mirror of
				https://github.com/RetroDECK/Duckstation.git
				synced 2025-04-10 19:15:14 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			297 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			297 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ////////////////////////////////////////////////////////////////////////////////
 | |
| /// 
 | |
| /// Linear interpolation algorithm.
 | |
| ///
 | |
| /// Author        : Copyright (c) Olli Parviainen
 | |
| /// Author e-mail : oparviai 'at' iki.fi
 | |
| /// SoundTouch WWW: http://www.surina.net/soundtouch
 | |
| ///
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| // License :
 | |
| //
 | |
| //  SoundTouch audio processing library
 | |
| //  Copyright (c) Olli Parviainen
 | |
| //
 | |
| //  This library is free software; you can redistribute it and/or
 | |
| //  modify it under the terms of the GNU Lesser General Public
 | |
| //  License as published by the Free Software Foundation; either
 | |
| //  version 2.1 of the License, or (at your option) any later version.
 | |
| //
 | |
| //  This library is distributed in the hope that it will be useful,
 | |
| //  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
| //  Lesser General Public License for more details.
 | |
| //
 | |
| //  You should have received a copy of the GNU Lesser General Public
 | |
| //  License along with this library; if not, write to the Free Software
 | |
| //  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 | |
| //
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| #include <assert.h>
 | |
| #include <stdlib.h>
 | |
| #include "InterpolateLinear.h"
 | |
| 
 | |
| using namespace soundtouch;
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| // InterpolateLinearInteger - integer arithmetic implementation
 | |
| // 
 | |
| 
 | |
| /// fixed-point interpolation routine precision
 | |
| #define SCALE    65536
 | |
| 
 | |
| 
 | |
| // Constructor
 | |
| InterpolateLinearInteger::InterpolateLinearInteger() : TransposerBase()
 | |
| {
 | |
|     // Notice: use local function calling syntax for sake of clarity, 
 | |
|     // to indicate the fact that C++ constructor can't call virtual functions.
 | |
|     resetRegisters();
 | |
|     setRate(1.0f);
 | |
| }
 | |
| 
 | |
| 
 | |
| void InterpolateLinearInteger::resetRegisters()
 | |
| {
 | |
|     iFract = 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Transposes the sample rate of the given samples using linear interpolation. 
 | |
| // 'Mono' version of the routine. Returns the number of samples returned in 
 | |
| // the "dest" buffer
 | |
| int InterpolateLinearInteger::transposeMono(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
 | |
| {
 | |
|     int i;
 | |
|     int srcSampleEnd = srcSamples - 1;
 | |
|     int srcCount = 0;
 | |
| 
 | |
|     i = 0;
 | |
|     while (srcCount < srcSampleEnd)
 | |
|     {
 | |
|         LONG_SAMPLETYPE temp;
 | |
|     
 | |
|         assert(iFract < SCALE);
 | |
| 
 | |
|         temp = (SCALE - iFract) * src[0] + iFract * src[1];
 | |
|         dest[i] = (SAMPLETYPE)(temp / SCALE);
 | |
|         i++;
 | |
| 
 | |
|         iFract += iRate;
 | |
| 
 | |
|         int iWhole = iFract / SCALE;
 | |
|         iFract -= iWhole * SCALE;
 | |
|         srcCount += iWhole;
 | |
|         src += iWhole;
 | |
|     }
 | |
|     srcSamples = srcCount;
 | |
| 
 | |
|     return i;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Transposes the sample rate of the given samples using linear interpolation. 
 | |
| // 'Stereo' version of the routine. Returns the number of samples returned in 
 | |
| // the "dest" buffer
 | |
| int InterpolateLinearInteger::transposeStereo(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
 | |
| {
 | |
|     int i;
 | |
|     int srcSampleEnd = srcSamples - 1;
 | |
|     int srcCount = 0;
 | |
| 
 | |
|     i = 0;
 | |
|     while (srcCount < srcSampleEnd)
 | |
|     {
 | |
|         LONG_SAMPLETYPE temp0;
 | |
|         LONG_SAMPLETYPE temp1;
 | |
|     
 | |
|         assert(iFract < SCALE);
 | |
| 
 | |
|         temp0 = (SCALE - iFract) * src[0] + iFract * src[2];
 | |
|         temp1 = (SCALE - iFract) * src[1] + iFract * src[3];
 | |
|         dest[0] = (SAMPLETYPE)(temp0 / SCALE);
 | |
|         dest[1] = (SAMPLETYPE)(temp1 / SCALE);
 | |
|         dest += 2;
 | |
|         i++;
 | |
| 
 | |
|         iFract += iRate;
 | |
| 
 | |
|         int iWhole = iFract / SCALE;
 | |
|         iFract -= iWhole * SCALE;
 | |
|         srcCount += iWhole;
 | |
|         src += 2*iWhole;
 | |
|     }
 | |
|     srcSamples = srcCount;
 | |
| 
 | |
|     return i;
 | |
| }
 | |
| 
 | |
| 
 | |
| int InterpolateLinearInteger::transposeMulti(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
 | |
| {
 | |
|     int i;
 | |
|     int srcSampleEnd = srcSamples - 1;
 | |
|     int srcCount = 0;
 | |
| 
 | |
|     i = 0;
 | |
|     while (srcCount < srcSampleEnd)
 | |
|     {
 | |
|         LONG_SAMPLETYPE temp, vol1;
 | |
|     
 | |
|         assert(iFract < SCALE);
 | |
|         vol1 = (LONG_SAMPLETYPE)(SCALE - iFract);
 | |
|         for (int c = 0; c < numChannels; c ++)
 | |
|         {
 | |
|             temp = vol1 * src[c] + iFract * src[c + numChannels];
 | |
|             dest[0] = (SAMPLETYPE)(temp / SCALE);
 | |
|             dest ++;
 | |
|         }
 | |
|         i++;
 | |
| 
 | |
|         iFract += iRate;
 | |
| 
 | |
|         int iWhole = iFract / SCALE;
 | |
|         iFract -= iWhole * SCALE;
 | |
|         srcCount += iWhole;
 | |
|         src += iWhole * numChannels;
 | |
|     }
 | |
|     srcSamples = srcCount;
 | |
| 
 | |
|     return i;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Sets new target iRate. Normal iRate = 1.0, smaller values represent slower 
 | |
| // iRate, larger faster iRates.
 | |
| void InterpolateLinearInteger::setRate(double newRate)
 | |
| {
 | |
|     iRate = (int)(newRate * SCALE + 0.5);
 | |
|     TransposerBase::setRate(newRate);
 | |
| }
 | |
| 
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| // InterpolateLinearFloat - floating point arithmetic implementation
 | |
| // 
 | |
| //////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| 
 | |
| // Constructor
 | |
| InterpolateLinearFloat::InterpolateLinearFloat() : TransposerBase()
 | |
| {
 | |
|     // Notice: use local function calling syntax for sake of clarity, 
 | |
|     // to indicate the fact that C++ constructor can't call virtual functions.
 | |
|     resetRegisters();
 | |
|     setRate(1.0);
 | |
| }
 | |
| 
 | |
| 
 | |
| void InterpolateLinearFloat::resetRegisters()
 | |
| {
 | |
|     fract = 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Transposes the sample rate of the given samples using linear interpolation. 
 | |
| // 'Mono' version of the routine. Returns the number of samples returned in 
 | |
| // the "dest" buffer
 | |
| int InterpolateLinearFloat::transposeMono(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
 | |
| {
 | |
|     int i;
 | |
|     int srcSampleEnd = srcSamples - 1;
 | |
|     int srcCount = 0;
 | |
| 
 | |
|     i = 0;
 | |
|     while (srcCount < srcSampleEnd)
 | |
|     {
 | |
|         double out;
 | |
|         assert(fract < 1.0);
 | |
| 
 | |
|         out = (1.0 - fract) * src[0] + fract * src[1];
 | |
|         dest[i] = (SAMPLETYPE)out;
 | |
|         i ++;
 | |
| 
 | |
|         // update position fraction
 | |
|         fract += rate;
 | |
|         // update whole positions
 | |
|         int whole = (int)fract;
 | |
|         fract -= whole;
 | |
|         src += whole;
 | |
|         srcCount += whole;
 | |
|     }
 | |
|     srcSamples = srcCount;
 | |
|     return i;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Transposes the sample rate of the given samples using linear interpolation. 
 | |
| // 'Mono' version of the routine. Returns the number of samples returned in 
 | |
| // the "dest" buffer
 | |
| int InterpolateLinearFloat::transposeStereo(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
 | |
| {
 | |
|     int i;
 | |
|     int srcSampleEnd = srcSamples - 1;
 | |
|     int srcCount = 0;
 | |
| 
 | |
|     i = 0;
 | |
|     while (srcCount < srcSampleEnd)
 | |
|     {
 | |
|         double out0, out1;
 | |
|         assert(fract < 1.0);
 | |
| 
 | |
|         out0 = (1.0 - fract) * src[0] + fract * src[2];
 | |
|         out1 = (1.0 - fract) * src[1] + fract * src[3];
 | |
|         dest[2*i]   = (SAMPLETYPE)out0;
 | |
|         dest[2*i+1] = (SAMPLETYPE)out1;
 | |
|         i ++;
 | |
| 
 | |
|         // update position fraction
 | |
|         fract += rate;
 | |
|         // update whole positions
 | |
|         int whole = (int)fract;
 | |
|         fract -= whole;
 | |
|         src += 2*whole;
 | |
|         srcCount += whole;
 | |
|     }
 | |
|     srcSamples = srcCount;
 | |
|     return i;
 | |
| }
 | |
| 
 | |
| 
 | |
| int InterpolateLinearFloat::transposeMulti(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
 | |
| {
 | |
|     int i;
 | |
|     int srcSampleEnd = srcSamples - 1;
 | |
|     int srcCount = 0;
 | |
| 
 | |
|     i = 0;
 | |
|     while (srcCount < srcSampleEnd)
 | |
|     {
 | |
|         float temp, vol1, fract_float;
 | |
|     
 | |
|         vol1 = (float)(1.0 - fract);
 | |
| 		fract_float = (float)fract;
 | |
|         for (int c = 0; c < numChannels; c ++)
 | |
|         {
 | |
| 			temp = vol1 * src[c] + fract_float * src[c + numChannels];
 | |
|             *dest = (SAMPLETYPE)temp;
 | |
|             dest ++;
 | |
|         }
 | |
|         i++;
 | |
| 
 | |
|         fract += rate;
 | |
| 
 | |
|         int iWhole = (int)fract;
 | |
|         fract -= iWhole;
 | |
|         srcCount += iWhole;
 | |
|         src += iWhole * numChannels;
 | |
|     }
 | |
|     srcSamples = srcCount;
 | |
| 
 | |
|     return i;
 | |
| }
 | 
