Duckstation/dep/vixl/include/vixl/utils-vixl.h
2024-06-14 17:42:24 +10:00

1443 lines
48 KiB
C++

// Copyright 2015, VIXL authors
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of ARM Limited nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef VIXL_UTILS_H
#define VIXL_UTILS_H
#include <cmath>
#include <cstring>
#include <limits>
#include <type_traits>
#include <vector>
#include "compiler-intrinsics-vixl.h"
#include "globals-vixl.h"
namespace vixl {
// Macros for compile-time format checking.
#if GCC_VERSION_OR_NEWER(4, 4, 0)
#define PRINTF_CHECK(format_index, varargs_index) \
__attribute__((format(gnu_printf, format_index, varargs_index)))
#else
#define PRINTF_CHECK(format_index, varargs_index)
#endif
#ifdef __GNUC__
#define VIXL_HAS_DEPRECATED_WITH_MSG
#elif defined(__clang__)
#if __has_extension(attribute_deprecated_with_message)
#define VIXL_HAS_DEPRECATED_WITH_MSG
#endif
#endif
#ifdef VIXL_HAS_DEPRECATED_WITH_MSG
#define VIXL_DEPRECATED(replaced_by, declarator) \
__attribute__((deprecated("Use \"" replaced_by "\" instead"))) declarator
#else
#define VIXL_DEPRECATED(replaced_by, declarator) declarator
#endif
#ifdef VIXL_DEBUG
#define VIXL_UNREACHABLE_OR_FALLTHROUGH() VIXL_UNREACHABLE()
#else
#define VIXL_UNREACHABLE_OR_FALLTHROUGH() VIXL_FALLTHROUGH()
#endif
template <typename T, size_t n>
constexpr size_t ArrayLength(const T (&)[n]) {
return n;
}
inline uint64_t GetUintMask(unsigned bits) {
VIXL_ASSERT(bits <= 64);
uint64_t base = (bits >= 64) ? 0 : (UINT64_C(1) << bits);
return base - 1;
}
inline uint64_t GetSignMask(unsigned bits) {
VIXL_ASSERT(bits <= 64);
return UINT64_C(1) << (bits - 1);
}
// Check number width.
// TODO: Refactor these using templates.
inline bool IsIntN(unsigned n, uint32_t x) {
VIXL_ASSERT((0 < n) && (n <= 32));
return x <= static_cast<uint32_t>(INT32_MAX >> (32 - n));
}
inline bool IsIntN(unsigned n, int32_t x) {
VIXL_ASSERT((0 < n) && (n <= 32));
if (n == 32) return true;
int32_t limit = INT32_C(1) << (n - 1);
return (-limit <= x) && (x < limit);
}
inline bool IsIntN(unsigned n, uint64_t x) {
VIXL_ASSERT((0 < n) && (n <= 64));
return x <= static_cast<uint64_t>(INT64_MAX >> (64 - n));
}
inline bool IsIntN(unsigned n, int64_t x) {
VIXL_ASSERT((0 < n) && (n <= 64));
if (n == 64) return true;
int64_t limit = INT64_C(1) << (n - 1);
return (-limit <= x) && (x < limit);
}
VIXL_DEPRECATED("IsIntN", inline bool is_intn(unsigned n, int64_t x)) {
return IsIntN(n, x);
}
inline bool IsUintN(unsigned n, uint32_t x) {
VIXL_ASSERT((0 < n) && (n <= 32));
if (n >= 32) return true;
return !(x >> n);
}
inline bool IsUintN(unsigned n, int32_t x) {
VIXL_ASSERT((0 < n) && (n < 32));
// Convert to an unsigned integer to avoid implementation-defined behavior.
return !(static_cast<uint32_t>(x) >> n);
}
inline bool IsUintN(unsigned n, uint64_t x) {
VIXL_ASSERT((0 < n) && (n <= 64));
if (n >= 64) return true;
return !(x >> n);
}
inline bool IsUintN(unsigned n, int64_t x) {
VIXL_ASSERT((0 < n) && (n < 64));
// Convert to an unsigned integer to avoid implementation-defined behavior.
return !(static_cast<uint64_t>(x) >> n);
}
VIXL_DEPRECATED("IsUintN", inline bool is_uintn(unsigned n, int64_t x)) {
return IsUintN(n, x);
}
inline uint64_t TruncateToUintN(unsigned n, uint64_t x) {
VIXL_ASSERT((0 < n) && (n < 64));
return static_cast<uint64_t>(x) & ((UINT64_C(1) << n) - 1);
}
VIXL_DEPRECATED("TruncateToUintN",
inline uint64_t truncate_to_intn(unsigned n, int64_t x)) {
return TruncateToUintN(n, x);
}
// clang-format off
#define INT_1_TO_32_LIST(V) \
V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8) \
V(9) V(10) V(11) V(12) V(13) V(14) V(15) V(16) \
V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24) \
V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32)
#define INT_33_TO_63_LIST(V) \
V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40) \
V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48) \
V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56) \
V(57) V(58) V(59) V(60) V(61) V(62) V(63)
#define INT_1_TO_63_LIST(V) INT_1_TO_32_LIST(V) INT_33_TO_63_LIST(V)
// clang-format on
#define DECLARE_IS_INT_N(N) \
inline bool IsInt##N(int64_t x) { return IsIntN(N, x); } \
VIXL_DEPRECATED("IsInt" #N, inline bool is_int##N(int64_t x)) { \
return IsIntN(N, x); \
}
#define DECLARE_IS_UINT_N(N) \
inline bool IsUint##N(int64_t x) { return IsUintN(N, x); } \
VIXL_DEPRECATED("IsUint" #N, inline bool is_uint##N(int64_t x)) { \
return IsUintN(N, x); \
}
#define DECLARE_TRUNCATE_TO_UINT_32(N) \
inline uint32_t TruncateToUint##N(uint64_t x) { \
return static_cast<uint32_t>(TruncateToUintN(N, x)); \
} \
VIXL_DEPRECATED("TruncateToUint" #N, \
inline uint32_t truncate_to_int##N(int64_t x)) { \
return TruncateToUint##N(x); \
}
INT_1_TO_63_LIST(DECLARE_IS_INT_N)
INT_1_TO_63_LIST(DECLARE_IS_UINT_N)
INT_1_TO_32_LIST(DECLARE_TRUNCATE_TO_UINT_32)
#undef DECLARE_IS_INT_N
#undef DECLARE_IS_UINT_N
#undef DECLARE_TRUNCATE_TO_INT_N
// Bit field extraction.
inline uint64_t ExtractUnsignedBitfield64(int msb, int lsb, uint64_t x) {
VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
(msb >= lsb));
if ((msb == 63) && (lsb == 0)) return x;
return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1);
}
inline uint32_t ExtractUnsignedBitfield32(int msb, int lsb, uint64_t x) {
VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
(msb >= lsb));
return TruncateToUint32(ExtractUnsignedBitfield64(msb, lsb, x));
}
inline int64_t ExtractSignedBitfield64(int msb, int lsb, uint64_t x) {
VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
(msb >= lsb));
uint64_t temp = ExtractUnsignedBitfield64(msb, lsb, x);
// If the highest extracted bit is set, sign extend.
if ((temp >> (msb - lsb)) == 1) {
temp |= ~UINT64_C(0) << (msb - lsb);
}
int64_t result;
memcpy(&result, &temp, sizeof(result));
return result;
}
inline int32_t ExtractSignedBitfield32(int msb, int lsb, uint64_t x) {
VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
(msb >= lsb));
uint32_t temp = TruncateToUint32(ExtractSignedBitfield64(msb, lsb, x));
int32_t result;
memcpy(&result, &temp, sizeof(result));
return result;
}
inline uint64_t RotateRight(uint64_t value,
unsigned int rotate,
unsigned int width) {
VIXL_ASSERT((width > 0) && (width <= 64));
uint64_t width_mask = ~UINT64_C(0) >> (64 - width);
rotate &= 63;
if (rotate > 0) {
value &= width_mask;
value = (value << (width - rotate)) | (value >> rotate);
}
return value & width_mask;
}
// Wrapper class for passing FP16 values through the assembler.
// This is purely to aid with type checking/casting.
class Float16 {
public:
explicit Float16(double dvalue);
Float16() : rawbits_(0x0) {}
friend uint16_t Float16ToRawbits(Float16 value);
friend Float16 RawbitsToFloat16(uint16_t bits);
protected:
uint16_t rawbits_;
};
// Floating point representation.
uint16_t Float16ToRawbits(Float16 value);
uint32_t FloatToRawbits(float value);
VIXL_DEPRECATED("FloatToRawbits",
inline uint32_t float_to_rawbits(float value)) {
return FloatToRawbits(value);
}
uint64_t DoubleToRawbits(double value);
VIXL_DEPRECATED("DoubleToRawbits",
inline uint64_t double_to_rawbits(double value)) {
return DoubleToRawbits(value);
}
Float16 RawbitsToFloat16(uint16_t bits);
float RawbitsToFloat(uint32_t bits);
VIXL_DEPRECATED("RawbitsToFloat",
inline float rawbits_to_float(uint32_t bits)) {
return RawbitsToFloat(bits);
}
double RawbitsToDouble(uint64_t bits);
VIXL_DEPRECATED("RawbitsToDouble",
inline double rawbits_to_double(uint64_t bits)) {
return RawbitsToDouble(bits);
}
// Some compilers dislike negating unsigned integers,
// so we provide an equivalent.
template <typename T>
T UnsignedNegate(T value) {
VIXL_STATIC_ASSERT(std::is_unsigned<T>::value);
return ~value + 1;
}
// An absolute operation for signed integers that is defined for results outside
// the representable range. Specifically, Abs(MIN_INT) is MIN_INT.
template <typename T>
T Abs(T val) {
// TODO: this static assertion is for signed integer inputs, as that's the
// only type tested. However, the code should work for all numeric inputs.
// Remove the assertion and this comment when more tests are available.
VIXL_STATIC_ASSERT(std::is_signed<T>::value && std::is_integral<T>::value);
return ((val >= -std::numeric_limits<T>::max()) && (val < 0)) ? -val : val;
}
// Convert unsigned to signed numbers in a well-defined way (using two's
// complement representations).
inline int64_t RawbitsToInt64(uint64_t bits) {
return (bits >= UINT64_C(0x8000000000000000))
? (-static_cast<int64_t>(UnsignedNegate(bits) - 1) - 1)
: static_cast<int64_t>(bits);
}
inline int32_t RawbitsToInt32(uint32_t bits) {
return (bits >= UINT64_C(0x80000000))
? (-static_cast<int32_t>(UnsignedNegate(bits) - 1) - 1)
: static_cast<int32_t>(bits);
}
namespace internal {
// Internal simulation class used solely by the simulator to
// provide an abstraction layer for any half-precision arithmetic.
class SimFloat16 : public Float16 {
public:
// TODO: We should investigate making this constructor explicit.
// This is currently difficult to do due to a number of templated
// functions in the simulator which rely on returning double values.
SimFloat16(double dvalue) : Float16(dvalue) {} // NOLINT(runtime/explicit)
SimFloat16(Float16 f) { // NOLINT(runtime/explicit)
this->rawbits_ = Float16ToRawbits(f);
}
SimFloat16() : Float16() {}
SimFloat16 operator-() const;
SimFloat16 operator+(SimFloat16 rhs) const;
SimFloat16 operator-(SimFloat16 rhs) const;
SimFloat16 operator*(SimFloat16 rhs) const;
SimFloat16 operator/(SimFloat16 rhs) const;
bool operator<(SimFloat16 rhs) const;
bool operator>(SimFloat16 rhs) const;
bool operator==(SimFloat16 rhs) const;
bool operator!=(SimFloat16 rhs) const;
// This is necessary for conversions performed in (macro asm) Fmov.
bool operator==(double rhs) const;
operator double() const;
};
} // namespace internal
uint32_t Float16Sign(internal::SimFloat16 value);
uint32_t Float16Exp(internal::SimFloat16 value);
uint32_t Float16Mantissa(internal::SimFloat16 value);
uint32_t FloatSign(float value);
VIXL_DEPRECATED("FloatSign", inline uint32_t float_sign(float value)) {
return FloatSign(value);
}
uint32_t FloatExp(float value);
VIXL_DEPRECATED("FloatExp", inline uint32_t float_exp(float value)) {
return FloatExp(value);
}
uint32_t FloatMantissa(float value);
VIXL_DEPRECATED("FloatMantissa", inline uint32_t float_mantissa(float value)) {
return FloatMantissa(value);
}
uint32_t DoubleSign(double value);
VIXL_DEPRECATED("DoubleSign", inline uint32_t double_sign(double value)) {
return DoubleSign(value);
}
uint32_t DoubleExp(double value);
VIXL_DEPRECATED("DoubleExp", inline uint32_t double_exp(double value)) {
return DoubleExp(value);
}
uint64_t DoubleMantissa(double value);
VIXL_DEPRECATED("DoubleMantissa",
inline uint64_t double_mantissa(double value)) {
return DoubleMantissa(value);
}
internal::SimFloat16 Float16Pack(uint16_t sign,
uint16_t exp,
uint16_t mantissa);
float FloatPack(uint32_t sign, uint32_t exp, uint32_t mantissa);
VIXL_DEPRECATED("FloatPack",
inline float float_pack(uint32_t sign,
uint32_t exp,
uint32_t mantissa)) {
return FloatPack(sign, exp, mantissa);
}
double DoublePack(uint64_t sign, uint64_t exp, uint64_t mantissa);
VIXL_DEPRECATED("DoublePack",
inline double double_pack(uint32_t sign,
uint32_t exp,
uint64_t mantissa)) {
return DoublePack(sign, exp, mantissa);
}
// An fpclassify() function for 16-bit half-precision floats.
int Float16Classify(Float16 value);
VIXL_DEPRECATED("Float16Classify", inline int float16classify(uint16_t value)) {
return Float16Classify(RawbitsToFloat16(value));
}
bool IsZero(Float16 value);
inline bool IsPositiveZero(double value) {
return (value == 0.0) && (copysign(1.0, value) > 0.0);
}
inline bool IsNaN(float value) { return std::isnan(value); }
inline bool IsNaN(double value) { return std::isnan(value); }
inline bool IsNaN(Float16 value) { return Float16Classify(value) == FP_NAN; }
inline bool IsInf(float value) { return std::isinf(value); }
inline bool IsInf(double value) { return std::isinf(value); }
inline bool IsInf(Float16 value) {
return Float16Classify(value) == FP_INFINITE;
}
// NaN tests.
inline bool IsSignallingNaN(double num) {
const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
uint64_t raw = DoubleToRawbits(num);
if (IsNaN(num) && ((raw & kFP64QuietNaNMask) == 0)) {
return true;
}
return false;
}
inline bool IsSignallingNaN(float num) {
const uint32_t kFP32QuietNaNMask = 0x00400000;
uint32_t raw = FloatToRawbits(num);
if (IsNaN(num) && ((raw & kFP32QuietNaNMask) == 0)) {
return true;
}
return false;
}
inline bool IsSignallingNaN(Float16 num) {
const uint16_t kFP16QuietNaNMask = 0x0200;
return IsNaN(num) && ((Float16ToRawbits(num) & kFP16QuietNaNMask) == 0);
}
template <typename T>
inline bool IsQuietNaN(T num) {
return IsNaN(num) && !IsSignallingNaN(num);
}
// Convert the NaN in 'num' to a quiet NaN.
inline double ToQuietNaN(double num) {
const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
VIXL_ASSERT(IsNaN(num));
return RawbitsToDouble(DoubleToRawbits(num) | kFP64QuietNaNMask);
}
inline float ToQuietNaN(float num) {
const uint32_t kFP32QuietNaNMask = 0x00400000;
VIXL_ASSERT(IsNaN(num));
return RawbitsToFloat(FloatToRawbits(num) | kFP32QuietNaNMask);
}
inline internal::SimFloat16 ToQuietNaN(internal::SimFloat16 num) {
const uint16_t kFP16QuietNaNMask = 0x0200;
VIXL_ASSERT(IsNaN(num));
return internal::SimFloat16(
RawbitsToFloat16(Float16ToRawbits(num) | kFP16QuietNaNMask));
}
// Fused multiply-add.
inline double FusedMultiplyAdd(double op1, double op2, double a) {
return fma(op1, op2, a);
}
inline float FusedMultiplyAdd(float op1, float op2, float a) {
return fmaf(op1, op2, a);
}
inline uint64_t LowestSetBit(uint64_t value) {
return value & UnsignedNegate(value);
}
template <typename T>
inline int HighestSetBitPosition(T value) {
VIXL_ASSERT(value != 0);
return (sizeof(value) * 8 - 1) - CountLeadingZeros(value);
}
template <typename V>
inline int WhichPowerOf2(V value) {
VIXL_ASSERT(IsPowerOf2(value));
return CountTrailingZeros(value);
}
unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);
int BitCount(uint64_t value);
template <typename T>
T ReverseBits(T value) {
VIXL_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) ||
(sizeof(value) == 4) || (sizeof(value) == 8));
T result = 0;
for (unsigned i = 0; i < (sizeof(value) * 8); i++) {
result = (result << 1) | (value & 1);
value >>= 1;
}
return result;
}
template <typename T>
inline T SignExtend(T val, int size_in_bits) {
VIXL_ASSERT(size_in_bits > 0);
T mask = (T(2) << (size_in_bits - 1)) - T(1);
val &= mask;
T sign_bits = -((val >> (size_in_bits - 1)) << size_in_bits);
val |= sign_bits;
return val;
}
template <typename T>
T ReverseBytes(T value, int block_bytes_log2) {
VIXL_ASSERT((sizeof(value) == 4) || (sizeof(value) == 8));
VIXL_ASSERT((1U << block_bytes_log2) <= sizeof(value));
// Split the 64-bit value into an 8-bit array, where b[0] is the least
// significant byte, and b[7] is the most significant.
uint8_t bytes[8];
uint64_t mask = UINT64_C(0xff00000000000000);
for (int i = 7; i >= 0; i--) {
bytes[i] = (static_cast<uint64_t>(value) & mask) >> (i * 8);
mask >>= 8;
}
// Permutation tables for REV instructions.
// permute_table[0] is used by REV16_x, REV16_w
// permute_table[1] is used by REV32_x, REV_w
// permute_table[2] is used by REV_x
VIXL_ASSERT((0 < block_bytes_log2) && (block_bytes_log2 < 4));
static const uint8_t permute_table[3][8] = {{6, 7, 4, 5, 2, 3, 0, 1},
{4, 5, 6, 7, 0, 1, 2, 3},
{0, 1, 2, 3, 4, 5, 6, 7}};
uint64_t temp = 0;
for (int i = 0; i < 8; i++) {
temp <<= 8;
temp |= bytes[permute_table[block_bytes_log2 - 1][i]];
}
T result;
VIXL_STATIC_ASSERT(sizeof(result) <= sizeof(temp));
memcpy(&result, &temp, sizeof(result));
return result;
}
template <unsigned MULTIPLE, typename T>
inline bool IsMultiple(T value) {
VIXL_ASSERT(IsPowerOf2(MULTIPLE));
return (value & (MULTIPLE - 1)) == 0;
}
template <typename T>
inline bool IsMultiple(T value, unsigned multiple) {
VIXL_ASSERT(IsPowerOf2(multiple));
return (value & (multiple - 1)) == 0;
}
template <typename T>
inline bool IsAligned(T pointer, int alignment) {
VIXL_ASSERT(IsPowerOf2(alignment));
return (pointer & (alignment - 1)) == 0;
}
// Pointer alignment
// TODO: rename/refactor to make it specific to instructions.
template <unsigned ALIGN, typename T>
inline bool IsAligned(T pointer) {
VIXL_ASSERT(sizeof(pointer) == sizeof(intptr_t)); // NOLINT(runtime/sizeof)
// Use C-style casts to get static_cast behaviour for integral types (T), and
// reinterpret_cast behaviour for other types.
return IsAligned((intptr_t)(pointer), ALIGN);
}
template <typename T>
bool IsWordAligned(T pointer) {
return IsAligned<4>(pointer);
}
// Increment a pointer until it has the specified alignment. The alignment must
// be a power of two.
template <class T>
T AlignUp(T pointer,
typename Unsigned<sizeof(T) * kBitsPerByte>::type alignment) {
VIXL_ASSERT(IsPowerOf2(alignment));
// Use C-style casts to get static_cast behaviour for integral types (T), and
// reinterpret_cast behaviour for other types.
typename Unsigned<sizeof(T)* kBitsPerByte>::type pointer_raw =
(typename Unsigned<sizeof(T) * kBitsPerByte>::type) pointer;
VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw));
size_t mask = alignment - 1;
T result = (T)((pointer_raw + mask) & ~mask);
VIXL_ASSERT(result >= pointer);
return result;
}
// Decrement a pointer until it has the specified alignment. The alignment must
// be a power of two.
template <class T>
T AlignDown(T pointer,
typename Unsigned<sizeof(T) * kBitsPerByte>::type alignment) {
VIXL_ASSERT(IsPowerOf2(alignment));
// Use C-style casts to get static_cast behaviour for integral types (T), and
// reinterpret_cast behaviour for other types.
typename Unsigned<sizeof(T)* kBitsPerByte>::type pointer_raw =
(typename Unsigned<sizeof(T) * kBitsPerByte>::type) pointer;
VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw));
size_t mask = alignment - 1;
return (T)(pointer_raw & ~mask);
}
template <typename T>
inline T ExtractBit(T value, unsigned bit) {
return (value >> bit) & T(1);
}
template <typename Ts, typename Td>
inline Td ExtractBits(Ts value, int least_significant_bit, Td mask) {
return Td((value >> least_significant_bit) & Ts(mask));
}
template <typename Ts, typename Td>
inline void AssignBit(Td& dst, // NOLINT(runtime/references)
int bit,
Ts value) {
VIXL_ASSERT((value == Ts(0)) || (value == Ts(1)));
VIXL_ASSERT(bit >= 0);
VIXL_ASSERT(bit < static_cast<int>(sizeof(Td) * 8));
Td mask(1);
dst &= ~(mask << bit);
dst |= Td(value) << bit;
}
template <typename Td, typename Ts>
inline void AssignBits(Td& dst, // NOLINT(runtime/references)
int least_significant_bit,
Ts mask,
Ts value) {
VIXL_ASSERT(least_significant_bit >= 0);
VIXL_ASSERT(least_significant_bit < static_cast<int>(sizeof(Td) * 8));
VIXL_ASSERT(((Td(mask) << least_significant_bit) >> least_significant_bit) ==
Td(mask));
VIXL_ASSERT((value & mask) == value);
dst &= ~(Td(mask) << least_significant_bit);
dst |= Td(value) << least_significant_bit;
}
class VFP {
public:
static uint32_t FP32ToImm8(float imm) {
// bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
uint32_t bits = FloatToRawbits(imm);
// bit7: a000.0000
uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
// bit6: 0b00.0000
uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
// bit5_to_0: 00cd.efgh
uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0);
}
static uint32_t FP64ToImm8(double imm) {
// bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
// 0000.0000.0000.0000.0000.0000.0000.0000
uint64_t bits = DoubleToRawbits(imm);
// bit7: a000.0000
uint64_t bit7 = ((bits >> 63) & 0x1) << 7;
// bit6: 0b00.0000
uint64_t bit6 = ((bits >> 61) & 0x1) << 6;
// bit5_to_0: 00cd.efgh
uint64_t bit5_to_0 = (bits >> 48) & 0x3f;
return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0);
}
static float Imm8ToFP32(uint32_t imm8) {
// Imm8: abcdefgh (8 bits)
// Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
// where B is b ^ 1
uint32_t bits = imm8;
uint32_t bit7 = (bits >> 7) & 0x1;
uint32_t bit6 = (bits >> 6) & 0x1;
uint32_t bit5_to_0 = bits & 0x3f;
uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
return RawbitsToFloat(result);
}
static double Imm8ToFP64(uint32_t imm8) {
// Imm8: abcdefgh (8 bits)
// Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
// 0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
// where B is b ^ 1
uint32_t bits = imm8;
uint64_t bit7 = (bits >> 7) & 0x1;
uint64_t bit6 = (bits >> 6) & 0x1;
uint64_t bit5_to_0 = bits & 0x3f;
uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
return RawbitsToDouble(result);
}
static bool IsImmFP32(float imm) {
// Valid values will have the form:
// aBbb.bbbc.defg.h000.0000.0000.0000.0000
uint32_t bits = FloatToRawbits(imm);
// bits[19..0] are cleared.
if ((bits & 0x7ffff) != 0) {
return false;
}
// bits[29..25] are all set or all cleared.
uint32_t b_pattern = (bits >> 16) & 0x3e00;
if (b_pattern != 0 && b_pattern != 0x3e00) {
return false;
}
// bit[30] and bit[29] are opposite.
if (((bits ^ (bits << 1)) & 0x40000000) == 0) {
return false;
}
return true;
}
static bool IsImmFP64(double imm) {
// Valid values will have the form:
// aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
// 0000.0000.0000.0000.0000.0000.0000.0000
uint64_t bits = DoubleToRawbits(imm);
// bits[47..0] are cleared.
if ((bits & 0x0000ffffffffffff) != 0) {
return false;
}
// bits[61..54] are all set or all cleared.
uint32_t b_pattern = (bits >> 48) & 0x3fc0;
if ((b_pattern != 0) && (b_pattern != 0x3fc0)) {
return false;
}
// bit[62] and bit[61] are opposite.
if (((bits ^ (bits << 1)) & (UINT64_C(1) << 62)) == 0) {
return false;
}
return true;
}
};
class BitField {
// ForEachBitHelper is a functor that will call
// bool ForEachBitHelper::execute(ElementType id) const
// and expects a boolean in return whether to continue (if true)
// or stop (if false)
// check_set will check if the bits are on (true) or off(false)
template <typename ForEachBitHelper, bool check_set>
bool ForEachBit(const ForEachBitHelper& helper) {
for (int i = 0; static_cast<size_t>(i) < bitfield_.size(); i++) {
if (bitfield_[i] == check_set)
if (!helper.execute(i)) return false;
}
return true;
}
public:
explicit BitField(unsigned size) : bitfield_(size, 0) {}
void Set(int i) {
VIXL_ASSERT((i >= 0) && (static_cast<size_t>(i) < bitfield_.size()));
bitfield_[i] = true;
}
void Unset(int i) {
VIXL_ASSERT((i >= 0) && (static_cast<size_t>(i) < bitfield_.size()));
bitfield_[i] = true;
}
bool IsSet(int i) const { return bitfield_[i]; }
// For each bit not set in the bitfield call the execute functor
// execute.
// ForEachBitSetHelper::execute returns true if the iteration through
// the bits can continue, otherwise it will stop.
// struct ForEachBitSetHelper {
// bool execute(int /*id*/) { return false; }
// };
template <typename ForEachBitNotSetHelper>
bool ForEachBitNotSet(const ForEachBitNotSetHelper& helper) {
return ForEachBit<ForEachBitNotSetHelper, false>(helper);
}
// For each bit set in the bitfield call the execute functor
// execute.
template <typename ForEachBitSetHelper>
bool ForEachBitSet(const ForEachBitSetHelper& helper) {
return ForEachBit<ForEachBitSetHelper, true>(helper);
}
private:
std::vector<bool> bitfield_;
};
namespace internal {
typedef int64_t Int64;
class Uint64;
class Uint128;
class Uint32 {
uint32_t data_;
public:
// Unlike uint32_t, Uint32 has a default constructor.
Uint32() { data_ = 0; }
explicit Uint32(uint32_t data) : data_(data) {}
inline explicit Uint32(Uint64 data);
uint32_t Get() const { return data_; }
template <int N>
int32_t GetSigned() const {
return ExtractSignedBitfield32(N - 1, 0, data_);
}
int32_t GetSigned() const { return data_; }
Uint32 operator~() const { return Uint32(~data_); }
Uint32 operator-() const { return Uint32(UnsignedNegate(data_)); }
bool operator==(Uint32 value) const { return data_ == value.data_; }
bool operator!=(Uint32 value) const { return data_ != value.data_; }
bool operator>(Uint32 value) const { return data_ > value.data_; }
Uint32 operator+(Uint32 value) const { return Uint32(data_ + value.data_); }
Uint32 operator-(Uint32 value) const { return Uint32(data_ - value.data_); }
Uint32 operator&(Uint32 value) const { return Uint32(data_ & value.data_); }
Uint32 operator&=(Uint32 value) {
data_ &= value.data_;
return *this;
}
Uint32 operator^(Uint32 value) const { return Uint32(data_ ^ value.data_); }
Uint32 operator^=(Uint32 value) {
data_ ^= value.data_;
return *this;
}
Uint32 operator|(Uint32 value) const { return Uint32(data_ | value.data_); }
Uint32 operator|=(Uint32 value) {
data_ |= value.data_;
return *this;
}
// Unlike uint32_t, the shift functions can accept negative shift and
// return 0 when the shift is too big.
Uint32 operator>>(int shift) const {
if (shift == 0) return *this;
if (shift < 0) {
int tmp = -shift;
if (tmp >= 32) return Uint32(0);
return Uint32(data_ << tmp);
}
int tmp = shift;
if (tmp >= 32) return Uint32(0);
return Uint32(data_ >> tmp);
}
Uint32 operator<<(int shift) const {
if (shift == 0) return *this;
if (shift < 0) {
int tmp = -shift;
if (tmp >= 32) return Uint32(0);
return Uint32(data_ >> tmp);
}
int tmp = shift;
if (tmp >= 32) return Uint32(0);
return Uint32(data_ << tmp);
}
};
class Uint64 {
uint64_t data_;
public:
// Unlike uint64_t, Uint64 has a default constructor.
Uint64() { data_ = 0; }
explicit Uint64(uint64_t data) : data_(data) {}
explicit Uint64(Uint32 data) : data_(data.Get()) {}
inline explicit Uint64(Uint128 data);
uint64_t Get() const { return data_; }
int64_t GetSigned(int N) const {
return ExtractSignedBitfield64(N - 1, 0, data_);
}
int64_t GetSigned() const { return data_; }
Uint32 ToUint32() const {
VIXL_ASSERT((data_ >> 32) == 0);
return Uint32(static_cast<uint32_t>(data_));
}
Uint32 GetHigh32() const { return Uint32(data_ >> 32); }
Uint32 GetLow32() const { return Uint32(data_ & 0xffffffff); }
Uint64 operator~() const { return Uint64(~data_); }
Uint64 operator-() const { return Uint64(UnsignedNegate(data_)); }
bool operator==(Uint64 value) const { return data_ == value.data_; }
bool operator!=(Uint64 value) const { return data_ != value.data_; }
Uint64 operator+(Uint64 value) const { return Uint64(data_ + value.data_); }
Uint64 operator-(Uint64 value) const { return Uint64(data_ - value.data_); }
Uint64 operator&(Uint64 value) const { return Uint64(data_ & value.data_); }
Uint64 operator&=(Uint64 value) {
data_ &= value.data_;
return *this;
}
Uint64 operator^(Uint64 value) const { return Uint64(data_ ^ value.data_); }
Uint64 operator^=(Uint64 value) {
data_ ^= value.data_;
return *this;
}
Uint64 operator|(Uint64 value) const { return Uint64(data_ | value.data_); }
Uint64 operator|=(Uint64 value) {
data_ |= value.data_;
return *this;
}
// Unlike uint64_t, the shift functions can accept negative shift and
// return 0 when the shift is too big.
Uint64 operator>>(int shift) const {
if (shift == 0) return *this;
if (shift < 0) {
int tmp = -shift;
if (tmp >= 64) return Uint64(0);
return Uint64(data_ << tmp);
}
int tmp = shift;
if (tmp >= 64) return Uint64(0);
return Uint64(data_ >> tmp);
}
Uint64 operator<<(int shift) const {
if (shift == 0) return *this;
if (shift < 0) {
int tmp = -shift;
if (tmp >= 64) return Uint64(0);
return Uint64(data_ >> tmp);
}
int tmp = shift;
if (tmp >= 64) return Uint64(0);
return Uint64(data_ << tmp);
}
};
class Uint128 {
uint64_t data_high_;
uint64_t data_low_;
public:
Uint128() : data_high_(0), data_low_(0) {}
explicit Uint128(uint64_t data_low) : data_high_(0), data_low_(data_low) {}
explicit Uint128(Uint64 data_low)
: data_high_(0), data_low_(data_low.Get()) {}
Uint128(uint64_t data_high, uint64_t data_low)
: data_high_(data_high), data_low_(data_low) {}
Uint64 ToUint64() const {
VIXL_ASSERT(data_high_ == 0);
return Uint64(data_low_);
}
Uint64 GetHigh64() const { return Uint64(data_high_); }
Uint64 GetLow64() const { return Uint64(data_low_); }
Uint128 operator~() const { return Uint128(~data_high_, ~data_low_); }
bool operator==(Uint128 value) const {
return (data_high_ == value.data_high_) && (data_low_ == value.data_low_);
}
Uint128 operator&(Uint128 value) const {
return Uint128(data_high_ & value.data_high_, data_low_ & value.data_low_);
}
Uint128 operator&=(Uint128 value) {
data_high_ &= value.data_high_;
data_low_ &= value.data_low_;
return *this;
}
Uint128 operator|=(Uint128 value) {
data_high_ |= value.data_high_;
data_low_ |= value.data_low_;
return *this;
}
Uint128 operator>>(int shift) const {
VIXL_ASSERT((shift >= 0) && (shift < 128));
if (shift == 0) return *this;
if (shift >= 64) {
return Uint128(0, data_high_ >> (shift - 64));
}
uint64_t tmp = (data_high_ << (64 - shift)) | (data_low_ >> shift);
return Uint128(data_high_ >> shift, tmp);
}
Uint128 operator<<(int shift) const {
VIXL_ASSERT((shift >= 0) && (shift < 128));
if (shift == 0) return *this;
if (shift >= 64) {
return Uint128(data_low_ << (shift - 64), 0);
}
uint64_t tmp = (data_high_ << shift) | (data_low_ >> (64 - shift));
return Uint128(tmp, data_low_ << shift);
}
};
Uint32::Uint32(Uint64 data) : data_(data.ToUint32().Get()) {}
Uint64::Uint64(Uint128 data) : data_(data.ToUint64().Get()) {}
Int64 BitCount(Uint32 value);
// The algorithm used is adapted from the one described in section 8.2 of
// Hacker's Delight, by Henry S. Warren, Jr.
template <unsigned N, typename T>
int64_t MultiplyHigh(T u, T v) {
uint64_t u0, v0, w0, u1, v1, w1, w2, t;
VIXL_STATIC_ASSERT((N == 8) || (N == 16) || (N == 32) || (N == 64));
uint64_t sign_mask = UINT64_C(1) << (N - 1);
uint64_t sign_ext = 0;
unsigned half_bits = N / 2;
uint64_t half_mask = GetUintMask(half_bits);
if (std::numeric_limits<T>::is_signed) {
sign_ext = UINT64_C(0xffffffffffffffff) << half_bits;
}
VIXL_ASSERT(sizeof(u) == sizeof(uint64_t));
VIXL_ASSERT(sizeof(u) == sizeof(u0));
u0 = u & half_mask;
u1 = u >> half_bits | (((u & sign_mask) != 0) ? sign_ext : 0);
v0 = v & half_mask;
v1 = v >> half_bits | (((v & sign_mask) != 0) ? sign_ext : 0);
w0 = u0 * v0;
t = u1 * v0 + (w0 >> half_bits);
w1 = t & half_mask;
w2 = t >> half_bits | (((t & sign_mask) != 0) ? sign_ext : 0);
w1 = u0 * v1 + w1;
w1 = w1 >> half_bits | (((w1 & sign_mask) != 0) ? sign_ext : 0);
uint64_t value = u1 * v1 + w2 + w1;
int64_t result;
memcpy(&result, &value, sizeof(result));
return result;
}
} // namespace internal
// The default NaN values (for FPCR.DN=1).
extern const double kFP64DefaultNaN;
extern const float kFP32DefaultNaN;
extern const Float16 kFP16DefaultNaN;
// Floating-point infinity values.
extern const Float16 kFP16PositiveInfinity;
extern const Float16 kFP16NegativeInfinity;
extern const float kFP32PositiveInfinity;
extern const float kFP32NegativeInfinity;
extern const double kFP64PositiveInfinity;
extern const double kFP64NegativeInfinity;
// Floating-point zero values.
extern const Float16 kFP16PositiveZero;
extern const Float16 kFP16NegativeZero;
// AArch64 floating-point specifics. These match IEEE-754.
const unsigned kDoubleMantissaBits = 52;
const unsigned kDoubleExponentBits = 11;
const unsigned kFloatMantissaBits = 23;
const unsigned kFloatExponentBits = 8;
const unsigned kFloat16MantissaBits = 10;
const unsigned kFloat16ExponentBits = 5;
enum FPRounding {
// The first four values are encodable directly by FPCR<RMode>.
FPTieEven = 0x0,
FPPositiveInfinity = 0x1,
FPNegativeInfinity = 0x2,
FPZero = 0x3,
// The final rounding modes are only available when explicitly specified by
// the instruction (such as with fcvta). It cannot be set in FPCR.
FPTieAway,
FPRoundOdd
};
enum UseDefaultNaN { kUseDefaultNaN, kIgnoreDefaultNaN };
// Assemble the specified IEEE-754 components into the target type and apply
// appropriate rounding.
// sign: 0 = positive, 1 = negative
// exponent: Unbiased IEEE-754 exponent.
// mantissa: The mantissa of the input. The top bit (which is not encoded for
// normal IEEE-754 values) must not be omitted. This bit has the
// value 'pow(2, exponent)'.
//
// The input value is assumed to be a normalized value. That is, the input may
// not be infinity or NaN. If the source value is subnormal, it must be
// normalized before calling this function such that the highest set bit in the
// mantissa has the value 'pow(2, exponent)'.
//
// Callers should use FPRoundToFloat or FPRoundToDouble directly, rather than
// calling a templated FPRound.
template <class T, int ebits, int mbits>
T FPRound(int64_t sign,
int64_t exponent,
uint64_t mantissa,
FPRounding round_mode) {
VIXL_ASSERT((sign == 0) || (sign == 1));
// Only FPTieEven and FPRoundOdd rounding modes are implemented.
VIXL_ASSERT((round_mode == FPTieEven) || (round_mode == FPRoundOdd));
// Rounding can promote subnormals to normals, and normals to infinities. For
// example, a double with exponent 127 (FLT_MAX_EXP) would appear to be
// encodable as a float, but rounding based on the low-order mantissa bits
// could make it overflow. With ties-to-even rounding, this value would become
// an infinity.
// ---- Rounding Method ----
//
// The exponent is irrelevant in the rounding operation, so we treat the
// lowest-order bit that will fit into the result ('onebit') as having
// the value '1'. Similarly, the highest-order bit that won't fit into
// the result ('halfbit') has the value '0.5'. The 'point' sits between
// 'onebit' and 'halfbit':
//
// These bits fit into the result.
// |---------------------|
// mantissa = 0bxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
// ||
// / |
// / halfbit
// onebit
//
// For subnormal outputs, the range of representable bits is smaller and
// the position of onebit and halfbit depends on the exponent of the
// input, but the method is otherwise similar.
//
// onebit(frac)
// |
// | halfbit(frac) halfbit(adjusted)
// | / /
// | | |
// 0b00.0 (exact) -> 0b00.0 (exact) -> 0b00
// 0b00.0... -> 0b00.0... -> 0b00
// 0b00.1 (exact) -> 0b00.0111..111 -> 0b00
// 0b00.1... -> 0b00.1... -> 0b01
// 0b01.0 (exact) -> 0b01.0 (exact) -> 0b01
// 0b01.0... -> 0b01.0... -> 0b01
// 0b01.1 (exact) -> 0b01.1 (exact) -> 0b10
// 0b01.1... -> 0b01.1... -> 0b10
// 0b10.0 (exact) -> 0b10.0 (exact) -> 0b10
// 0b10.0... -> 0b10.0... -> 0b10
// 0b10.1 (exact) -> 0b10.0111..111 -> 0b10
// 0b10.1... -> 0b10.1... -> 0b11
// 0b11.0 (exact) -> 0b11.0 (exact) -> 0b11
// ... / | / |
// / | / |
// / |
// adjusted = frac - (halfbit(mantissa) & ~onebit(frac)); / |
//
// mantissa = (mantissa >> shift) + halfbit(adjusted);
static const int mantissa_offset = 0;
static const int exponent_offset = mantissa_offset + mbits;
static const int sign_offset = exponent_offset + ebits;
VIXL_ASSERT(sign_offset == (sizeof(T) * 8 - 1));
// Bail out early for zero inputs.
if (mantissa == 0) {
return static_cast<T>(sign << sign_offset);
}
// If all bits in the exponent are set, the value is infinite or NaN.
// This is true for all binary IEEE-754 formats.
static const int infinite_exponent = (1 << ebits) - 1;
static const int max_normal_exponent = infinite_exponent - 1;
// Apply the exponent bias to encode it for the result. Doing this early makes
// it easy to detect values that will be infinite or subnormal.
exponent += max_normal_exponent >> 1;
if (exponent > max_normal_exponent) {
// Overflow: the input is too large for the result type to represent.
if (round_mode == FPTieEven) {
// FPTieEven rounding mode handles overflows using infinities.
exponent = infinite_exponent;
mantissa = 0;
} else {
VIXL_ASSERT(round_mode == FPRoundOdd);
// FPRoundOdd rounding mode handles overflows using the largest magnitude
// normal number.
exponent = max_normal_exponent;
mantissa = (UINT64_C(1) << exponent_offset) - 1;
}
return static_cast<T>((sign << sign_offset) |
(exponent << exponent_offset) |
(mantissa << mantissa_offset));
}
// Calculate the shift required to move the top mantissa bit to the proper
// place in the destination type.
const int highest_significant_bit = 63 - CountLeadingZeros(mantissa);
int shift = highest_significant_bit - mbits;
if (exponent <= 0) {
// The output will be subnormal (before rounding).
// For subnormal outputs, the shift must be adjusted by the exponent. The +1
// is necessary because the exponent of a subnormal value (encoded as 0) is
// the same as the exponent of the smallest normal value (encoded as 1).
shift += static_cast<int>(-exponent + 1);
// Handle inputs that would produce a zero output.
//
// Shifts higher than highest_significant_bit+1 will always produce a zero
// result. A shift of exactly highest_significant_bit+1 might produce a
// non-zero result after rounding.
if (shift > (highest_significant_bit + 1)) {
if (round_mode == FPTieEven) {
// The result will always be +/-0.0.
return static_cast<T>(sign << sign_offset);
} else {
VIXL_ASSERT(round_mode == FPRoundOdd);
VIXL_ASSERT(mantissa != 0);
// For FPRoundOdd, if the mantissa is too small to represent and
// non-zero return the next "odd" value.
return static_cast<T>((sign << sign_offset) | 1);
}
}
// Properly encode the exponent for a subnormal output.
exponent = 0;
} else {
// Clear the topmost mantissa bit, since this is not encoded in IEEE-754
// normal values.
mantissa &= ~(UINT64_C(1) << highest_significant_bit);
}
// The casts below are only well-defined for unsigned integers.
VIXL_STATIC_ASSERT(std::numeric_limits<T>::is_integer);
VIXL_STATIC_ASSERT(!std::numeric_limits<T>::is_signed);
if (shift > 0) {
if (round_mode == FPTieEven) {
// We have to shift the mantissa to the right. Some precision is lost, so
// we need to apply rounding.
uint64_t onebit_mantissa = (mantissa >> (shift)) & 1;
uint64_t halfbit_mantissa = (mantissa >> (shift - 1)) & 1;
uint64_t adjustment = (halfbit_mantissa & ~onebit_mantissa);
uint64_t adjusted = mantissa - adjustment;
T halfbit_adjusted = (adjusted >> (shift - 1)) & 1;
T result =
static_cast<T>((sign << sign_offset) | (exponent << exponent_offset) |
((mantissa >> shift) << mantissa_offset));
// A very large mantissa can overflow during rounding. If this happens,
// the exponent should be incremented and the mantissa set to 1.0
// (encoded as 0). Applying halfbit_adjusted after assembling the float
// has the nice side-effect that this case is handled for free.
//
// This also handles cases where a very large finite value overflows to
// infinity, or where a very large subnormal value overflows to become
// normal.
return result + halfbit_adjusted;
} else {
VIXL_ASSERT(round_mode == FPRoundOdd);
// If any bits at position halfbit or below are set, onebit (ie. the
// bottom bit of the resulting mantissa) must be set.
uint64_t fractional_bits = mantissa & ((UINT64_C(1) << shift) - 1);
if (fractional_bits != 0) {
mantissa |= UINT64_C(1) << shift;
}
return static_cast<T>((sign << sign_offset) |
(exponent << exponent_offset) |
((mantissa >> shift) << mantissa_offset));
}
} else {
// We have to shift the mantissa to the left (or not at all). The input
// mantissa is exactly representable in the output mantissa, so apply no
// rounding correction.
return static_cast<T>((sign << sign_offset) |
(exponent << exponent_offset) |
((mantissa << -shift) << mantissa_offset));
}
}
// See FPRound for a description of this function.
inline double FPRoundToDouble(int64_t sign,
int64_t exponent,
uint64_t mantissa,
FPRounding round_mode) {
uint64_t bits =
FPRound<uint64_t, kDoubleExponentBits, kDoubleMantissaBits>(sign,
exponent,
mantissa,
round_mode);
return RawbitsToDouble(bits);
}
// See FPRound for a description of this function.
inline Float16 FPRoundToFloat16(int64_t sign,
int64_t exponent,
uint64_t mantissa,
FPRounding round_mode) {
return RawbitsToFloat16(
FPRound<uint16_t, kFloat16ExponentBits, kFloat16MantissaBits>(
sign, exponent, mantissa, round_mode));
}
// See FPRound for a description of this function.
static inline float FPRoundToFloat(int64_t sign,
int64_t exponent,
uint64_t mantissa,
FPRounding round_mode) {
uint32_t bits =
FPRound<uint32_t, kFloatExponentBits, kFloatMantissaBits>(sign,
exponent,
mantissa,
round_mode);
return RawbitsToFloat(bits);
}
float FPToFloat(Float16 value, UseDefaultNaN DN, bool* exception = NULL);
float FPToFloat(double value,
FPRounding round_mode,
UseDefaultNaN DN,
bool* exception = NULL);
double FPToDouble(Float16 value, UseDefaultNaN DN, bool* exception = NULL);
double FPToDouble(float value, UseDefaultNaN DN, bool* exception = NULL);
Float16 FPToFloat16(float value,
FPRounding round_mode,
UseDefaultNaN DN,
bool* exception = NULL);
Float16 FPToFloat16(double value,
FPRounding round_mode,
UseDefaultNaN DN,
bool* exception = NULL);
// Like static_cast<T>(value), but with specialisations for the Float16 type.
template <typename T, typename F>
T StaticCastFPTo(F value) {
return static_cast<T>(value);
}
template <>
inline float StaticCastFPTo<float, Float16>(Float16 value) {
return FPToFloat(value, kIgnoreDefaultNaN);
}
template <>
inline double StaticCastFPTo<double, Float16>(Float16 value) {
return FPToDouble(value, kIgnoreDefaultNaN);
}
template <>
inline Float16 StaticCastFPTo<Float16, float>(float value) {
return FPToFloat16(value, FPTieEven, kIgnoreDefaultNaN);
}
template <>
inline Float16 StaticCastFPTo<Float16, double>(double value) {
return FPToFloat16(value, FPTieEven, kIgnoreDefaultNaN);
}
template <typename T>
uint64_t FPToRawbitsWithSize(unsigned size_in_bits, T value) {
switch (size_in_bits) {
case 16:
return Float16ToRawbits(StaticCastFPTo<Float16>(value));
case 32:
return FloatToRawbits(StaticCastFPTo<float>(value));
case 64:
return DoubleToRawbits(StaticCastFPTo<double>(value));
}
VIXL_UNREACHABLE();
return 0;
}
template <typename T>
T RawbitsWithSizeToFP(unsigned size_in_bits, uint64_t value) {
VIXL_ASSERT(IsUintN(size_in_bits, value));
switch (size_in_bits) {
case 16:
return StaticCastFPTo<T>(RawbitsToFloat16(static_cast<uint16_t>(value)));
case 32:
return StaticCastFPTo<T>(RawbitsToFloat(static_cast<uint32_t>(value)));
case 64:
return StaticCastFPTo<T>(RawbitsToDouble(value));
}
VIXL_UNREACHABLE();
return 0;
}
// Jenkins one-at-a-time hash, based on
// https://en.wikipedia.org/wiki/Jenkins_hash_function citing
// https://www.drdobbs.com/database/algorithm-alley/184410284.
constexpr uint32_t Hash(const char* str, uint32_t hash = 0) {
if (*str == '\0') {
hash += hash << 3;
hash ^= hash >> 11;
hash += hash << 15;
return hash;
} else {
hash += *str;
hash += hash << 10;
hash ^= hash >> 6;
return Hash(str + 1, hash);
}
}
constexpr uint32_t operator"" _h(const char* x, size_t) { return Hash(x); }
} // namespace vixl
#endif // VIXL_UTILS_H