mirror of
				https://github.com/RetroDECK/Duckstation.git
				synced 2025-04-10 19:15:14 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1433 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1433 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2005, Google Inc.
 | |
| // All rights reserved.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are
 | |
| // met:
 | |
| //
 | |
| //     * Redistributions of source code must retain the above copyright
 | |
| // notice, this list of conditions and the following disclaimer.
 | |
| //     * Redistributions in binary form must reproduce the above
 | |
| // copyright notice, this list of conditions and the following disclaimer
 | |
| // in the documentation and/or other materials provided with the
 | |
| // distribution.
 | |
| //     * Neither the name of Google Inc. nor the names of its
 | |
| // contributors may be used to endorse or promote products derived from
 | |
| // this software without specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| //
 | |
| // The Google C++ Testing and Mocking Framework (Google Test)
 | |
| //
 | |
| // This header file declares functions and macros used internally by
 | |
| // Google Test.  They are subject to change without notice.
 | |
| 
 | |
| // GOOGLETEST_CM0001 DO NOT DELETE
 | |
| 
 | |
| #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
 | |
| #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
 | |
| 
 | |
| #include "gtest/internal/gtest-port.h"
 | |
| 
 | |
| #if GTEST_OS_LINUX
 | |
| # include <stdlib.h>
 | |
| # include <sys/types.h>
 | |
| # include <sys/wait.h>
 | |
| # include <unistd.h>
 | |
| #endif  // GTEST_OS_LINUX
 | |
| 
 | |
| #if GTEST_HAS_EXCEPTIONS
 | |
| # include <stdexcept>
 | |
| #endif
 | |
| 
 | |
| #include <ctype.h>
 | |
| #include <float.h>
 | |
| #include <string.h>
 | |
| #include <cstdint>
 | |
| #include <iomanip>
 | |
| #include <limits>
 | |
| #include <map>
 | |
| #include <set>
 | |
| #include <string>
 | |
| #include <type_traits>
 | |
| #include <vector>
 | |
| 
 | |
| #include "gtest/gtest-message.h"
 | |
| #include "gtest/internal/gtest-filepath.h"
 | |
| #include "gtest/internal/gtest-string.h"
 | |
| #include "gtest/internal/gtest-type-util.h"
 | |
| 
 | |
| // Due to C++ preprocessor weirdness, we need double indirection to
 | |
| // concatenate two tokens when one of them is __LINE__.  Writing
 | |
| //
 | |
| //   foo ## __LINE__
 | |
| //
 | |
| // will result in the token foo__LINE__, instead of foo followed by
 | |
| // the current line number.  For more details, see
 | |
| // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
 | |
| #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
 | |
| #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
 | |
| 
 | |
| // Stringifies its argument.
 | |
| // Work around a bug in visual studio which doesn't accept code like this:
 | |
| //
 | |
| //   #define GTEST_STRINGIFY_(name) #name
 | |
| //   #define MACRO(a, b, c) ... GTEST_STRINGIFY_(a) ...
 | |
| //   MACRO(, x, y)
 | |
| //
 | |
| // Complaining about the argument to GTEST_STRINGIFY_ being empty.
 | |
| // This is allowed by the spec.
 | |
| #define GTEST_STRINGIFY_HELPER_(name, ...) #name
 | |
| #define GTEST_STRINGIFY_(...) GTEST_STRINGIFY_HELPER_(__VA_ARGS__, )
 | |
| 
 | |
| namespace proto2 { class Message; }
 | |
| 
 | |
| namespace testing {
 | |
| 
 | |
| // Forward declarations.
 | |
| 
 | |
| class AssertionResult;                 // Result of an assertion.
 | |
| class Message;                         // Represents a failure message.
 | |
| class Test;                            // Represents a test.
 | |
| class TestInfo;                        // Information about a test.
 | |
| class TestPartResult;                  // Result of a test part.
 | |
| class UnitTest;                        // A collection of test suites.
 | |
| 
 | |
| template <typename T>
 | |
| ::std::string PrintToString(const T& value);
 | |
| 
 | |
| namespace internal {
 | |
| 
 | |
| struct TraceInfo;                      // Information about a trace point.
 | |
| class TestInfoImpl;                    // Opaque implementation of TestInfo
 | |
| class UnitTestImpl;                    // Opaque implementation of UnitTest
 | |
| 
 | |
| // The text used in failure messages to indicate the start of the
 | |
| // stack trace.
 | |
| GTEST_API_ extern const char kStackTraceMarker[];
 | |
| 
 | |
| // An IgnoredValue object can be implicitly constructed from ANY value.
 | |
| class IgnoredValue {
 | |
|   struct Sink {};
 | |
|  public:
 | |
|   // This constructor template allows any value to be implicitly
 | |
|   // converted to IgnoredValue.  The object has no data member and
 | |
|   // doesn't try to remember anything about the argument.  We
 | |
|   // deliberately omit the 'explicit' keyword in order to allow the
 | |
|   // conversion to be implicit.
 | |
|   // Disable the conversion if T already has a magical conversion operator.
 | |
|   // Otherwise we get ambiguity.
 | |
|   template <typename T,
 | |
|             typename std::enable_if<!std::is_convertible<T, Sink>::value,
 | |
|                                     int>::type = 0>
 | |
|   IgnoredValue(const T& /* ignored */) {}  // NOLINT(runtime/explicit)
 | |
| };
 | |
| 
 | |
| // Appends the user-supplied message to the Google-Test-generated message.
 | |
| GTEST_API_ std::string AppendUserMessage(
 | |
|     const std::string& gtest_msg, const Message& user_msg);
 | |
| 
 | |
| #if GTEST_HAS_EXCEPTIONS
 | |
| 
 | |
| GTEST_DISABLE_MSC_WARNINGS_PUSH_(4275 \
 | |
| /* an exported class was derived from a class that was not exported */)
 | |
| 
 | |
| // This exception is thrown by (and only by) a failed Google Test
 | |
| // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
 | |
| // are enabled).  We derive it from std::runtime_error, which is for
 | |
| // errors presumably detectable only at run time.  Since
 | |
| // std::runtime_error inherits from std::exception, many testing
 | |
| // frameworks know how to extract and print the message inside it.
 | |
| class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
 | |
|  public:
 | |
|   explicit GoogleTestFailureException(const TestPartResult& failure);
 | |
| };
 | |
| 
 | |
| GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4275
 | |
| 
 | |
| #endif  // GTEST_HAS_EXCEPTIONS
 | |
| 
 | |
| namespace edit_distance {
 | |
| // Returns the optimal edits to go from 'left' to 'right'.
 | |
| // All edits cost the same, with replace having lower priority than
 | |
| // add/remove.
 | |
| // Simple implementation of the Wagner-Fischer algorithm.
 | |
| // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
 | |
| enum EditType { kMatch, kAdd, kRemove, kReplace };
 | |
| GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
 | |
|     const std::vector<size_t>& left, const std::vector<size_t>& right);
 | |
| 
 | |
| // Same as above, but the input is represented as strings.
 | |
| GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
 | |
|     const std::vector<std::string>& left,
 | |
|     const std::vector<std::string>& right);
 | |
| 
 | |
| // Create a diff of the input strings in Unified diff format.
 | |
| GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
 | |
|                                          const std::vector<std::string>& right,
 | |
|                                          size_t context = 2);
 | |
| 
 | |
| }  // namespace edit_distance
 | |
| 
 | |
| // Calculate the diff between 'left' and 'right' and return it in unified diff
 | |
| // format.
 | |
| // If not null, stores in 'total_line_count' the total number of lines found
 | |
| // in left + right.
 | |
| GTEST_API_ std::string DiffStrings(const std::string& left,
 | |
|                                    const std::string& right,
 | |
|                                    size_t* total_line_count);
 | |
| 
 | |
| // Constructs and returns the message for an equality assertion
 | |
| // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
 | |
| //
 | |
| // The first four parameters are the expressions used in the assertion
 | |
| // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
 | |
| // where foo is 5 and bar is 6, we have:
 | |
| //
 | |
| //   expected_expression: "foo"
 | |
| //   actual_expression:   "bar"
 | |
| //   expected_value:      "5"
 | |
| //   actual_value:        "6"
 | |
| //
 | |
| // The ignoring_case parameter is true if and only if the assertion is a
 | |
| // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
 | |
| // be inserted into the message.
 | |
| GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
 | |
|                                      const char* actual_expression,
 | |
|                                      const std::string& expected_value,
 | |
|                                      const std::string& actual_value,
 | |
|                                      bool ignoring_case);
 | |
| 
 | |
| // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
 | |
| GTEST_API_ std::string GetBoolAssertionFailureMessage(
 | |
|     const AssertionResult& assertion_result,
 | |
|     const char* expression_text,
 | |
|     const char* actual_predicate_value,
 | |
|     const char* expected_predicate_value);
 | |
| 
 | |
| // This template class represents an IEEE floating-point number
 | |
| // (either single-precision or double-precision, depending on the
 | |
| // template parameters).
 | |
| //
 | |
| // The purpose of this class is to do more sophisticated number
 | |
| // comparison.  (Due to round-off error, etc, it's very unlikely that
 | |
| // two floating-points will be equal exactly.  Hence a naive
 | |
| // comparison by the == operation often doesn't work.)
 | |
| //
 | |
| // Format of IEEE floating-point:
 | |
| //
 | |
| //   The most-significant bit being the leftmost, an IEEE
 | |
| //   floating-point looks like
 | |
| //
 | |
| //     sign_bit exponent_bits fraction_bits
 | |
| //
 | |
| //   Here, sign_bit is a single bit that designates the sign of the
 | |
| //   number.
 | |
| //
 | |
| //   For float, there are 8 exponent bits and 23 fraction bits.
 | |
| //
 | |
| //   For double, there are 11 exponent bits and 52 fraction bits.
 | |
| //
 | |
| //   More details can be found at
 | |
| //   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
 | |
| //
 | |
| // Template parameter:
 | |
| //
 | |
| //   RawType: the raw floating-point type (either float or double)
 | |
| template <typename RawType>
 | |
| class FloatingPoint {
 | |
|  public:
 | |
|   // Defines the unsigned integer type that has the same size as the
 | |
|   // floating point number.
 | |
|   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
 | |
| 
 | |
|   // Constants.
 | |
| 
 | |
|   // # of bits in a number.
 | |
|   static const size_t kBitCount = 8*sizeof(RawType);
 | |
| 
 | |
|   // # of fraction bits in a number.
 | |
|   static const size_t kFractionBitCount =
 | |
|     std::numeric_limits<RawType>::digits - 1;
 | |
| 
 | |
|   // # of exponent bits in a number.
 | |
|   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
 | |
| 
 | |
|   // The mask for the sign bit.
 | |
|   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
 | |
| 
 | |
|   // The mask for the fraction bits.
 | |
|   static const Bits kFractionBitMask =
 | |
|     ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
 | |
| 
 | |
|   // The mask for the exponent bits.
 | |
|   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
 | |
| 
 | |
|   // How many ULP's (Units in the Last Place) we want to tolerate when
 | |
|   // comparing two numbers.  The larger the value, the more error we
 | |
|   // allow.  A 0 value means that two numbers must be exactly the same
 | |
|   // to be considered equal.
 | |
|   //
 | |
|   // The maximum error of a single floating-point operation is 0.5
 | |
|   // units in the last place.  On Intel CPU's, all floating-point
 | |
|   // calculations are done with 80-bit precision, while double has 64
 | |
|   // bits.  Therefore, 4 should be enough for ordinary use.
 | |
|   //
 | |
|   // See the following article for more details on ULP:
 | |
|   // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
 | |
|   static const size_t kMaxUlps = 4;
 | |
| 
 | |
|   // Constructs a FloatingPoint from a raw floating-point number.
 | |
|   //
 | |
|   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
 | |
|   // around may change its bits, although the new value is guaranteed
 | |
|   // to be also a NAN.  Therefore, don't expect this constructor to
 | |
|   // preserve the bits in x when x is a NAN.
 | |
|   explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
 | |
| 
 | |
|   // Static methods
 | |
| 
 | |
|   // Reinterprets a bit pattern as a floating-point number.
 | |
|   //
 | |
|   // This function is needed to test the AlmostEquals() method.
 | |
|   static RawType ReinterpretBits(const Bits bits) {
 | |
|     FloatingPoint fp(0);
 | |
|     fp.u_.bits_ = bits;
 | |
|     return fp.u_.value_;
 | |
|   }
 | |
| 
 | |
|   // Returns the floating-point number that represent positive infinity.
 | |
|   static RawType Infinity() {
 | |
|     return ReinterpretBits(kExponentBitMask);
 | |
|   }
 | |
| 
 | |
|   // Returns the maximum representable finite floating-point number.
 | |
|   static RawType Max();
 | |
| 
 | |
|   // Non-static methods
 | |
| 
 | |
|   // Returns the bits that represents this number.
 | |
|   const Bits &bits() const { return u_.bits_; }
 | |
| 
 | |
|   // Returns the exponent bits of this number.
 | |
|   Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
 | |
| 
 | |
|   // Returns the fraction bits of this number.
 | |
|   Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
 | |
| 
 | |
|   // Returns the sign bit of this number.
 | |
|   Bits sign_bit() const { return kSignBitMask & u_.bits_; }
 | |
| 
 | |
|   // Returns true if and only if this is NAN (not a number).
 | |
|   bool is_nan() const {
 | |
|     // It's a NAN if the exponent bits are all ones and the fraction
 | |
|     // bits are not entirely zeros.
 | |
|     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
 | |
|   }
 | |
| 
 | |
|   // Returns true if and only if this number is at most kMaxUlps ULP's away
 | |
|   // from rhs.  In particular, this function:
 | |
|   //
 | |
|   //   - returns false if either number is (or both are) NAN.
 | |
|   //   - treats really large numbers as almost equal to infinity.
 | |
|   //   - thinks +0.0 and -0.0 are 0 DLP's apart.
 | |
|   bool AlmostEquals(const FloatingPoint& rhs) const {
 | |
|     // The IEEE standard says that any comparison operation involving
 | |
|     // a NAN must return false.
 | |
|     if (is_nan() || rhs.is_nan()) return false;
 | |
| 
 | |
|     return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
 | |
|         <= kMaxUlps;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   // The data type used to store the actual floating-point number.
 | |
|   union FloatingPointUnion {
 | |
|     RawType value_;  // The raw floating-point number.
 | |
|     Bits bits_;      // The bits that represent the number.
 | |
|   };
 | |
| 
 | |
|   // Converts an integer from the sign-and-magnitude representation to
 | |
|   // the biased representation.  More precisely, let N be 2 to the
 | |
|   // power of (kBitCount - 1), an integer x is represented by the
 | |
|   // unsigned number x + N.
 | |
|   //
 | |
|   // For instance,
 | |
|   //
 | |
|   //   -N + 1 (the most negative number representable using
 | |
|   //          sign-and-magnitude) is represented by 1;
 | |
|   //   0      is represented by N; and
 | |
|   //   N - 1  (the biggest number representable using
 | |
|   //          sign-and-magnitude) is represented by 2N - 1.
 | |
|   //
 | |
|   // Read http://en.wikipedia.org/wiki/Signed_number_representations
 | |
|   // for more details on signed number representations.
 | |
|   static Bits SignAndMagnitudeToBiased(const Bits &sam) {
 | |
|     if (kSignBitMask & sam) {
 | |
|       // sam represents a negative number.
 | |
|       return ~sam + 1;
 | |
|     } else {
 | |
|       // sam represents a positive number.
 | |
|       return kSignBitMask | sam;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Given two numbers in the sign-and-magnitude representation,
 | |
|   // returns the distance between them as an unsigned number.
 | |
|   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
 | |
|                                                      const Bits &sam2) {
 | |
|     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
 | |
|     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
 | |
|     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
 | |
|   }
 | |
| 
 | |
|   FloatingPointUnion u_;
 | |
| };
 | |
| 
 | |
| // We cannot use std::numeric_limits<T>::max() as it clashes with the max()
 | |
| // macro defined by <windows.h>.
 | |
| template <>
 | |
| inline float FloatingPoint<float>::Max() { return FLT_MAX; }
 | |
| template <>
 | |
| inline double FloatingPoint<double>::Max() { return DBL_MAX; }
 | |
| 
 | |
| // Typedefs the instances of the FloatingPoint template class that we
 | |
| // care to use.
 | |
| typedef FloatingPoint<float> Float;
 | |
| typedef FloatingPoint<double> Double;
 | |
| 
 | |
| // In order to catch the mistake of putting tests that use different
 | |
| // test fixture classes in the same test suite, we need to assign
 | |
| // unique IDs to fixture classes and compare them.  The TypeId type is
 | |
| // used to hold such IDs.  The user should treat TypeId as an opaque
 | |
| // type: the only operation allowed on TypeId values is to compare
 | |
| // them for equality using the == operator.
 | |
| typedef const void* TypeId;
 | |
| 
 | |
| template <typename T>
 | |
| class TypeIdHelper {
 | |
|  public:
 | |
|   // dummy_ must not have a const type.  Otherwise an overly eager
 | |
|   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
 | |
|   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
 | |
|   static bool dummy_;
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| bool TypeIdHelper<T>::dummy_ = false;
 | |
| 
 | |
| // GetTypeId<T>() returns the ID of type T.  Different values will be
 | |
| // returned for different types.  Calling the function twice with the
 | |
| // same type argument is guaranteed to return the same ID.
 | |
| template <typename T>
 | |
| TypeId GetTypeId() {
 | |
|   // The compiler is required to allocate a different
 | |
|   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
 | |
|   // the template.  Therefore, the address of dummy_ is guaranteed to
 | |
|   // be unique.
 | |
|   return &(TypeIdHelper<T>::dummy_);
 | |
| }
 | |
| 
 | |
| // Returns the type ID of ::testing::Test.  Always call this instead
 | |
| // of GetTypeId< ::testing::Test>() to get the type ID of
 | |
| // ::testing::Test, as the latter may give the wrong result due to a
 | |
| // suspected linker bug when compiling Google Test as a Mac OS X
 | |
| // framework.
 | |
| GTEST_API_ TypeId GetTestTypeId();
 | |
| 
 | |
| // Defines the abstract factory interface that creates instances
 | |
| // of a Test object.
 | |
| class TestFactoryBase {
 | |
|  public:
 | |
|   virtual ~TestFactoryBase() {}
 | |
| 
 | |
|   // Creates a test instance to run. The instance is both created and destroyed
 | |
|   // within TestInfoImpl::Run()
 | |
|   virtual Test* CreateTest() = 0;
 | |
| 
 | |
|  protected:
 | |
|   TestFactoryBase() {}
 | |
| 
 | |
|  private:
 | |
|   GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
 | |
| };
 | |
| 
 | |
| // This class provides implementation of TeastFactoryBase interface.
 | |
| // It is used in TEST and TEST_F macros.
 | |
| template <class TestClass>
 | |
| class TestFactoryImpl : public TestFactoryBase {
 | |
|  public:
 | |
|   Test* CreateTest() override { return new TestClass; }
 | |
| };
 | |
| 
 | |
| #if GTEST_OS_WINDOWS
 | |
| 
 | |
| // Predicate-formatters for implementing the HRESULT checking macros
 | |
| // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
 | |
| // We pass a long instead of HRESULT to avoid causing an
 | |
| // include dependency for the HRESULT type.
 | |
| GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
 | |
|                                             long hr);  // NOLINT
 | |
| GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
 | |
|                                             long hr);  // NOLINT
 | |
| 
 | |
| #endif  // GTEST_OS_WINDOWS
 | |
| 
 | |
| // Types of SetUpTestSuite() and TearDownTestSuite() functions.
 | |
| using SetUpTestSuiteFunc = void (*)();
 | |
| using TearDownTestSuiteFunc = void (*)();
 | |
| 
 | |
| struct CodeLocation {
 | |
|   CodeLocation(const std::string& a_file, int a_line)
 | |
|       : file(a_file), line(a_line) {}
 | |
| 
 | |
|   std::string file;
 | |
|   int line;
 | |
| };
 | |
| 
 | |
| //  Helper to identify which setup function for TestCase / TestSuite to call.
 | |
| //  Only one function is allowed, either TestCase or TestSute but not both.
 | |
| 
 | |
| // Utility functions to help SuiteApiResolver
 | |
| using SetUpTearDownSuiteFuncType = void (*)();
 | |
| 
 | |
| inline SetUpTearDownSuiteFuncType GetNotDefaultOrNull(
 | |
|     SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def) {
 | |
|   return a == def ? nullptr : a;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| //  Note that SuiteApiResolver inherits from T because
 | |
| //  SetUpTestSuite()/TearDownTestSuite() could be protected. Ths way
 | |
| //  SuiteApiResolver can access them.
 | |
| struct SuiteApiResolver : T {
 | |
|   // testing::Test is only forward declared at this point. So we make it a
 | |
|   // dependend class for the compiler to be OK with it.
 | |
|   using Test =
 | |
|       typename std::conditional<sizeof(T) != 0, ::testing::Test, void>::type;
 | |
| 
 | |
|   static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite(const char* filename,
 | |
|                                                         int line_num) {
 | |
|     SetUpTearDownSuiteFuncType test_case_fp =
 | |
|         GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase);
 | |
|     SetUpTearDownSuiteFuncType test_suite_fp =
 | |
|         GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite);
 | |
| 
 | |
|     GTEST_CHECK_(!test_case_fp || !test_suite_fp)
 | |
|         << "Test can not provide both SetUpTestSuite and SetUpTestCase, please "
 | |
|            "make sure there is only one present at "
 | |
|         << filename << ":" << line_num;
 | |
| 
 | |
|     return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
 | |
|   }
 | |
| 
 | |
|   static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite(const char* filename,
 | |
|                                                            int line_num) {
 | |
|     SetUpTearDownSuiteFuncType test_case_fp =
 | |
|         GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase);
 | |
|     SetUpTearDownSuiteFuncType test_suite_fp =
 | |
|         GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite);
 | |
| 
 | |
|     GTEST_CHECK_(!test_case_fp || !test_suite_fp)
 | |
|         << "Test can not provide both TearDownTestSuite and TearDownTestCase,"
 | |
|            " please make sure there is only one present at"
 | |
|         << filename << ":" << line_num;
 | |
| 
 | |
|     return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Creates a new TestInfo object and registers it with Google Test;
 | |
| // returns the created object.
 | |
| //
 | |
| // Arguments:
 | |
| //
 | |
| //   test_suite_name:   name of the test suite
 | |
| //   name:             name of the test
 | |
| //   type_param        the name of the test's type parameter, or NULL if
 | |
| //                     this is not a typed or a type-parameterized test.
 | |
| //   value_param       text representation of the test's value parameter,
 | |
| //                     or NULL if this is not a type-parameterized test.
 | |
| //   code_location:    code location where the test is defined
 | |
| //   fixture_class_id: ID of the test fixture class
 | |
| //   set_up_tc:        pointer to the function that sets up the test suite
 | |
| //   tear_down_tc:     pointer to the function that tears down the test suite
 | |
| //   factory:          pointer to the factory that creates a test object.
 | |
| //                     The newly created TestInfo instance will assume
 | |
| //                     ownership of the factory object.
 | |
| GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
 | |
|     const char* test_suite_name, const char* name, const char* type_param,
 | |
|     const char* value_param, CodeLocation code_location,
 | |
|     TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc,
 | |
|     TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory);
 | |
| 
 | |
| // If *pstr starts with the given prefix, modifies *pstr to be right
 | |
| // past the prefix and returns true; otherwise leaves *pstr unchanged
 | |
| // and returns false.  None of pstr, *pstr, and prefix can be NULL.
 | |
| GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
 | |
| 
 | |
| #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
 | |
| 
 | |
| GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
 | |
| /* class A needs to have dll-interface to be used by clients of class B */)
 | |
| 
 | |
| // State of the definition of a type-parameterized test suite.
 | |
| class GTEST_API_ TypedTestSuitePState {
 | |
|  public:
 | |
|   TypedTestSuitePState() : registered_(false) {}
 | |
| 
 | |
|   // Adds the given test name to defined_test_names_ and return true
 | |
|   // if the test suite hasn't been registered; otherwise aborts the
 | |
|   // program.
 | |
|   bool AddTestName(const char* file, int line, const char* case_name,
 | |
|                    const char* test_name) {
 | |
|     if (registered_) {
 | |
|       fprintf(stderr,
 | |
|               "%s Test %s must be defined before "
 | |
|               "REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n",
 | |
|               FormatFileLocation(file, line).c_str(), test_name, case_name);
 | |
|       fflush(stderr);
 | |
|       posix::Abort();
 | |
|     }
 | |
|     registered_tests_.insert(
 | |
|         ::std::make_pair(test_name, CodeLocation(file, line)));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool TestExists(const std::string& test_name) const {
 | |
|     return registered_tests_.count(test_name) > 0;
 | |
|   }
 | |
| 
 | |
|   const CodeLocation& GetCodeLocation(const std::string& test_name) const {
 | |
|     RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name);
 | |
|     GTEST_CHECK_(it != registered_tests_.end());
 | |
|     return it->second;
 | |
|   }
 | |
| 
 | |
|   // Verifies that registered_tests match the test names in
 | |
|   // defined_test_names_; returns registered_tests if successful, or
 | |
|   // aborts the program otherwise.
 | |
|   const char* VerifyRegisteredTestNames(const char* test_suite_name,
 | |
|                                         const char* file, int line,
 | |
|                                         const char* registered_tests);
 | |
| 
 | |
|  private:
 | |
|   typedef ::std::map<std::string, CodeLocation> RegisteredTestsMap;
 | |
| 
 | |
|   bool registered_;
 | |
|   RegisteredTestsMap registered_tests_;
 | |
| };
 | |
| 
 | |
| //  Legacy API is deprecated but still available
 | |
| #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
 | |
| using TypedTestCasePState = TypedTestSuitePState;
 | |
| #endif  //  GTEST_REMOVE_LEGACY_TEST_CASEAPI_
 | |
| 
 | |
| GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251
 | |
| 
 | |
| // Skips to the first non-space char after the first comma in 'str';
 | |
| // returns NULL if no comma is found in 'str'.
 | |
| inline const char* SkipComma(const char* str) {
 | |
|   const char* comma = strchr(str, ',');
 | |
|   if (comma == nullptr) {
 | |
|     return nullptr;
 | |
|   }
 | |
|   while (IsSpace(*(++comma))) {}
 | |
|   return comma;
 | |
| }
 | |
| 
 | |
| // Returns the prefix of 'str' before the first comma in it; returns
 | |
| // the entire string if it contains no comma.
 | |
| inline std::string GetPrefixUntilComma(const char* str) {
 | |
|   const char* comma = strchr(str, ',');
 | |
|   return comma == nullptr ? str : std::string(str, comma);
 | |
| }
 | |
| 
 | |
| // Splits a given string on a given delimiter, populating a given
 | |
| // vector with the fields.
 | |
| void SplitString(const ::std::string& str, char delimiter,
 | |
|                  ::std::vector< ::std::string>* dest);
 | |
| 
 | |
| // The default argument to the template below for the case when the user does
 | |
| // not provide a name generator.
 | |
| struct DefaultNameGenerator {
 | |
|   template <typename T>
 | |
|   static std::string GetName(int i) {
 | |
|     return StreamableToString(i);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename Provided = DefaultNameGenerator>
 | |
| struct NameGeneratorSelector {
 | |
|   typedef Provided type;
 | |
| };
 | |
| 
 | |
| template <typename NameGenerator>
 | |
| void GenerateNamesRecursively(internal::None, std::vector<std::string>*, int) {}
 | |
| 
 | |
| template <typename NameGenerator, typename Types>
 | |
| void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) {
 | |
|   result->push_back(NameGenerator::template GetName<typename Types::Head>(i));
 | |
|   GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result,
 | |
|                                           i + 1);
 | |
| }
 | |
| 
 | |
| template <typename NameGenerator, typename Types>
 | |
| std::vector<std::string> GenerateNames() {
 | |
|   std::vector<std::string> result;
 | |
|   GenerateNamesRecursively<NameGenerator>(Types(), &result, 0);
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
 | |
| // registers a list of type-parameterized tests with Google Test.  The
 | |
| // return value is insignificant - we just need to return something
 | |
| // such that we can call this function in a namespace scope.
 | |
| //
 | |
| // Implementation note: The GTEST_TEMPLATE_ macro declares a template
 | |
| // template parameter.  It's defined in gtest-type-util.h.
 | |
| template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
 | |
| class TypeParameterizedTest {
 | |
|  public:
 | |
|   // 'index' is the index of the test in the type list 'Types'
 | |
|   // specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite,
 | |
|   // Types).  Valid values for 'index' are [0, N - 1] where N is the
 | |
|   // length of Types.
 | |
|   static bool Register(const char* prefix, const CodeLocation& code_location,
 | |
|                        const char* case_name, const char* test_names, int index,
 | |
|                        const std::vector<std::string>& type_names =
 | |
|                            GenerateNames<DefaultNameGenerator, Types>()) {
 | |
|     typedef typename Types::Head Type;
 | |
|     typedef Fixture<Type> FixtureClass;
 | |
|     typedef typename GTEST_BIND_(TestSel, Type) TestClass;
 | |
| 
 | |
|     // First, registers the first type-parameterized test in the type
 | |
|     // list.
 | |
|     MakeAndRegisterTestInfo(
 | |
|         (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name +
 | |
|          "/" + type_names[static_cast<size_t>(index)])
 | |
|             .c_str(),
 | |
|         StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
 | |
|         GetTypeName<Type>().c_str(),
 | |
|         nullptr,  // No value parameter.
 | |
|         code_location, GetTypeId<FixtureClass>(),
 | |
|         SuiteApiResolver<TestClass>::GetSetUpCaseOrSuite(
 | |
|             code_location.file.c_str(), code_location.line),
 | |
|         SuiteApiResolver<TestClass>::GetTearDownCaseOrSuite(
 | |
|             code_location.file.c_str(), code_location.line),
 | |
|         new TestFactoryImpl<TestClass>);
 | |
| 
 | |
|     // Next, recurses (at compile time) with the tail of the type list.
 | |
|     return TypeParameterizedTest<Fixture, TestSel,
 | |
|                                  typename Types::Tail>::Register(prefix,
 | |
|                                                                  code_location,
 | |
|                                                                  case_name,
 | |
|                                                                  test_names,
 | |
|                                                                  index + 1,
 | |
|                                                                  type_names);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // The base case for the compile time recursion.
 | |
| template <GTEST_TEMPLATE_ Fixture, class TestSel>
 | |
| class TypeParameterizedTest<Fixture, TestSel, internal::None> {
 | |
|  public:
 | |
|   static bool Register(const char* /*prefix*/, const CodeLocation&,
 | |
|                        const char* /*case_name*/, const char* /*test_names*/,
 | |
|                        int /*index*/,
 | |
|                        const std::vector<std::string>& =
 | |
|                            std::vector<std::string>() /*type_names*/) {
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| 
 | |
| GTEST_API_ void RegisterTypeParameterizedTestSuite(const char* test_suite_name,
 | |
|                                                    CodeLocation code_location);
 | |
| GTEST_API_ void RegisterTypeParameterizedTestSuiteInstantiation(
 | |
|     const char* case_name);
 | |
| 
 | |
| // TypeParameterizedTestSuite<Fixture, Tests, Types>::Register()
 | |
| // registers *all combinations* of 'Tests' and 'Types' with Google
 | |
| // Test.  The return value is insignificant - we just need to return
 | |
| // something such that we can call this function in a namespace scope.
 | |
| template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
 | |
| class TypeParameterizedTestSuite {
 | |
|  public:
 | |
|   static bool Register(const char* prefix, CodeLocation code_location,
 | |
|                        const TypedTestSuitePState* state, const char* case_name,
 | |
|                        const char* test_names,
 | |
|                        const std::vector<std::string>& type_names =
 | |
|                            GenerateNames<DefaultNameGenerator, Types>()) {
 | |
|     RegisterTypeParameterizedTestSuiteInstantiation(case_name);
 | |
|     std::string test_name = StripTrailingSpaces(
 | |
|         GetPrefixUntilComma(test_names));
 | |
|     if (!state->TestExists(test_name)) {
 | |
|       fprintf(stderr, "Failed to get code location for test %s.%s at %s.",
 | |
|               case_name, test_name.c_str(),
 | |
|               FormatFileLocation(code_location.file.c_str(),
 | |
|                                  code_location.line).c_str());
 | |
|       fflush(stderr);
 | |
|       posix::Abort();
 | |
|     }
 | |
|     const CodeLocation& test_location = state->GetCodeLocation(test_name);
 | |
| 
 | |
|     typedef typename Tests::Head Head;
 | |
| 
 | |
|     // First, register the first test in 'Test' for each type in 'Types'.
 | |
|     TypeParameterizedTest<Fixture, Head, Types>::Register(
 | |
|         prefix, test_location, case_name, test_names, 0, type_names);
 | |
| 
 | |
|     // Next, recurses (at compile time) with the tail of the test list.
 | |
|     return TypeParameterizedTestSuite<Fixture, typename Tests::Tail,
 | |
|                                       Types>::Register(prefix, code_location,
 | |
|                                                        state, case_name,
 | |
|                                                        SkipComma(test_names),
 | |
|                                                        type_names);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // The base case for the compile time recursion.
 | |
| template <GTEST_TEMPLATE_ Fixture, typename Types>
 | |
| class TypeParameterizedTestSuite<Fixture, internal::None, Types> {
 | |
|  public:
 | |
|   static bool Register(const char* /*prefix*/, const CodeLocation&,
 | |
|                        const TypedTestSuitePState* /*state*/,
 | |
|                        const char* /*case_name*/, const char* /*test_names*/,
 | |
|                        const std::vector<std::string>& =
 | |
|                            std::vector<std::string>() /*type_names*/) {
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| 
 | |
| #endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
 | |
| 
 | |
| // Returns the current OS stack trace as an std::string.
 | |
| //
 | |
| // The maximum number of stack frames to be included is specified by
 | |
| // the gtest_stack_trace_depth flag.  The skip_count parameter
 | |
| // specifies the number of top frames to be skipped, which doesn't
 | |
| // count against the number of frames to be included.
 | |
| //
 | |
| // For example, if Foo() calls Bar(), which in turn calls
 | |
| // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
 | |
| // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
 | |
| GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(
 | |
|     UnitTest* unit_test, int skip_count);
 | |
| 
 | |
| // Helpers for suppressing warnings on unreachable code or constant
 | |
| // condition.
 | |
| 
 | |
| // Always returns true.
 | |
| GTEST_API_ bool AlwaysTrue();
 | |
| 
 | |
| // Always returns false.
 | |
| inline bool AlwaysFalse() { return !AlwaysTrue(); }
 | |
| 
 | |
| // Helper for suppressing false warning from Clang on a const char*
 | |
| // variable declared in a conditional expression always being NULL in
 | |
| // the else branch.
 | |
| struct GTEST_API_ ConstCharPtr {
 | |
|   ConstCharPtr(const char* str) : value(str) {}
 | |
|   operator bool() const { return true; }
 | |
|   const char* value;
 | |
| };
 | |
| 
 | |
| // Helper for declaring std::string within 'if' statement
 | |
| // in pre C++17 build environment.
 | |
| struct TrueWithString {
 | |
|   TrueWithString() = default;
 | |
|   explicit TrueWithString(const char* str) : value(str) {}
 | |
|   explicit TrueWithString(const std::string& str) : value(str) {}
 | |
|   explicit operator bool() const { return true; }
 | |
|   std::string value;
 | |
| };
 | |
| 
 | |
| // A simple Linear Congruential Generator for generating random
 | |
| // numbers with a uniform distribution.  Unlike rand() and srand(), it
 | |
| // doesn't use global state (and therefore can't interfere with user
 | |
| // code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
 | |
| // but it's good enough for our purposes.
 | |
| class GTEST_API_ Random {
 | |
|  public:
 | |
|   static const uint32_t kMaxRange = 1u << 31;
 | |
| 
 | |
|   explicit Random(uint32_t seed) : state_(seed) {}
 | |
| 
 | |
|   void Reseed(uint32_t seed) { state_ = seed; }
 | |
| 
 | |
|   // Generates a random number from [0, range).  Crashes if 'range' is
 | |
|   // 0 or greater than kMaxRange.
 | |
|   uint32_t Generate(uint32_t range);
 | |
| 
 | |
|  private:
 | |
|   uint32_t state_;
 | |
|   GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
 | |
| };
 | |
| 
 | |
| // Turns const U&, U&, const U, and U all into U.
 | |
| #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
 | |
|   typename std::remove_const<typename std::remove_reference<T>::type>::type
 | |
| 
 | |
| // IsAProtocolMessage<T>::value is a compile-time bool constant that's
 | |
| // true if and only if T is type proto2::Message or a subclass of it.
 | |
| template <typename T>
 | |
| struct IsAProtocolMessage
 | |
|     : public std::is_convertible<const T*, const ::proto2::Message*> {};
 | |
| 
 | |
| // When the compiler sees expression IsContainerTest<C>(0), if C is an
 | |
| // STL-style container class, the first overload of IsContainerTest
 | |
| // will be viable (since both C::iterator* and C::const_iterator* are
 | |
| // valid types and NULL can be implicitly converted to them).  It will
 | |
| // be picked over the second overload as 'int' is a perfect match for
 | |
| // the type of argument 0.  If C::iterator or C::const_iterator is not
 | |
| // a valid type, the first overload is not viable, and the second
 | |
| // overload will be picked.  Therefore, we can determine whether C is
 | |
| // a container class by checking the type of IsContainerTest<C>(0).
 | |
| // The value of the expression is insignificant.
 | |
| //
 | |
| // In C++11 mode we check the existence of a const_iterator and that an
 | |
| // iterator is properly implemented for the container.
 | |
| //
 | |
| // For pre-C++11 that we look for both C::iterator and C::const_iterator.
 | |
| // The reason is that C++ injects the name of a class as a member of the
 | |
| // class itself (e.g. you can refer to class iterator as either
 | |
| // 'iterator' or 'iterator::iterator').  If we look for C::iterator
 | |
| // only, for example, we would mistakenly think that a class named
 | |
| // iterator is an STL container.
 | |
| //
 | |
| // Also note that the simpler approach of overloading
 | |
| // IsContainerTest(typename C::const_iterator*) and
 | |
| // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
 | |
| typedef int IsContainer;
 | |
| template <class C,
 | |
|           class Iterator = decltype(::std::declval<const C&>().begin()),
 | |
|           class = decltype(::std::declval<const C&>().end()),
 | |
|           class = decltype(++::std::declval<Iterator&>()),
 | |
|           class = decltype(*::std::declval<Iterator>()),
 | |
|           class = typename C::const_iterator>
 | |
| IsContainer IsContainerTest(int /* dummy */) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| typedef char IsNotContainer;
 | |
| template <class C>
 | |
| IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
 | |
| 
 | |
| // Trait to detect whether a type T is a hash table.
 | |
| // The heuristic used is that the type contains an inner type `hasher` and does
 | |
| // not contain an inner type `reverse_iterator`.
 | |
| // If the container is iterable in reverse, then order might actually matter.
 | |
| template <typename T>
 | |
| struct IsHashTable {
 | |
|  private:
 | |
|   template <typename U>
 | |
|   static char test(typename U::hasher*, typename U::reverse_iterator*);
 | |
|   template <typename U>
 | |
|   static int test(typename U::hasher*, ...);
 | |
|   template <typename U>
 | |
|   static char test(...);
 | |
| 
 | |
|  public:
 | |
|   static const bool value = sizeof(test<T>(nullptr, nullptr)) == sizeof(int);
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| const bool IsHashTable<T>::value;
 | |
| 
 | |
| template <typename C,
 | |
|           bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)>
 | |
| struct IsRecursiveContainerImpl;
 | |
| 
 | |
| template <typename C>
 | |
| struct IsRecursiveContainerImpl<C, false> : public std::false_type {};
 | |
| 
 | |
| // Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to
 | |
| // obey the same inconsistencies as the IsContainerTest, namely check if
 | |
| // something is a container is relying on only const_iterator in C++11 and
 | |
| // is relying on both const_iterator and iterator otherwise
 | |
| template <typename C>
 | |
| struct IsRecursiveContainerImpl<C, true> {
 | |
|   using value_type = decltype(*std::declval<typename C::const_iterator>());
 | |
|   using type =
 | |
|       std::is_same<typename std::remove_const<
 | |
|                        typename std::remove_reference<value_type>::type>::type,
 | |
|                    C>;
 | |
| };
 | |
| 
 | |
| // IsRecursiveContainer<Type> is a unary compile-time predicate that
 | |
| // evaluates whether C is a recursive container type. A recursive container
 | |
| // type is a container type whose value_type is equal to the container type
 | |
| // itself. An example for a recursive container type is
 | |
| // boost::filesystem::path, whose iterator has a value_type that is equal to
 | |
| // boost::filesystem::path.
 | |
| template <typename C>
 | |
| struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {};
 | |
| 
 | |
| // Utilities for native arrays.
 | |
| 
 | |
| // ArrayEq() compares two k-dimensional native arrays using the
 | |
| // elements' operator==, where k can be any integer >= 0.  When k is
 | |
| // 0, ArrayEq() degenerates into comparing a single pair of values.
 | |
| 
 | |
| template <typename T, typename U>
 | |
| bool ArrayEq(const T* lhs, size_t size, const U* rhs);
 | |
| 
 | |
| // This generic version is used when k is 0.
 | |
| template <typename T, typename U>
 | |
| inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
 | |
| 
 | |
| // This overload is used when k >= 1.
 | |
| template <typename T, typename U, size_t N>
 | |
| inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
 | |
|   return internal::ArrayEq(lhs, N, rhs);
 | |
| }
 | |
| 
 | |
| // This helper reduces code bloat.  If we instead put its logic inside
 | |
| // the previous ArrayEq() function, arrays with different sizes would
 | |
| // lead to different copies of the template code.
 | |
| template <typename T, typename U>
 | |
| bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
 | |
|   for (size_t i = 0; i != size; i++) {
 | |
|     if (!internal::ArrayEq(lhs[i], rhs[i]))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Finds the first element in the iterator range [begin, end) that
 | |
| // equals elem.  Element may be a native array type itself.
 | |
| template <typename Iter, typename Element>
 | |
| Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
 | |
|   for (Iter it = begin; it != end; ++it) {
 | |
|     if (internal::ArrayEq(*it, elem))
 | |
|       return it;
 | |
|   }
 | |
|   return end;
 | |
| }
 | |
| 
 | |
| // CopyArray() copies a k-dimensional native array using the elements'
 | |
| // operator=, where k can be any integer >= 0.  When k is 0,
 | |
| // CopyArray() degenerates into copying a single value.
 | |
| 
 | |
| template <typename T, typename U>
 | |
| void CopyArray(const T* from, size_t size, U* to);
 | |
| 
 | |
| // This generic version is used when k is 0.
 | |
| template <typename T, typename U>
 | |
| inline void CopyArray(const T& from, U* to) { *to = from; }
 | |
| 
 | |
| // This overload is used when k >= 1.
 | |
| template <typename T, typename U, size_t N>
 | |
| inline void CopyArray(const T(&from)[N], U(*to)[N]) {
 | |
|   internal::CopyArray(from, N, *to);
 | |
| }
 | |
| 
 | |
| // This helper reduces code bloat.  If we instead put its logic inside
 | |
| // the previous CopyArray() function, arrays with different sizes
 | |
| // would lead to different copies of the template code.
 | |
| template <typename T, typename U>
 | |
| void CopyArray(const T* from, size_t size, U* to) {
 | |
|   for (size_t i = 0; i != size; i++) {
 | |
|     internal::CopyArray(from[i], to + i);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // The relation between an NativeArray object (see below) and the
 | |
| // native array it represents.
 | |
| // We use 2 different structs to allow non-copyable types to be used, as long
 | |
| // as RelationToSourceReference() is passed.
 | |
| struct RelationToSourceReference {};
 | |
| struct RelationToSourceCopy {};
 | |
| 
 | |
| // Adapts a native array to a read-only STL-style container.  Instead
 | |
| // of the complete STL container concept, this adaptor only implements
 | |
| // members useful for Google Mock's container matchers.  New members
 | |
| // should be added as needed.  To simplify the implementation, we only
 | |
| // support Element being a raw type (i.e. having no top-level const or
 | |
| // reference modifier).  It's the client's responsibility to satisfy
 | |
| // this requirement.  Element can be an array type itself (hence
 | |
| // multi-dimensional arrays are supported).
 | |
| template <typename Element>
 | |
| class NativeArray {
 | |
|  public:
 | |
|   // STL-style container typedefs.
 | |
|   typedef Element value_type;
 | |
|   typedef Element* iterator;
 | |
|   typedef const Element* const_iterator;
 | |
| 
 | |
|   // Constructs from a native array. References the source.
 | |
|   NativeArray(const Element* array, size_t count, RelationToSourceReference) {
 | |
|     InitRef(array, count);
 | |
|   }
 | |
| 
 | |
|   // Constructs from a native array. Copies the source.
 | |
|   NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
 | |
|     InitCopy(array, count);
 | |
|   }
 | |
| 
 | |
|   // Copy constructor.
 | |
|   NativeArray(const NativeArray& rhs) {
 | |
|     (this->*rhs.clone_)(rhs.array_, rhs.size_);
 | |
|   }
 | |
| 
 | |
|   ~NativeArray() {
 | |
|     if (clone_ != &NativeArray::InitRef)
 | |
|       delete[] array_;
 | |
|   }
 | |
| 
 | |
|   // STL-style container methods.
 | |
|   size_t size() const { return size_; }
 | |
|   const_iterator begin() const { return array_; }
 | |
|   const_iterator end() const { return array_ + size_; }
 | |
|   bool operator==(const NativeArray& rhs) const {
 | |
|     return size() == rhs.size() &&
 | |
|         ArrayEq(begin(), size(), rhs.begin());
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   static_assert(!std::is_const<Element>::value, "Type must not be const");
 | |
|   static_assert(!std::is_reference<Element>::value,
 | |
|                 "Type must not be a reference");
 | |
| 
 | |
|   // Initializes this object with a copy of the input.
 | |
|   void InitCopy(const Element* array, size_t a_size) {
 | |
|     Element* const copy = new Element[a_size];
 | |
|     CopyArray(array, a_size, copy);
 | |
|     array_ = copy;
 | |
|     size_ = a_size;
 | |
|     clone_ = &NativeArray::InitCopy;
 | |
|   }
 | |
| 
 | |
|   // Initializes this object with a reference of the input.
 | |
|   void InitRef(const Element* array, size_t a_size) {
 | |
|     array_ = array;
 | |
|     size_ = a_size;
 | |
|     clone_ = &NativeArray::InitRef;
 | |
|   }
 | |
| 
 | |
|   const Element* array_;
 | |
|   size_t size_;
 | |
|   void (NativeArray::*clone_)(const Element*, size_t);
 | |
| 
 | |
|   GTEST_DISALLOW_ASSIGN_(NativeArray);
 | |
| };
 | |
| 
 | |
| // Backport of std::index_sequence.
 | |
| template <size_t... Is>
 | |
| struct IndexSequence {
 | |
|   using type = IndexSequence;
 | |
| };
 | |
| 
 | |
| // Double the IndexSequence, and one if plus_one is true.
 | |
| template <bool plus_one, typename T, size_t sizeofT>
 | |
| struct DoubleSequence;
 | |
| template <size_t... I, size_t sizeofT>
 | |
| struct DoubleSequence<true, IndexSequence<I...>, sizeofT> {
 | |
|   using type = IndexSequence<I..., (sizeofT + I)..., 2 * sizeofT>;
 | |
| };
 | |
| template <size_t... I, size_t sizeofT>
 | |
| struct DoubleSequence<false, IndexSequence<I...>, sizeofT> {
 | |
|   using type = IndexSequence<I..., (sizeofT + I)...>;
 | |
| };
 | |
| 
 | |
| // Backport of std::make_index_sequence.
 | |
| // It uses O(ln(N)) instantiation depth.
 | |
| template <size_t N>
 | |
| struct MakeIndexSequence
 | |
|     : DoubleSequence<N % 2 == 1, typename MakeIndexSequence<N / 2>::type,
 | |
|                      N / 2>::type {};
 | |
| 
 | |
| template <>
 | |
| struct MakeIndexSequence<0> : IndexSequence<> {};
 | |
| 
 | |
| template <size_t>
 | |
| struct Ignore {
 | |
|   Ignore(...);  // NOLINT
 | |
| };
 | |
| 
 | |
| template <typename>
 | |
| struct ElemFromListImpl;
 | |
| template <size_t... I>
 | |
| struct ElemFromListImpl<IndexSequence<I...>> {
 | |
|   // We make Ignore a template to solve a problem with MSVC.
 | |
|   // A non-template Ignore would work fine with `decltype(Ignore(I))...`, but
 | |
|   // MSVC doesn't understand how to deal with that pack expansion.
 | |
|   // Use `0 * I` to have a single instantiation of Ignore.
 | |
|   template <typename R>
 | |
|   static R Apply(Ignore<0 * I>..., R (*)(), ...);
 | |
| };
 | |
| 
 | |
| template <size_t N, typename... T>
 | |
| struct ElemFromList {
 | |
|   using type =
 | |
|       decltype(ElemFromListImpl<typename MakeIndexSequence<N>::type>::Apply(
 | |
|           static_cast<T (*)()>(nullptr)...));
 | |
| };
 | |
| 
 | |
| template <typename... T>
 | |
| class FlatTuple;
 | |
| 
 | |
| template <typename Derived, size_t I>
 | |
| struct FlatTupleElemBase;
 | |
| 
 | |
| template <typename... T, size_t I>
 | |
| struct FlatTupleElemBase<FlatTuple<T...>, I> {
 | |
|   using value_type = typename ElemFromList<I, T...>::type;
 | |
|   FlatTupleElemBase() = default;
 | |
|   explicit FlatTupleElemBase(value_type t) : value(std::move(t)) {}
 | |
|   value_type value;
 | |
| };
 | |
| 
 | |
| template <typename Derived, typename Idx>
 | |
| struct FlatTupleBase;
 | |
| 
 | |
| template <size_t... Idx, typename... T>
 | |
| struct FlatTupleBase<FlatTuple<T...>, IndexSequence<Idx...>>
 | |
|     : FlatTupleElemBase<FlatTuple<T...>, Idx>... {
 | |
|   using Indices = IndexSequence<Idx...>;
 | |
|   FlatTupleBase() = default;
 | |
|   explicit FlatTupleBase(T... t)
 | |
|       : FlatTupleElemBase<FlatTuple<T...>, Idx>(std::move(t))... {}
 | |
| };
 | |
| 
 | |
| // Analog to std::tuple but with different tradeoffs.
 | |
| // This class minimizes the template instantiation depth, thus allowing more
 | |
| // elements than std::tuple would. std::tuple has been seen to require an
 | |
| // instantiation depth of more than 10x the number of elements in some
 | |
| // implementations.
 | |
| // FlatTuple and ElemFromList are not recursive and have a fixed depth
 | |
| // regardless of T...
 | |
| // MakeIndexSequence, on the other hand, it is recursive but with an
 | |
| // instantiation depth of O(ln(N)).
 | |
| template <typename... T>
 | |
| class FlatTuple
 | |
|     : private FlatTupleBase<FlatTuple<T...>,
 | |
|                             typename MakeIndexSequence<sizeof...(T)>::type> {
 | |
|   using Indices = typename FlatTupleBase<
 | |
|       FlatTuple<T...>, typename MakeIndexSequence<sizeof...(T)>::type>::Indices;
 | |
| 
 | |
|  public:
 | |
|   FlatTuple() = default;
 | |
|   explicit FlatTuple(T... t) : FlatTuple::FlatTupleBase(std::move(t)...) {}
 | |
| 
 | |
|   template <size_t I>
 | |
|   const typename ElemFromList<I, T...>::type& Get() const {
 | |
|     return static_cast<const FlatTupleElemBase<FlatTuple, I>*>(this)->value;
 | |
|   }
 | |
| 
 | |
|   template <size_t I>
 | |
|   typename ElemFromList<I, T...>::type& Get() {
 | |
|     return static_cast<FlatTupleElemBase<FlatTuple, I>*>(this)->value;
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Utility functions to be called with static_assert to induce deprecation
 | |
| // warnings.
 | |
| GTEST_INTERNAL_DEPRECATED(
 | |
|     "INSTANTIATE_TEST_CASE_P is deprecated, please use "
 | |
|     "INSTANTIATE_TEST_SUITE_P")
 | |
| constexpr bool InstantiateTestCase_P_IsDeprecated() { return true; }
 | |
| 
 | |
| GTEST_INTERNAL_DEPRECATED(
 | |
|     "TYPED_TEST_CASE_P is deprecated, please use "
 | |
|     "TYPED_TEST_SUITE_P")
 | |
| constexpr bool TypedTestCase_P_IsDeprecated() { return true; }
 | |
| 
 | |
| GTEST_INTERNAL_DEPRECATED(
 | |
|     "TYPED_TEST_CASE is deprecated, please use "
 | |
|     "TYPED_TEST_SUITE")
 | |
| constexpr bool TypedTestCaseIsDeprecated() { return true; }
 | |
| 
 | |
| GTEST_INTERNAL_DEPRECATED(
 | |
|     "REGISTER_TYPED_TEST_CASE_P is deprecated, please use "
 | |
|     "REGISTER_TYPED_TEST_SUITE_P")
 | |
| constexpr bool RegisterTypedTestCase_P_IsDeprecated() { return true; }
 | |
| 
 | |
| GTEST_INTERNAL_DEPRECATED(
 | |
|     "INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use "
 | |
|     "INSTANTIATE_TYPED_TEST_SUITE_P")
 | |
| constexpr bool InstantiateTypedTestCase_P_IsDeprecated() { return true; }
 | |
| 
 | |
| }  // namespace internal
 | |
| }  // namespace testing
 | |
| 
 | |
| #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
 | |
|   ::testing::internal::AssertHelper(result_type, file, line, message) \
 | |
|     = ::testing::Message()
 | |
| 
 | |
| #define GTEST_MESSAGE_(message, result_type) \
 | |
|   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
 | |
| 
 | |
| #define GTEST_FATAL_FAILURE_(message) \
 | |
|   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
 | |
| 
 | |
| #define GTEST_NONFATAL_FAILURE_(message) \
 | |
|   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
 | |
| 
 | |
| #define GTEST_SUCCESS_(message) \
 | |
|   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
 | |
| 
 | |
| #define GTEST_SKIP_(message) \
 | |
|   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip)
 | |
| 
 | |
| // Suppress MSVC warning 4072 (unreachable code) for the code following
 | |
| // statement if it returns or throws (or doesn't return or throw in some
 | |
| // situations).
 | |
| #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
 | |
|   if (::testing::internal::AlwaysTrue()) { statement; }
 | |
| 
 | |
| #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
 | |
|   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
 | |
|   if (::testing::internal::ConstCharPtr gtest_msg = "") { \
 | |
|     bool gtest_caught_expected = false; \
 | |
|     try { \
 | |
|       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
 | |
|     } \
 | |
|     catch (expected_exception const&) { \
 | |
|       gtest_caught_expected = true; \
 | |
|     } \
 | |
|     catch (...) { \
 | |
|       gtest_msg.value = \
 | |
|           "Expected: " #statement " throws an exception of type " \
 | |
|           #expected_exception ".\n  Actual: it throws a different type."; \
 | |
|       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
 | |
|     } \
 | |
|     if (!gtest_caught_expected) { \
 | |
|       gtest_msg.value = \
 | |
|           "Expected: " #statement " throws an exception of type " \
 | |
|           #expected_exception ".\n  Actual: it throws nothing."; \
 | |
|       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
 | |
|     } \
 | |
|   } else \
 | |
|     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
 | |
|       fail(gtest_msg.value)
 | |
| 
 | |
| #if GTEST_HAS_EXCEPTIONS
 | |
| 
 | |
| #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() \
 | |
|   catch (std::exception const& e) { \
 | |
|     gtest_msg.value = ( \
 | |
|       "it throws std::exception-derived exception with description: \"" \
 | |
|     ); \
 | |
|     gtest_msg.value += e.what(); \
 | |
|     gtest_msg.value += "\"."; \
 | |
|     goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
 | |
|   }
 | |
| 
 | |
| #else  // GTEST_HAS_EXCEPTIONS
 | |
| 
 | |
| #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()
 | |
| 
 | |
| #endif  // GTEST_HAS_EXCEPTIONS
 | |
| 
 | |
| #define GTEST_TEST_NO_THROW_(statement, fail) \
 | |
|   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
 | |
|   if (::testing::internal::TrueWithString gtest_msg{}) { \
 | |
|     try { \
 | |
|       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
 | |
|     } \
 | |
|     GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_() \
 | |
|     catch (...) { \
 | |
|       gtest_msg.value = "it throws."; \
 | |
|       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
 | |
|     } \
 | |
|   } else \
 | |
|     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
 | |
|       fail(("Expected: " #statement " doesn't throw an exception.\n" \
 | |
|             "  Actual: " + gtest_msg.value).c_str())
 | |
| 
 | |
| #define GTEST_TEST_ANY_THROW_(statement, fail) \
 | |
|   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
 | |
|   if (::testing::internal::AlwaysTrue()) { \
 | |
|     bool gtest_caught_any = false; \
 | |
|     try { \
 | |
|       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
 | |
|     } \
 | |
|     catch (...) { \
 | |
|       gtest_caught_any = true; \
 | |
|     } \
 | |
|     if (!gtest_caught_any) { \
 | |
|       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
 | |
|     } \
 | |
|   } else \
 | |
|     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
 | |
|       fail("Expected: " #statement " throws an exception.\n" \
 | |
|            "  Actual: it doesn't.")
 | |
| 
 | |
| 
 | |
| // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
 | |
| // either a boolean expression or an AssertionResult. text is a textual
 | |
| // represenation of expression as it was passed into the EXPECT_TRUE.
 | |
| #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
 | |
|   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
 | |
|   if (const ::testing::AssertionResult gtest_ar_ = \
 | |
|       ::testing::AssertionResult(expression)) \
 | |
|     ; \
 | |
|   else \
 | |
|     fail(::testing::internal::GetBoolAssertionFailureMessage(\
 | |
|         gtest_ar_, text, #actual, #expected).c_str())
 | |
| 
 | |
| #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
 | |
|   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
 | |
|   if (::testing::internal::AlwaysTrue()) { \
 | |
|     ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
 | |
|     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
 | |
|     if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
 | |
|       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
 | |
|     } \
 | |
|   } else \
 | |
|     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
 | |
|       fail("Expected: " #statement " doesn't generate new fatal " \
 | |
|            "failures in the current thread.\n" \
 | |
|            "  Actual: it does.")
 | |
| 
 | |
| // Expands to the name of the class that implements the given test.
 | |
| #define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
 | |
|   test_suite_name##_##test_name##_Test
 | |
| 
 | |
| // Helper macro for defining tests.
 | |
| #define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id)      \
 | |
|   static_assert(sizeof(GTEST_STRINGIFY_(test_suite_name)) > 1,                \
 | |
|                 "test_suite_name must not be empty");                         \
 | |
|   static_assert(sizeof(GTEST_STRINGIFY_(test_name)) > 1,                      \
 | |
|                 "test_name must not be empty");                               \
 | |
|   class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)                    \
 | |
|       : public parent_class {                                                 \
 | |
|    public:                                                                    \
 | |
|     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() {}                   \
 | |
|     ~GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() override = default; \
 | |
|     GTEST_DISALLOW_COPY_AND_ASSIGN_(GTEST_TEST_CLASS_NAME_(test_suite_name,   \
 | |
|                                                            test_name));       \
 | |
|     GTEST_DISALLOW_MOVE_AND_ASSIGN_(GTEST_TEST_CLASS_NAME_(test_suite_name,   \
 | |
|                                                            test_name));       \
 | |
|                                                                               \
 | |
|    private:                                                                   \
 | |
|     void TestBody() override;                                                 \
 | |
|     static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;     \
 | |
|   };                                                                          \
 | |
|                                                                               \
 | |
|   ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name,          \
 | |
|                                                     test_name)::test_info_ =  \
 | |
|       ::testing::internal::MakeAndRegisterTestInfo(                           \
 | |
|           #test_suite_name, #test_name, nullptr, nullptr,                     \
 | |
|           ::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id), \
 | |
|           ::testing::internal::SuiteApiResolver<                              \
 | |
|               parent_class>::GetSetUpCaseOrSuite(__FILE__, __LINE__),         \
 | |
|           ::testing::internal::SuiteApiResolver<                              \
 | |
|               parent_class>::GetTearDownCaseOrSuite(__FILE__, __LINE__),      \
 | |
|           new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_(    \
 | |
|               test_suite_name, test_name)>);                                  \
 | |
|   void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody()
 | |
| 
 | |
| #endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
 | 
