Duckstation/dep/soundtouch/source/SoundTouch/SoundTouch.cpp
2022-07-28 22:10:47 +10:00

539 lines
16 KiB
C++

//////////////////////////////////////////////////////////////////////////////
///
/// SoundTouch - main class for tempo/pitch/rate adjusting routines.
///
/// Notes:
/// - Initialize the SoundTouch object instance by setting up the sound stream
/// parameters with functions 'setSampleRate' and 'setChannels', then set
/// desired tempo/pitch/rate settings with the corresponding functions.
///
/// - The SoundTouch class behaves like a first-in-first-out pipeline: The
/// samples that are to be processed are fed into one of the pipe by calling
/// function 'putSamples', while the ready processed samples can be read
/// from the other end of the pipeline with function 'receiveSamples'.
///
/// - The SoundTouch processing classes require certain sized 'batches' of
/// samples in order to process the sound. For this reason the classes buffer
/// incoming samples until there are enough of samples available for
/// processing, then they carry out the processing step and consequently
/// make the processed samples available for outputting.
///
/// - For the above reason, the processing routines introduce a certain
/// 'latency' between the input and output, so that the samples input to
/// SoundTouch may not be immediately available in the output, and neither
/// the amount of outputtable samples may not immediately be in direct
/// relationship with the amount of previously input samples.
///
/// - The tempo/pitch/rate control parameters can be altered during processing.
/// Please notice though that they aren't currently protected by semaphores,
/// so in multi-thread application external semaphore protection may be
/// required.
///
/// - This class utilizes classes 'TDStretch' for tempo change (without modifying
/// pitch) and 'RateTransposer' for changing the playback rate (that is, both
/// tempo and pitch in the same ratio) of the sound. The third available control
/// 'pitch' (change pitch but maintain tempo) is produced by a combination of
/// combining the two other controls.
///
/// Author : Copyright (c) Olli Parviainen
/// Author e-mail : oparviai 'at' iki.fi
/// SoundTouch WWW: http://www.surina.net/soundtouch
///
////////////////////////////////////////////////////////////////////////////////
//
// License :
//
// SoundTouch audio processing library
// Copyright (c) Olli Parviainen
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
////////////////////////////////////////////////////////////////////////////////
#include <assert.h>
#include <stdlib.h>
#include <memory.h>
#include <math.h>
#include <stdio.h>
#include "SoundTouch.h"
#include "TDStretch.h"
#include "RateTransposer.h"
#include "cpu_detect.h"
using namespace soundtouch;
/// test if two floating point numbers are equal
#define TEST_FLOAT_EQUAL(a, b) (fabs(a - b) < 1e-10)
/// Print library version string for autoconf
extern "C" void soundtouch_ac_test()
{
printf("SoundTouch Version: %s\n",SOUNDTOUCH_VERSION);
}
SoundTouch::SoundTouch()
{
// Initialize rate transposer and tempo changer instances
pRateTransposer = new RateTransposer();
pTDStretch = TDStretch::newInstance();
setOutPipe(pTDStretch);
rate = tempo = 0;
virtualPitch =
virtualRate =
virtualTempo = 1.0;
calcEffectiveRateAndTempo();
samplesExpectedOut = 0;
samplesOutput = 0;
channels = 0;
bSrateSet = false;
}
SoundTouch::~SoundTouch()
{
delete pRateTransposer;
delete pTDStretch;
}
/// Get SoundTouch library version string
const char *SoundTouch::getVersionString()
{
static const char *_version = SOUNDTOUCH_VERSION;
return _version;
}
/// Get SoundTouch library version Id
uint SoundTouch::getVersionId()
{
return SOUNDTOUCH_VERSION_ID;
}
// Sets the number of channels, 1 = mono, 2 = stereo
void SoundTouch::setChannels(uint numChannels)
{
if (!verifyNumberOfChannels(numChannels)) return;
channels = numChannels;
pRateTransposer->setChannels((int)numChannels);
pTDStretch->setChannels((int)numChannels);
}
// Sets new rate control value. Normal rate = 1.0, smaller values
// represent slower rate, larger faster rates.
void SoundTouch::setRate(double newRate)
{
virtualRate = newRate;
calcEffectiveRateAndTempo();
}
// Sets new rate control value as a difference in percents compared
// to the original rate (-50 .. +100 %)
void SoundTouch::setRateChange(double newRate)
{
virtualRate = 1.0 + 0.01 * newRate;
calcEffectiveRateAndTempo();
}
// Sets new tempo control value. Normal tempo = 1.0, smaller values
// represent slower tempo, larger faster tempo.
void SoundTouch::setTempo(double newTempo)
{
virtualTempo = newTempo;
calcEffectiveRateAndTempo();
}
// Sets new tempo control value as a difference in percents compared
// to the original tempo (-50 .. +100 %)
void SoundTouch::setTempoChange(double newTempo)
{
virtualTempo = 1.0 + 0.01 * newTempo;
calcEffectiveRateAndTempo();
}
// Sets new pitch control value. Original pitch = 1.0, smaller values
// represent lower pitches, larger values higher pitch.
void SoundTouch::setPitch(double newPitch)
{
virtualPitch = newPitch;
calcEffectiveRateAndTempo();
}
// Sets pitch change in octaves compared to the original pitch
// (-1.00 .. +1.00)
void SoundTouch::setPitchOctaves(double newPitch)
{
virtualPitch = exp(0.69314718056 * newPitch);
calcEffectiveRateAndTempo();
}
// Sets pitch change in semi-tones compared to the original pitch
// (-12 .. +12)
void SoundTouch::setPitchSemiTones(int newPitch)
{
setPitchOctaves((double)newPitch / 12.0);
}
void SoundTouch::setPitchSemiTones(double newPitch)
{
setPitchOctaves(newPitch / 12.0);
}
// Calculates 'effective' rate and tempo values from the
// nominal control values.
void SoundTouch::calcEffectiveRateAndTempo()
{
double oldTempo = tempo;
double oldRate = rate;
tempo = virtualTempo / virtualPitch;
rate = virtualPitch * virtualRate;
if (!TEST_FLOAT_EQUAL(rate,oldRate)) pRateTransposer->setRate(rate);
if (!TEST_FLOAT_EQUAL(tempo, oldTempo)) pTDStretch->setTempo(tempo);
#ifndef SOUNDTOUCH_PREVENT_CLICK_AT_RATE_CROSSOVER
if (rate <= 1.0f)
{
if (output != pTDStretch)
{
FIFOSamplePipe *tempoOut;
assert(output == pRateTransposer);
// move samples in the current output buffer to the output of pTDStretch
tempoOut = pTDStretch->getOutput();
tempoOut->moveSamples(*output);
// move samples in pitch transposer's store buffer to tempo changer's input
// deprecated : pTDStretch->moveSamples(*pRateTransposer->getStore());
output = pTDStretch;
}
}
else
#endif
{
if (output != pRateTransposer)
{
FIFOSamplePipe *transOut;
assert(output == pTDStretch);
// move samples in the current output buffer to the output of pRateTransposer
transOut = pRateTransposer->getOutput();
transOut->moveSamples(*output);
// move samples in tempo changer's input to pitch transposer's input
pRateTransposer->moveSamples(*pTDStretch->getInput());
output = pRateTransposer;
}
}
}
// Sets sample rate.
void SoundTouch::setSampleRate(uint srate)
{
// set sample rate, leave other tempo changer parameters as they are.
pTDStretch->setParameters((int)srate);
bSrateSet = true;
}
// Adds 'numSamples' pcs of samples from the 'samples' memory position into
// the input of the object.
void SoundTouch::putSamples(const SAMPLETYPE *samples, uint nSamples)
{
if (bSrateSet == false)
{
ST_THROW_RT_ERROR("SoundTouch : Sample rate not defined");
}
else if (channels == 0)
{
ST_THROW_RT_ERROR("SoundTouch : Number of channels not defined");
}
// accumulate how many samples are expected out from processing, given the current
// processing setting
samplesExpectedOut += (double)nSamples / ((double)rate * (double)tempo);
#ifndef SOUNDTOUCH_PREVENT_CLICK_AT_RATE_CROSSOVER
if (rate <= 1.0f)
{
// transpose the rate down, output the transposed sound to tempo changer buffer
assert(output == pTDStretch);
pRateTransposer->putSamples(samples, nSamples);
pTDStretch->moveSamples(*pRateTransposer);
}
else
#endif
{
// evaluate the tempo changer, then transpose the rate up,
assert(output == pRateTransposer);
pTDStretch->putSamples(samples, nSamples);
pRateTransposer->moveSamples(*pTDStretch);
}
}
// Flushes the last samples from the processing pipeline to the output.
// Clears also the internal processing buffers.
//
// Note: This function is meant for extracting the last samples of a sound
// stream. This function may introduce additional blank samples in the end
// of the sound stream, and thus it's not recommended to call this function
// in the middle of a sound stream.
void SoundTouch::flush()
{
int i;
int numStillExpected;
SAMPLETYPE *buff = new SAMPLETYPE[128 * channels];
// how many samples are still expected to output
numStillExpected = (int)((long)(samplesExpectedOut + 0.5) - samplesOutput);
if (numStillExpected < 0) numStillExpected = 0;
memset(buff, 0, 128 * channels * sizeof(SAMPLETYPE));
// "Push" the last active samples out from the processing pipeline by
// feeding blank samples into the processing pipeline until new,
// processed samples appear in the output (not however, more than
// 24ksamples in any case)
for (i = 0; (numStillExpected > (int)numSamples()) && (i < 200); i ++)
{
putSamples(buff, 128);
}
adjustAmountOfSamples(numStillExpected);
delete[] buff;
// Clear input buffers
pTDStretch->clearInput();
// yet leave the output intouched as that's where the
// flushed samples are!
}
// Changes a setting controlling the processing system behaviour. See the
// 'SETTING_...' defines for available setting ID's.
bool SoundTouch::setSetting(int settingId, int value)
{
int sampleRate, sequenceMs, seekWindowMs, overlapMs;
// read current tdstretch routine parameters
pTDStretch->getParameters(&sampleRate, &sequenceMs, &seekWindowMs, &overlapMs);
switch (settingId)
{
case SETTING_USE_AA_FILTER :
// enables / disabless anti-alias filter
pRateTransposer->enableAAFilter((value != 0) ? true : false);
return true;
case SETTING_AA_FILTER_LENGTH :
// sets anti-alias filter length
pRateTransposer->getAAFilter()->setLength(value);
return true;
case SETTING_USE_QUICKSEEK :
// enables / disables tempo routine quick seeking algorithm
pTDStretch->enableQuickSeek((value != 0) ? true : false);
return true;
case SETTING_SEQUENCE_MS:
// change time-stretch sequence duration parameter
pTDStretch->setParameters(sampleRate, value, seekWindowMs, overlapMs);
return true;
case SETTING_SEEKWINDOW_MS:
// change time-stretch seek window length parameter
pTDStretch->setParameters(sampleRate, sequenceMs, value, overlapMs);
return true;
case SETTING_OVERLAP_MS:
// change time-stretch overlap length parameter
pTDStretch->setParameters(sampleRate, sequenceMs, seekWindowMs, value);
return true;
default :
return false;
}
}
// Reads a setting controlling the processing system behaviour. See the
// 'SETTING_...' defines for available setting ID's.
//
// Returns the setting value.
int SoundTouch::getSetting(int settingId) const
{
int temp;
switch (settingId)
{
case SETTING_USE_AA_FILTER :
return (uint)pRateTransposer->isAAFilterEnabled();
case SETTING_AA_FILTER_LENGTH :
return pRateTransposer->getAAFilter()->getLength();
case SETTING_USE_QUICKSEEK :
return (uint)pTDStretch->isQuickSeekEnabled();
case SETTING_SEQUENCE_MS:
pTDStretch->getParameters(NULL, &temp, NULL, NULL);
return temp;
case SETTING_SEEKWINDOW_MS:
pTDStretch->getParameters(NULL, NULL, &temp, NULL);
return temp;
case SETTING_OVERLAP_MS:
pTDStretch->getParameters(NULL, NULL, NULL, &temp);
return temp;
case SETTING_NOMINAL_INPUT_SEQUENCE :
{
int size = pTDStretch->getInputSampleReq();
#ifndef SOUNDTOUCH_PREVENT_CLICK_AT_RATE_CROSSOVER
if (rate <= 1.0)
{
// transposing done before timestretch, which impacts latency
return (int)(size * rate + 0.5);
}
#endif
return size;
}
case SETTING_NOMINAL_OUTPUT_SEQUENCE :
{
int size = pTDStretch->getOutputBatchSize();
if (rate > 1.0)
{
// transposing done after timestretch, which impacts latency
return (int)(size / rate + 0.5);
}
return size;
}
case SETTING_INITIAL_LATENCY:
{
double latency = pTDStretch->getLatency();
int latency_tr = pRateTransposer->getLatency();
#ifndef SOUNDTOUCH_PREVENT_CLICK_AT_RATE_CROSSOVER
if (rate <= 1.0)
{
// transposing done before timestretch, which impacts latency
latency = (latency + latency_tr) * rate;
}
else
#endif
{
latency += (double)latency_tr / rate;
}
return (int)(latency + 0.5);
}
default :
return 0;
}
}
// Clears all the samples in the object's output and internal processing
// buffers.
void SoundTouch::clear()
{
samplesExpectedOut = 0;
samplesOutput = 0;
pRateTransposer->clear();
pTDStretch->clear();
}
/// Returns number of samples currently unprocessed.
uint SoundTouch::numUnprocessedSamples() const
{
FIFOSamplePipe * psp;
if (pTDStretch)
{
psp = pTDStretch->getInput();
if (psp)
{
return psp->numSamples();
}
}
return 0;
}
/// Output samples from beginning of the sample buffer. Copies requested samples to
/// output buffer and removes them from the sample buffer. If there are less than
/// 'numsample' samples in the buffer, returns all that available.
///
/// \return Number of samples returned.
uint SoundTouch::receiveSamples(SAMPLETYPE *output, uint maxSamples)
{
uint ret = FIFOProcessor::receiveSamples(output, maxSamples);
samplesOutput += (long)ret;
return ret;
}
/// Adjusts book-keeping so that given number of samples are removed from beginning of the
/// sample buffer without copying them anywhere.
///
/// Used to reduce the number of samples in the buffer when accessing the sample buffer directly
/// with 'ptrBegin' function.
uint SoundTouch::receiveSamples(uint maxSamples)
{
uint ret = FIFOProcessor::receiveSamples(maxSamples);
samplesOutput += (long)ret;
return ret;
}
/// Get ratio between input and output audio durations, useful for calculating
/// processed output duration: if you'll process a stream of N samples, then
/// you can expect to get out N * getInputOutputSampleRatio() samples.
double SoundTouch::getInputOutputSampleRatio()
{
return 1.0 / (tempo * rate);
}