |
|              *
 | |
|              * Since input_hi.hi + input_hi.lo == input_hi, we get this:
 | |
|              *    input_hi + ((xxh_u64)input_hi.lo * (PRIME32_2 - 1))
 | |
|              */
 | |
|             m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, PRIME32_2 - 1);
 | |
|         }
 | |
|         /* m128 ^= XXH_swap64(m128 >> 64); */
 | |
|         m128.low64  ^= XXH_swap64(m128.high64);
 | |
| 
 | |
|         {   /* 128x64 multiply: h128 = m128 * PRIME64_2; */
 | |
|             XXH128_hash_t h128 = XXH_mult64to128(m128.low64, PRIME64_2);
 | |
|             h128.high64 += m128.high64 * PRIME64_2;
 | |
| 
 | |
|             h128.low64   = XXH3_avalanche(h128.low64);
 | |
|             h128.high64  = XXH3_avalanche(h128.high64);
 | |
|             return h128;
 | |
|     }   }
 | |
| }
 | |
| 
 | |
| /* Assumption : `secret` size is >= 16
 | |
|  * Note : it should be >= XXH3_SECRET_SIZE_MIN anyway */
 | |
| XXH_FORCE_INLINE XXH128_hash_t
 | |
| XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
 | |
| {
 | |
|     XXH_ASSERT(len <= 16);
 | |
|     {   if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed);
 | |
|         if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed);
 | |
|         if (len) return XXH3_len_1to3_128b(input, len, secret, seed);
 | |
|         {   XXH128_hash_t h128;
 | |
|             xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72);
 | |
|             xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88);
 | |
|             h128.low64 = XXH3_avalanche((PRIME64_1 + seed) ^ bitflipl);
 | |
|             h128.high64 = XXH3_avalanche((PRIME64_2 - seed) ^ bitfliph);
 | |
|             return h128;
 | |
|     }   }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A bit slower than XXH3_mix16B, but handles multiply by zero better.
 | |
|  */
 | |
| XXH_FORCE_INLINE XXH128_hash_t
 | |
| XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2, const xxh_u8* secret, XXH64_hash_t seed)
 | |
| {
 | |
|     acc.low64  += XXH3_mix16B (input_1, secret+0, seed);
 | |
|     acc.low64  ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8);
 | |
|     acc.high64 += XXH3_mix16B (input_2, secret+16, seed);
 | |
|     acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8);
 | |
|     return acc;
 | |
| }
 | |
| 
 | |
| 
 | |
| XXH_FORCE_INLINE XXH128_hash_t
 | |
| XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
 | |
|                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
 | |
|                       XXH64_hash_t seed)
 | |
| {
 | |
|     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
 | |
|     XXH_ASSERT(16 < len && len <= 128);
 | |
| 
 | |
|     {   XXH128_hash_t acc;
 | |
|         acc.low64 = len * PRIME64_1;
 | |
|         acc.high64 = 0;
 | |
|         if (len > 32) {
 | |
|             if (len > 64) {
 | |
|                 if (len > 96) {
 | |
|                     acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed);
 | |
|                 }
 | |
|                 acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed);
 | |
|             }
 | |
|             acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed);
 | |
|         }
 | |
|         acc = XXH128_mix32B(acc, input, input+len-16, secret, seed);
 | |
|         {   xxh_u64 const low64 = acc.low64 + acc.high64;
 | |
|             xxh_u64 const high64 = (acc.low64 * PRIME64_1) + (acc.high64 * PRIME64_4) + ((len - seed) * PRIME64_2);
 | |
|             XXH128_hash_t const h128 = { XXH3_avalanche(low64), (XXH64_hash_t)0 - XXH3_avalanche(high64) };
 | |
|             return h128;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| XXH_NO_INLINE XXH128_hash_t
 | |
| XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
 | |
|                        const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
 | |
|                        XXH64_hash_t seed)
 | |
| {
 | |
|     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
 | |
|     XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
 | |
| 
 | |
|     {   XXH128_hash_t acc;
 | |
|         int const nbRounds = (int)len / 32;
 | |
|         int i;
 | |
|         acc.low64 = len * PRIME64_1;
 | |
|         acc.high64 = 0;
 | |
|         for (i=0; i<4; i++) {
 | |
|             acc = XXH128_mix32B(acc, input+(32*i), input+(32*i)+16, secret+(32*i), seed);
 | |
|         }
 | |
|         acc.low64 = XXH3_avalanche(acc.low64);
 | |
|         acc.high64 = XXH3_avalanche(acc.high64);
 | |
|         XXH_ASSERT(nbRounds >= 4);
 | |
|         for (i=4 ; i < nbRounds; i++) {
 | |
|             acc = XXH128_mix32B(acc, input+(32*i), input+(32*i)+16, secret+XXH3_MIDSIZE_STARTOFFSET+(32*(i-4)), seed);
 | |
|         }
 | |
|         /* last bytes */
 | |
|         acc = XXH128_mix32B(acc, input + len - 16, input + len - 32, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16, 0ULL - seed);
 | |
| 
 | |
|         {   xxh_u64 const low64 = acc.low64 + acc.high64;
 | |
|             xxh_u64 const high64 = (acc.low64 * PRIME64_1) + (acc.high64 * PRIME64_4) + ((len - seed) * PRIME64_2);
 | |
|             XXH128_hash_t const h128 = { XXH3_avalanche(low64), (XXH64_hash_t)0 - XXH3_avalanche(high64) };
 | |
|             return h128;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| XXH_FORCE_INLINE XXH128_hash_t
 | |
| XXH3_hashLong_128b_internal(const xxh_u8* XXH_RESTRICT input, size_t len,
 | |
|                             const xxh_u8* XXH_RESTRICT secret, size_t secretSize)
 | |
| {
 | |
|     XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[ACC_NB] = XXH3_INIT_ACC;
 | |
| 
 | |
|     XXH3_hashLong_internal_loop(acc, input, len, secret, secretSize, XXH3_acc_128bits);
 | |
| 
 | |
|     /* converge into final hash */
 | |
|     XXH_STATIC_ASSERT(sizeof(acc) == 64);
 | |
|     XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
 | |
|     {   xxh_u64 const low64 = XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * PRIME64_1);
 | |
|         xxh_u64 const high64 = XXH3_mergeAccs(acc, secret + secretSize - sizeof(acc) - XXH_SECRET_MERGEACCS_START, ~((xxh_u64)len * PRIME64_2));
 | |
|         XXH128_hash_t const h128 = { low64, high64 };
 | |
|         return h128;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * It's important for performance that XXH3_hashLong is not inlined. Not sure
 | |
|  * why (uop cache maybe?), but the difference is large and easily measurable.
 | |
|  */
 | |
| XXH_NO_INLINE XXH128_hash_t
 | |
| XXH3_hashLong_128b_defaultSecret(const xxh_u8* input, size_t len)
 | |
| {
 | |
|     return XXH3_hashLong_128b_internal(input, len, kSecret, sizeof(kSecret));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * It's important for performance that XXH3_hashLong is not inlined. Not sure
 | |
|  * why (uop cache maybe?), but the difference is large and easily measurable.
 | |
|  */
 | |
| XXH_NO_INLINE XXH128_hash_t
 | |
| XXH3_hashLong_128b_withSecret(const xxh_u8* input, size_t len,
 | |
|                               const xxh_u8* secret, size_t secretSize)
 | |
| {
 | |
|     return XXH3_hashLong_128b_internal(input, len, secret, secretSize);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * It's important for performance that XXH3_hashLong is not inlined. Not sure
 | |
|  * why (uop cache maybe?), but the difference is large and easily measurable.
 | |
|  */
 | |
| XXH_NO_INLINE XXH128_hash_t
 | |
| XXH3_hashLong_128b_withSeed(const xxh_u8* input, size_t len, XXH64_hash_t seed)
 | |
| {
 | |
|     XXH_ALIGN(8) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
 | |
|     if (seed == 0) return XXH3_hashLong_128b_defaultSecret(input, len);
 | |
|     XXH3_initCustomSecret(secret, seed);
 | |
|     return XXH3_hashLong_128b_internal(input, len, secret, sizeof(secret));
 | |
| }
 | |
| 
 | |
| 
 | |
| XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* input, size_t len)
 | |
| {
 | |
|     if (len <= 16) return XXH3_len_0to16_128b((const xxh_u8*)input, len, kSecret, 0);
 | |
|     if (len <= 128) return XXH3_len_17to128_128b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0);
 | |
|     if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_128b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), 0);
 | |
|     return XXH3_hashLong_128b_defaultSecret((const xxh_u8*)input, len);
 | |
| }
 | |
| 
 | |
| XXH_PUBLIC_API XXH128_hash_t
 | |
| XXH3_128bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
 | |
| {
 | |
|     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
 | |
|     /*
 | |
|      * If an action is to be taken if `secret` conditions are not respected,
 | |
|      * it should be done here.
 | |
|      * For now, it's a contract pre-condition.
 | |
|      * Adding a check and a branch here would cost performance at every hash.
 | |
|      */
 | |
|      if (len <= 16) return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, 0);
 | |
|      if (len <= 128) return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0);
 | |
|      if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, 0);
 | |
|      return XXH3_hashLong_128b_withSecret((const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize);
 | |
| }
 | |
| 
 | |
| XXH_PUBLIC_API XXH128_hash_t
 | |
| XXH3_128bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
 | |
| {
 | |
|     if (len <= 16) return XXH3_len_0to16_128b((const xxh_u8*)input, len, kSecret, seed);
 | |
|     if (len <= 128) return XXH3_len_17to128_128b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed);
 | |
|     if (len <= XXH3_MIDSIZE_MAX) return XXH3_len_129to240_128b((const xxh_u8*)input, len, kSecret, sizeof(kSecret), seed);
 | |
|     return XXH3_hashLong_128b_withSeed((const xxh_u8*)input, len, seed);
 | |
| }
 | |
| 
 | |
| XXH_PUBLIC_API XXH128_hash_t
 | |
| XXH128(const void* input, size_t len, XXH64_hash_t seed)
 | |
| {
 | |
|     return XXH3_128bits_withSeed(input, len, seed);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===   XXH3 128-bit streaming   === */
 | |
| 
 | |
| /* all the functions are actually the same as for 64-bit streaming variant,
 | |
|    just the reset one is different (different initial acc values for 0,5,6,7),
 | |
|    and near the end of the digest function */
 | |
| 
 | |
| static void
 | |
| XXH3_128bits_reset_internal(XXH3_state_t* statePtr,
 | |
|                            XXH64_hash_t seed,
 | |
|                            const xxh_u8* secret, size_t secretSize)
 | |
| {
 | |
|     XXH3_64bits_reset_internal(statePtr, seed, secret, secretSize);
 | |
| }
 | |
| 
 | |
| XXH_PUBLIC_API XXH_errorcode
 | |
| XXH3_128bits_reset(XXH3_state_t* statePtr)
 | |
| {
 | |
|     if (statePtr == NULL) return XXH_ERROR;
 | |
|     XXH3_128bits_reset_internal(statePtr, 0, kSecret, XXH_SECRET_DEFAULT_SIZE);
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| XXH_PUBLIC_API XXH_errorcode
 | |
| XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
 | |
| {
 | |
|     if (statePtr == NULL) return XXH_ERROR;
 | |
|     XXH3_128bits_reset_internal(statePtr, 0, (const xxh_u8*)secret, secretSize);
 | |
|     if (secret == NULL) return XXH_ERROR;
 | |
|     if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| XXH_PUBLIC_API XXH_errorcode
 | |
| XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
 | |
| {
 | |
|     if (statePtr == NULL) return XXH_ERROR;
 | |
|     XXH3_128bits_reset_internal(statePtr, seed, kSecret, XXH_SECRET_DEFAULT_SIZE);
 | |
|     XXH3_initCustomSecret(statePtr->customSecret, seed);
 | |
|     statePtr->secret = statePtr->customSecret;
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| XXH_PUBLIC_API XXH_errorcode
 | |
| XXH3_128bits_update(XXH3_state_t* state, const void* input, size_t len)
 | |
| {
 | |
|     return XXH3_update(state, (const xxh_u8*)input, len, XXH3_acc_128bits);
 | |
| }
 | |
| 
 | |
| XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state)
 | |
| {
 | |
|     if (state->totalLen > XXH3_MIDSIZE_MAX) {
 | |
|         XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[ACC_NB];
 | |
|         XXH3_digest_long(acc, state, XXH3_acc_128bits);
 | |
|         XXH_ASSERT(state->secretLimit + STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
 | |
|         {   xxh_u64 const low64 = XXH3_mergeAccs(acc, state->secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)state->totalLen * PRIME64_1);
 | |
|             xxh_u64 const high64 = XXH3_mergeAccs(acc, state->secret + state->secretLimit + STRIPE_LEN - sizeof(acc) - XXH_SECRET_MERGEACCS_START, ~((xxh_u64)state->totalLen * PRIME64_2));
 | |
|             XXH128_hash_t const h128 = { low64, high64 };
 | |
|             return h128;
 | |
|         }
 | |
|     }
 | |
|     /* len <= XXH3_MIDSIZE_MAX : short code */
 | |
|     if (state->seed)
 | |
|         return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
 | |
|     return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen), state->secret, state->secretLimit + STRIPE_LEN);
 | |
| }
 | |
| 
 | |
| /* 128-bit utility functions */
 | |
| 
 | |
| #include <string.h>   /* memcmp, memcpy */
 | |
| 
 | |
| /* return : 1 is equal, 0 if different */
 | |
| XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2)
 | |
| {
 | |
|     /* note : XXH128_hash_t is compact, it has no padding byte */
 | |
|     return !(memcmp(&h1, &h2, sizeof(h1)));
 | |
| }
 | |
| 
 | |
| /* This prototype is compatible with stdlib's qsort().
 | |
|  * return : >0 if *h128_1  > *h128_2
 | |
|  *          <0 if *h128_1  < *h128_2
 | |
|  *          =0 if *h128_1 == *h128_2  */
 | |
| XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2)
 | |
| {
 | |
|     XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1;
 | |
|     XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2;
 | |
|     int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64);
 | |
|     /* note : bets that, in most cases, hash values are different */
 | |
|     if (hcmp) return hcmp;
 | |
|     return (h1.low64 > h2.low64) - (h2.low64 > h1.low64);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*======   Canonical representation   ======*/
 | |
| XXH_PUBLIC_API void
 | |
| XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash)
 | |
| {
 | |
|     XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
 | |
|     if (XXH_CPU_LITTLE_ENDIAN) {
 | |
|         hash.high64 = XXH_swap64(hash.high64);
 | |
|         hash.low64  = XXH_swap64(hash.low64);
 | |
|     }
 | |
|     memcpy(dst, &hash.high64, sizeof(hash.high64));
 | |
|     memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
 | |
| }
 | |
| 
 | |
| XXH_PUBLIC_API XXH128_hash_t
 | |
| XXH128_hashFromCanonical(const XXH128_canonical_t* src)
 | |
| {
 | |
|     XXH128_hash_t h;
 | |
|     h.high64 = XXH_readBE64(src);
 | |
|     h.low64  = XXH_readBE64(src->digest + 8);
 | |
|     return h;
 | |
| }
 | |
| 
 | |
| /* Pop our optimization override from above */
 | |
| #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
 | |
|   && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
 | |
|   && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
 | |
| #  pragma GCC pop_options
 | |
| #endif
 | |
| 
 | |
| #endif  /* XXH3_H_1397135465 */
 | 
