Duckstation/src/core/cpu_code_cache.cpp
2023-10-28 14:41:29 +10:00

1659 lines
54 KiB
C++

// SPDX-FileCopyrightText: 2019-2023 Connor McLaughlin <stenzek@gmail.com>
// SPDX-License-Identifier: (GPL-3.0 OR CC-BY-NC-ND-4.0)
#include "bus.h"
#include "cpu_code_cache_private.h"
#include "cpu_core.h"
#include "cpu_core_private.h"
#include "cpu_disasm.h"
#include "cpu_recompiler_types.h"
#include "settings.h"
#include "system.h"
#include "timing_event.h"
#include "common/assert.h"
#include "common/intrin.h"
#include "common/log.h"
#include "common/memmap.h"
Log_SetChannel(CPU::CodeCache);
#ifdef ENABLE_RECOMPILER
#include "cpu_recompiler_code_generator.h"
#endif
#ifdef ENABLE_NEWREC
#include "cpu_newrec_compiler.h"
#endif
#include <unordered_set>
#include <zlib.h>
namespace CPU::CodeCache {
using LUTRangeList = std::array<std::pair<VirtualMemoryAddress, VirtualMemoryAddress>, 9>;
using PageProtectionArray = std::array<PageProtectionInfo, Bus::RAM_8MB_CODE_PAGE_COUNT>;
using BlockInstructionInfoPair = std::pair<Instruction, InstructionInfo>;
using BlockInstructionList = std::vector<BlockInstructionInfoPair>;
// Switch to manual protection if we invalidate more than 4 times within 20 frames.
// Fall blocks back to interpreter if we recompile more than 3 times within 15 frames.
// The interpreter fallback is set before the manual protection switch, so that if it's just a single block
// which is constantly getting mutated, we won't hurt the performance of the rest in the page.
static constexpr u32 RECOMPILE_COUNT_FOR_INTERPRETER_FALLBACK = 3;
static constexpr u32 RECOMPILE_FRAMES_FOR_INTERPRETER_FALLBACK = 15;
static constexpr u32 INVALIDATE_COUNT_FOR_MANUAL_PROTECTION = 4;
static constexpr u32 INVALIDATE_FRAMES_FOR_MANUAL_PROTECTION = 20;
static CodeLUT DecodeCodeLUTPointer(u32 slot, CodeLUT ptr);
static CodeLUT EncodeCodeLUTPointer(u32 slot, CodeLUT ptr);
static CodeLUT OffsetCodeLUTPointer(CodeLUT fake_ptr, u32 pc);
static void AllocateLUTs();
static void DeallocateLUTs();
static void ResetCodeLUT();
static void SetCodeLUT(u32 pc, const void* function);
static void InvalidateBlock(Block* block, BlockState new_state);
static void ClearBlocks();
static Block* LookupBlock(u32 pc);
static Block* CreateBlock(u32 pc, const BlockInstructionList& instructions, const BlockMetadata& metadata);
static bool IsBlockCodeCurrent(const Block* block);
static bool RevalidateBlock(Block* block);
PageProtectionMode GetProtectionModeForPC(u32 pc);
PageProtectionMode GetProtectionModeForBlock(const Block* block);
static bool ReadBlockInstructions(u32 start_pc, BlockInstructionList* instructions, BlockMetadata* metadata);
static void FillBlockRegInfo(Block* block);
static void CopyRegInfo(InstructionInfo* dst, const InstructionInfo* src);
static void SetRegAccess(InstructionInfo* inst, Reg reg, bool write);
static void AddBlockToPageList(Block* block);
static void RemoveBlockFromPageList(Block* block);
static Common::PageFaultHandler::HandlerResult ExceptionHandler(void* exception_pc, void* fault_address, bool is_write);
static Block* CreateCachedInterpreterBlock(u32 pc);
[[noreturn]] static void ExecuteCachedInterpreter();
template<PGXPMode pgxp_mode>
[[noreturn]] static void ExecuteCachedInterpreterImpl();
// Fast map provides lookup from PC to function
// Function pointers are offset so that you don't need to subtract
CodeLUTArray g_code_lut;
static BlockLUTArray s_block_lut;
static std::unique_ptr<const void*[]> s_lut_code_pointers;
static std::unique_ptr<Block*[]> s_lut_block_pointers;
static PageProtectionArray s_page_protection = {};
static std::vector<Block*> s_blocks;
// for compiling - reuse to avoid allocations
static BlockInstructionList s_block_instructions;
#ifdef ENABLE_RECOMPILER_SUPPORT
static void BacklinkBlocks(u32 pc, const void* dst);
static void UnlinkBlockExits(Block* block);
static void ClearASMFunctions();
static void CompileASMFunctions();
static bool CompileBlock(Block* block);
static Common::PageFaultHandler::HandlerResult HandleFastmemException(void* exception_pc, void* fault_address,
bool is_write);
static void BackpatchLoadStore(void* host_pc, const LoadstoreBackpatchInfo& info);
static BlockLinkMap s_block_links;
static std::unordered_map<const void*, LoadstoreBackpatchInfo> s_fastmem_backpatch_info;
static std::unordered_set<u32> s_fastmem_faulting_pcs;
NORETURN_FUNCTION_POINTER void (*g_enter_recompiler)();
const void* g_compile_or_revalidate_block;
const void* g_check_events_and_dispatch;
const void* g_run_events_and_dispatch;
const void* g_dispatcher;
const void* g_interpret_block;
const void* g_discard_and_recompile_block;
#ifdef ENABLE_RECOMPILER_PROFILING
PerfScope MIPSPerfScope("MIPS");
#endif
// Currently remapping the code buffer doesn't work in macOS. TODO: Make dynamic instead...
#ifndef __APPLE__
#define USE_STATIC_CODE_BUFFER 1
#endif
#if defined(CPU_ARCH_ARM32)
// Use a smaller code buffer size on AArch32 to have a better chance of being in range.
static constexpr u32 RECOMPILER_CODE_CACHE_SIZE = 16 * 1024 * 1024;
static constexpr u32 RECOMPILER_FAR_CODE_CACHE_SIZE = 8 * 1024 * 1024;
#else
static constexpr u32 RECOMPILER_CODE_CACHE_SIZE = 32 * 1024 * 1024;
static constexpr u32 RECOMPILER_FAR_CODE_CACHE_SIZE = 16 * 1024 * 1024;
#endif
#ifdef USE_STATIC_CODE_BUFFER
static constexpr u32 RECOMPILER_GUARD_SIZE = 4096;
alignas(HOST_PAGE_SIZE) static u8 s_code_storage[RECOMPILER_CODE_CACHE_SIZE + RECOMPILER_FAR_CODE_CACHE_SIZE];
#endif
static JitCodeBuffer s_code_buffer;
#ifdef _DEBUG
static u32 s_total_instructions_compiled = 0;
static u32 s_total_host_instructions_emitted = 0;
#endif
#endif // ENABLE_RECOMPILER_SUPPORT
} // namespace CPU::CodeCache
bool CPU::CodeCache::IsUsingAnyRecompiler()
{
#ifdef ENABLE_RECOMPILER_SUPPORT
return (g_settings.cpu_execution_mode == CPUExecutionMode::Recompiler ||
g_settings.cpu_execution_mode == CPUExecutionMode::NewRec);
#else
return false;
#endif
}
bool CPU::CodeCache::IsUsingFastmem()
{
return IsUsingAnyRecompiler() && g_settings.cpu_fastmem_mode != CPUFastmemMode::Disabled;
}
void CPU::CodeCache::ProcessStartup()
{
AllocateLUTs();
#ifdef ENABLE_RECOMPILER_SUPPORT
#ifdef USE_STATIC_CODE_BUFFER
const bool has_buffer = s_code_buffer.Initialize(s_code_storage, sizeof(s_code_storage),
RECOMPILER_FAR_CODE_CACHE_SIZE, RECOMPILER_GUARD_SIZE);
#else
const bool has_buffer = false;
#endif
if (!has_buffer && !s_code_buffer.Allocate(RECOMPILER_CODE_CACHE_SIZE, RECOMPILER_FAR_CODE_CACHE_SIZE))
{
Panic("Failed to initialize code space");
}
#endif
if (!Common::PageFaultHandler::InstallHandler(ExceptionHandler))
Panic("Failed to install page fault handler");
}
void CPU::CodeCache::ProcessShutdown()
{
Common::PageFaultHandler::RemoveHandler(ExceptionHandler);
#ifdef ENABLE_RECOMPILER_SUPPORT
s_code_buffer.Destroy();
#endif
DeallocateLUTs();
}
void CPU::CodeCache::Initialize()
{
Assert(s_blocks.empty());
#ifdef ENABLE_RECOMPILER_SUPPORT
if (IsUsingAnyRecompiler())
{
s_code_buffer.Reset();
CompileASMFunctions();
ResetCodeLUT();
}
#endif
Bus::UpdateFastmemViews(IsUsingAnyRecompiler() ? g_settings.cpu_fastmem_mode : CPUFastmemMode::Disabled);
CPU::UpdateMemoryPointers();
}
void CPU::CodeCache::Shutdown()
{
ClearBlocks();
#ifdef ENABLE_RECOMPILER_SUPPORT
ClearASMFunctions();
#endif
Bus::UpdateFastmemViews(CPUFastmemMode::Disabled);
CPU::UpdateMemoryPointers();
}
void CPU::CodeCache::Reset()
{
ClearBlocks();
#ifdef ENABLE_RECOMPILER_SUPPORT
if (IsUsingAnyRecompiler())
{
ClearASMFunctions();
s_code_buffer.Reset();
CompileASMFunctions();
ResetCodeLUT();
}
#endif
}
void CPU::CodeCache::Execute()
{
#ifdef ENABLE_RECOMPILER_SUPPORT
if (IsUsingAnyRecompiler())
g_enter_recompiler();
else
ExecuteCachedInterpreter();
#else
ExecuteCachedInterpreter();
#endif
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// MARK: - Block Management
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
namespace CPU::CodeCache {
static constexpr u32 GetLUTTableCount(u32 start, u32 end)
{
return ((end >> LUT_TABLE_SHIFT) - (start >> LUT_TABLE_SHIFT)) + 1;
}
static constexpr LUTRangeList GetLUTRanges()
{
const LUTRangeList ranges = {{
{0x00000000, 0x00800000}, // RAM
{0x1F000000, 0x1F800000}, // EXP1
{0x1FC00000, 0x1FC80000}, // BIOS
{0x80000000, 0x80800000}, // RAM
{0x9F000000, 0x9F800000}, // EXP1
{0x9FC00000, 0x9FC80000}, // BIOS
{0xA0000000, 0xA0800000}, // RAM
{0xBF000000, 0xBF800000}, // EXP1
{0xBFC00000, 0xBFC80000} // BIOS
}};
return ranges;
}
static constexpr u32 GetLUTSlotCount(bool include_unreachable)
{
u32 tables = include_unreachable ? 1 : 0; // unreachable table
for (const auto& [start, end] : GetLUTRanges())
tables += GetLUTTableCount(start, end);
return tables * LUT_TABLE_SIZE;
}
} // namespace CPU::CodeCache
CPU::CodeCache::CodeLUT CPU::CodeCache::DecodeCodeLUTPointer(u32 slot, CodeLUT ptr)
{
if constexpr (sizeof(void*) == 8)
return reinterpret_cast<CodeLUT>(reinterpret_cast<u8*>(ptr) + (static_cast<u64>(slot) << 17));
else
return reinterpret_cast<CodeLUT>(reinterpret_cast<u8*>(ptr) + (slot << 16));
}
CPU::CodeCache::CodeLUT CPU::CodeCache::EncodeCodeLUTPointer(u32 slot, CodeLUT ptr)
{
if constexpr (sizeof(void*) == 8)
return reinterpret_cast<CodeLUT>(reinterpret_cast<u8*>(ptr) - (static_cast<u64>(slot) << 17));
else
return reinterpret_cast<CodeLUT>(reinterpret_cast<u8*>(ptr) - (slot << 16));
}
CPU::CodeCache::CodeLUT CPU::CodeCache::OffsetCodeLUTPointer(CodeLUT fake_ptr, u32 pc)
{
u8* fake_byte_ptr = reinterpret_cast<u8*>(fake_ptr);
if constexpr (sizeof(void*) == 8)
return reinterpret_cast<const void**>(fake_byte_ptr + (static_cast<u64>(pc) << 1));
else
return reinterpret_cast<const void**>(fake_byte_ptr + pc);
}
void CPU::CodeCache::AllocateLUTs()
{
constexpr u32 num_code_slots = GetLUTSlotCount(true);
constexpr u32 num_block_slots = GetLUTSlotCount(false);
Assert(!s_lut_code_pointers && !s_lut_block_pointers);
s_lut_code_pointers = std::make_unique<const void*[]>(num_code_slots);
s_lut_block_pointers = std::make_unique<Block*[]>(num_block_slots);
std::memset(s_lut_block_pointers.get(), 0, sizeof(Block*) * num_block_slots);
CodeLUT code_table_ptr = s_lut_code_pointers.get();
Block** block_table_ptr = s_lut_block_pointers.get();
CodeLUT const code_table_ptr_end = code_table_ptr + num_code_slots;
Block** const block_table_ptr_end = block_table_ptr + num_block_slots;
// Make the unreachable table jump to the invalid code callback.
MemsetPtrs(code_table_ptr, static_cast<const void*>(nullptr), LUT_TABLE_COUNT);
// Mark everything as unreachable to begin with.
for (u32 i = 0; i < LUT_TABLE_COUNT; i++)
{
g_code_lut[i] = EncodeCodeLUTPointer(i, code_table_ptr);
s_block_lut[i] = nullptr;
}
code_table_ptr += LUT_TABLE_SIZE;
// Allocate ranges.
for (const auto& [start, end] : GetLUTRanges())
{
const u32 start_slot = start >> LUT_TABLE_SHIFT;
const u32 count = GetLUTTableCount(start, end);
for (u32 i = 0; i < count; i++)
{
const u32 slot = start_slot + i;
g_code_lut[slot] = EncodeCodeLUTPointer(slot, code_table_ptr);
code_table_ptr += LUT_TABLE_SIZE;
s_block_lut[slot] = block_table_ptr;
block_table_ptr += LUT_TABLE_SIZE;
}
}
Assert(code_table_ptr == code_table_ptr_end);
Assert(block_table_ptr == block_table_ptr_end);
}
void CPU::CodeCache::DeallocateLUTs()
{
s_lut_block_pointers.reset();
s_lut_code_pointers.reset();
}
void CPU::CodeCache::ResetCodeLUT()
{
if (!s_lut_code_pointers)
return;
// Make the unreachable table jump to the invalid code callback.
MemsetPtrs(s_lut_code_pointers.get(), g_interpret_block, LUT_TABLE_COUNT);
for (u32 i = 0; i < LUT_TABLE_COUNT; i++)
{
CodeLUT ptr = DecodeCodeLUTPointer(i, g_code_lut[i]);
if (ptr == s_lut_code_pointers.get())
continue;
MemsetPtrs(ptr, g_compile_or_revalidate_block, LUT_TABLE_SIZE);
}
}
void CPU::CodeCache::SetCodeLUT(u32 pc, const void* function)
{
if (!s_lut_code_pointers)
return;
const u32 table = pc >> LUT_TABLE_SHIFT;
CodeLUT encoded_ptr = g_code_lut[table];
#ifdef _DEBUG
const CodeLUT table_ptr = DecodeCodeLUTPointer(table, encoded_ptr);
DebugAssert(table_ptr != nullptr && table_ptr != s_lut_code_pointers.get());
#endif
*OffsetCodeLUTPointer(encoded_ptr, pc) = function;
}
CPU::CodeCache::Block* CPU::CodeCache::LookupBlock(u32 pc)
{
const u32 table = pc >> LUT_TABLE_SHIFT;
if (!s_block_lut[table])
return nullptr;
const u32 idx = (pc & 0xFFFF) >> 2;
return s_block_lut[table][idx];
}
CPU::CodeCache::Block* CPU::CodeCache::CreateBlock(u32 pc, const BlockInstructionList& instructions,
const BlockMetadata& metadata)
{
const u32 size = static_cast<u32>(instructions.size());
const u32 table = pc >> LUT_TABLE_SHIFT;
Assert(s_block_lut[table]);
// retain from old block
const u32 frame_number = System::GetFrameNumber();
u32 recompile_frame = System::GetFrameNumber();
u8 recompile_count = 0;
const u32 idx = (pc & 0xFFFF) >> 2;
Block* block = s_block_lut[table][idx];
if (block)
{
// shouldn't be in the page list.. since we should come here after invalidating
Assert(!block->next_block_in_page);
// keep recompile stats before resetting, that way we actually count recompiles
recompile_frame = block->compile_frame;
recompile_count = block->compile_count;
// if it has the same number of instructions, we can reuse it
if (block->size != size)
{
// this sucks.. hopefully won't happen very often
// TODO: allocate max size, allow shrink but not grow
auto it = std::find(s_blocks.begin(), s_blocks.end(), block);
Assert(it != s_blocks.end());
s_blocks.erase(it);
std::free(block);
block = nullptr;
}
}
if (!block)
{
block =
static_cast<Block*>(std::malloc(sizeof(Block) + (sizeof(Instruction) * size) + (sizeof(InstructionInfo) * size)));
Assert(block);
s_blocks.push_back(block);
}
block->pc = pc;
block->size = size;
block->host_code = nullptr;
block->next_block_in_page = nullptr;
block->num_exit_links = 0;
block->state = BlockState::Valid;
block->flags = metadata.flags;
block->protection = GetProtectionModeForBlock(block);
block->uncached_fetch_ticks = metadata.uncached_fetch_ticks;
block->icache_line_count = metadata.icache_line_count;
block->compile_frame = recompile_frame;
block->compile_count = recompile_count + 1;
// copy instructions/info
{
const std::pair<Instruction, InstructionInfo>* ip = instructions.data();
Instruction* dsti = block->Instructions();
InstructionInfo* dstii = block->InstructionsInfo();
for (u32 i = 0; i < size; i++, ip++, dsti++, dstii++)
{
dsti->bits = ip->first.bits;
*dstii = ip->second;
}
}
s_block_lut[table][idx] = block;
// if the block is being recompiled too often, leave it in the list, but don't compile it.
const u32 frame_delta = frame_number - recompile_frame;
if (frame_delta >= RECOMPILE_FRAMES_FOR_INTERPRETER_FALLBACK)
{
block->compile_frame = frame_number;
block->compile_count = 1;
}
else if (block->compile_count >= RECOMPILE_COUNT_FOR_INTERPRETER_FALLBACK)
{
Log_DevFmt("{} recompiles in {} frames to block 0x{:08X}, not caching.", block->compile_count, frame_delta,
block->pc);
block->size = 0;
}
// cached interpreter creates empty blocks when falling back
if (block->size == 0)
{
block->state = BlockState::FallbackToInterpreter;
block->protection = PageProtectionMode::Unprotected;
return block;
}
// Old rec doesn't use backprop info, don't waste time filling it.
if (g_settings.cpu_execution_mode == CPUExecutionMode::NewRec)
FillBlockRegInfo(block);
// add it to the tracking list for its page
AddBlockToPageList(block);
return block;
}
bool CPU::CodeCache::IsBlockCodeCurrent(const Block* block)
{
// blocks shouldn't be wrapping..
const PhysicalMemoryAddress phys_addr = VirtualAddressToPhysical(block->pc);
DebugAssert((phys_addr + (sizeof(Instruction) * block->size)) <= Bus::g_ram_size);
// can just do a straight memcmp..
return (std::memcmp(Bus::g_ram + phys_addr, block->Instructions(), sizeof(Instruction) * block->size) == 0);
}
bool CPU::CodeCache::RevalidateBlock(Block* block)
{
DebugAssert(block->state != BlockState::Valid);
DebugAssert(AddressInRAM(block->pc) || block->state == BlockState::NeedsRecompile);
if (block->state >= BlockState::NeedsRecompile)
return false;
// Protection may have changed if we didn't execute before it got invalidated again. e.g. THPS2.
if (block->protection != GetProtectionModeForBlock(block))
return false;
if (!IsBlockCodeCurrent(block))
{
// changed, needs recompiling
Log_DebugPrintf("Block at PC %08X has changed and needs recompiling", block->pc);
return false;
}
block->state = BlockState::Valid;
AddBlockToPageList(block);
return true;
}
void CPU::CodeCache::AddBlockToPageList(Block* block)
{
DebugAssert(block->size > 0);
if (!AddressInRAM(block->pc) || block->protection != PageProtectionMode::WriteProtected)
return;
const u32 page_idx = block->StartPageIndex();
PageProtectionInfo& entry = s_page_protection[page_idx];
Bus::SetRAMCodePage(page_idx);
if (entry.last_block_in_page)
{
entry.last_block_in_page->next_block_in_page = block;
entry.last_block_in_page = block;
}
else
{
entry.first_block_in_page = block;
entry.last_block_in_page = block;
}
}
void CPU::CodeCache::RemoveBlockFromPageList(Block* block)
{
DebugAssert(block->size > 0);
if (!AddressInRAM(block->pc) || block->protection != PageProtectionMode::WriteProtected)
return;
const u32 page_idx = block->StartPageIndex();
PageProtectionInfo& entry = s_page_protection[page_idx];
// unlink from list
Block* prev_block = nullptr;
Block* cur_block = entry.first_block_in_page;
while (cur_block)
{
if (cur_block != block)
{
prev_block = cur_block;
cur_block = cur_block->next_block_in_page;
continue;
}
if (prev_block)
prev_block->next_block_in_page = cur_block->next_block_in_page;
else
entry.first_block_in_page = cur_block->next_block_in_page;
if (!cur_block->next_block_in_page)
entry.last_block_in_page = prev_block;
cur_block->next_block_in_page = nullptr;
break;
}
}
void CPU::CodeCache::InvalidateBlocksWithPageIndex(u32 index)
{
DebugAssert(index < Bus::RAM_8MB_CODE_PAGE_COUNT);
Bus::ClearRAMCodePage(index);
BlockState new_block_state = BlockState::Invalidated;
PageProtectionInfo& ppi = s_page_protection[index];
const u32 frame_number = System::GetFrameNumber();
const u32 frame_delta = frame_number - ppi.invalidate_frame;
ppi.invalidate_count++;
if (frame_delta >= INVALIDATE_FRAMES_FOR_MANUAL_PROTECTION)
{
ppi.invalidate_count = 1;
ppi.invalidate_frame = frame_number;
}
else if (ppi.invalidate_count > INVALIDATE_COUNT_FOR_MANUAL_PROTECTION)
{
Log_DevFmt("{} invalidations in {} frames to page {} [0x{:08X} -> 0x{:08X}], switching to manual protection",
ppi.invalidate_count, frame_delta, index, (index * HOST_PAGE_SIZE), ((index + 1) * HOST_PAGE_SIZE));
ppi.mode = PageProtectionMode::ManualCheck;
new_block_state = BlockState::NeedsRecompile;
}
if (!ppi.first_block_in_page)
return;
MemMap::BeginCodeWrite();
Block* block = ppi.first_block_in_page;
while (block)
{
InvalidateBlock(block, new_block_state);
block = std::exchange(block->next_block_in_page, nullptr);
}
ppi.first_block_in_page = nullptr;
ppi.last_block_in_page = nullptr;
MemMap::EndCodeWrite();
}
CPU::CodeCache::PageProtectionMode CPU::CodeCache::GetProtectionModeForPC(u32 pc)
{
if (!AddressInRAM(pc))
return PageProtectionMode::Unprotected;
const u32 page_idx = Bus::GetRAMCodePageIndex(pc);
return s_page_protection[page_idx].mode;
}
CPU::CodeCache::PageProtectionMode CPU::CodeCache::GetProtectionModeForBlock(const Block* block)
{
// if the block has a branch delay slot crossing a page, we must use manual protection.
// no other way about it.
if (block->HasFlag(BlockFlags::BranchDelaySpansPages))
return PageProtectionMode::ManualCheck;
return GetProtectionModeForPC(block->pc);
}
void CPU::CodeCache::InvalidateBlock(Block* block, BlockState new_state)
{
#ifdef ENABLE_RECOMPILER_SUPPORT
if (block->state == BlockState::Valid)
{
SetCodeLUT(block->pc, g_compile_or_revalidate_block);
BacklinkBlocks(block->pc, g_compile_or_revalidate_block);
}
#endif
block->state = new_state;
}
void CPU::CodeCache::InvalidateAllRAMBlocks()
{
// TODO: maybe combine the backlink into one big instruction flush cache?
for (Block* block : s_blocks)
{
if (AddressInRAM(block->pc))
InvalidateBlock(block, BlockState::Invalidated);
}
Bus::ClearRAMCodePageFlags();
}
void CPU::CodeCache::ClearBlocks()
{
for (u32 i = 0; i < Bus::RAM_8MB_CODE_PAGE_COUNT; i++)
{
PageProtectionInfo& ppi = s_page_protection[i];
if (ppi.mode == PageProtectionMode::WriteProtected && ppi.first_block_in_page)
Bus::ClearRAMCodePage(i);
ppi = {};
}
#ifdef ENABLE_RECOMPILER_SUPPORT
s_fastmem_backpatch_info.clear();
s_fastmem_faulting_pcs.clear();
s_block_links.clear();
#endif
for (Block* block : s_blocks)
std::free(block);
s_blocks.clear();
std::memset(s_lut_block_pointers.get(), 0, sizeof(Block*) * GetLUTSlotCount(false));
}
Common::PageFaultHandler::HandlerResult CPU::CodeCache::ExceptionHandler(void* exception_pc, void* fault_address,
bool is_write)
{
if (static_cast<const u8*>(fault_address) >= Bus::g_ram &&
static_cast<const u8*>(fault_address) < (Bus::g_ram + Bus::RAM_8MB_SIZE))
{
// Writing to protected RAM.
DebugAssert(is_write);
const u32 guest_address = static_cast<u32>(static_cast<const u8*>(fault_address) - Bus::g_ram);
const u32 page_index = Bus::GetRAMCodePageIndex(guest_address);
Log_DevFmt("Page fault on protected RAM @ 0x{:08X} (page #{}), invalidating code cache.", guest_address,
page_index);
InvalidateBlocksWithPageIndex(page_index);
return Common::PageFaultHandler::HandlerResult::ContinueExecution;
}
#ifdef ENABLE_RECOMPILER_SUPPORT
return HandleFastmemException(exception_pc, fault_address, is_write);
#else
return Common::PageFaultHandler::HandlerResult::ExecuteNextHandler;
#endif
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// MARK: - Cached Interpreter
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
CPU::CodeCache::Block* CPU::CodeCache::CreateCachedInterpreterBlock(u32 pc)
{
BlockMetadata metadata = {};
ReadBlockInstructions(pc, &s_block_instructions, &metadata);
return CreateBlock(pc, s_block_instructions, metadata);
}
template<PGXPMode pgxp_mode>
[[noreturn]] void CPU::CodeCache::ExecuteCachedInterpreterImpl()
{
#define CHECK_DOWNCOUNT() \
if (g_state.pending_ticks >= g_state.downcount) \
break;
for (;;)
{
TimingEvents::RunEvents();
while (g_state.pending_ticks < g_state.downcount)
{
#if 0
LogCurrentState();
#endif
#if 0
if ((g_state.pending_ticks + TimingEvents::GetGlobalTickCounter()) == 3301006214)
__debugbreak();
#endif
// Manually done because we don't want to compile blocks without a LUT.
const u32 pc = g_state.pc;
const u32 table = pc >> LUT_TABLE_SHIFT;
Block* block;
if (s_block_lut[table])
{
const u32 idx = (pc & 0xFFFF) >> 2;
block = s_block_lut[table][idx];
}
else
{
// Likely invalid code...
goto interpret_block;
}
reexecute_block:
if (!block)
{
if ((block = CreateCachedInterpreterBlock(pc))->size == 0) [[unlikely]]
goto interpret_block;
}
else
{
if (block->state == BlockState::FallbackToInterpreter) [[unlikely]]
goto interpret_block;
if ((block->state != BlockState::Valid && !RevalidateBlock(block)) ||
(block->protection == PageProtectionMode::ManualCheck && !IsBlockCodeCurrent(block)))
{
if ((block = CreateCachedInterpreterBlock(pc))->size == 0) [[unlikely]]
goto interpret_block;
}
}
// TODO: make DebugAssert
Assert(!(HasPendingInterrupt()));
if (g_settings.cpu_recompiler_icache)
CheckAndUpdateICacheTags(block->icache_line_count, block->uncached_fetch_ticks);
InterpretCachedBlock<pgxp_mode>(block);
CHECK_DOWNCOUNT();
// Handle self-looping blocks
if (g_state.pc == block->pc)
goto reexecute_block;
else
continue;
interpret_block:
InterpretUncachedBlock<pgxp_mode>();
CHECK_DOWNCOUNT();
continue;
}
}
}
[[noreturn]] void CPU::CodeCache::ExecuteCachedInterpreter()
{
if (g_settings.gpu_pgxp_enable)
{
if (g_settings.gpu_pgxp_cpu)
ExecuteCachedInterpreterImpl<PGXPMode::CPU>();
else
ExecuteCachedInterpreterImpl<PGXPMode::Memory>();
}
else
{
ExecuteCachedInterpreterImpl<PGXPMode::Disabled>();
}
}
void CPU::CodeCache::LogCurrentState()
{
#if 0
if ((TimingEvents::GetGlobalTickCounter() + GetPendingTicks()) == 2546728915)
__debugbreak();
#endif
#if 0
if ((TimingEvents::GetGlobalTickCounter() + GetPendingTicks()) < 2546729174)
return;
#endif
const auto& regs = g_state.regs;
WriteToExecutionLog(
"tick=%u dc=%u/%u pc=%08X at=%08X v0=%08X v1=%08X a0=%08X a1=%08X a2=%08X a3=%08X t0=%08X t1=%08X t2=%08X t3=%08X "
"t4=%08X t5=%08X t6=%08X t7=%08X s0=%08X s1=%08X s2=%08X s3=%08X s4=%08X s5=%08X s6=%08X s7=%08X t8=%08X t9=%08X "
"k0=%08X k1=%08X gp=%08X sp=%08X fp=%08X ra=%08X hi=%08X lo=%08X ldr=%s ldv=%08X cause=%08X sr=%08X gte=%08X\n",
TimingEvents::GetGlobalTickCounter() + GetPendingTicks(), g_state.pending_ticks, g_state.downcount, g_state.pc,
regs.at, regs.v0, regs.v1, regs.a0, regs.a1, regs.a2, regs.a3, regs.t0, regs.t1, regs.t2, regs.t3, regs.t4, regs.t5,
regs.t6, regs.t7, regs.s0, regs.s1, regs.s2, regs.s3, regs.s4, regs.s5, regs.s6, regs.s7, regs.t8, regs.t9, regs.k0,
regs.k1, regs.gp, regs.sp, regs.fp, regs.ra, regs.hi, regs.lo,
(g_state.next_load_delay_reg == Reg::count) ? "NONE" : GetRegName(g_state.next_load_delay_reg),
(g_state.next_load_delay_reg == Reg::count) ? 0 : g_state.next_load_delay_value, g_state.cop0_regs.cause.bits,
g_state.cop0_regs.sr.bits, static_cast<u32>(crc32(0, (const Bytef*)&g_state.gte_regs, sizeof(g_state.gte_regs))));
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// MARK: - Block Compilation: Shared Code
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool CPU::CodeCache::ReadBlockInstructions(u32 start_pc, BlockInstructionList* instructions, BlockMetadata* metadata)
{
// TODO: Jump to other block if it exists at this pc?
const PageProtectionMode protection = GetProtectionModeForPC(start_pc);
u32 pc = start_pc;
bool is_branch_delay_slot = false;
bool is_load_delay_slot = false;
#if 0
if (pc == 0x0005aa90)
__debugbreak();
#endif
instructions->clear();
metadata->icache_line_count = 0;
metadata->uncached_fetch_ticks = 0;
metadata->flags = BlockFlags::None;
u32 last_cache_line = ICACHE_LINES;
u32 last_page = (protection == PageProtectionMode::WriteProtected) ? Bus::GetRAMCodePageIndex(start_pc) : 0;
for (;;)
{
if (protection == PageProtectionMode::WriteProtected)
{
const u32 this_page = Bus::GetRAMCodePageIndex(pc);
if (this_page != last_page)
{
// if we're just crossing the page and not in a branch delay slot, jump directly to the next block
if (!is_branch_delay_slot)
{
Log_DevFmt("Breaking block 0x{:08X} at 0x{:08X} due to page crossing", start_pc, pc);
metadata->flags |= BlockFlags::SpansPages;
break;
}
else
{
// otherwise, we need to use manual protection in case the delay slot changes.
// may as well keep going then, since we're doing manual check anyways.
Log_DevFmt("Block 0x{:08X} has branch delay slot crossing page at 0x{:08X}, forcing manual protection",
start_pc, pc);
metadata->flags |= BlockFlags::BranchDelaySpansPages;
}
}
}
Instruction instruction;
if (!SafeReadInstruction(pc, &instruction.bits) || !IsInvalidInstruction(instruction))
break;
InstructionInfo info;
std::memset(&info, 0, sizeof(info));
info.pc = pc;
info.is_branch_delay_slot = is_branch_delay_slot;
info.is_load_delay_slot = is_load_delay_slot;
info.is_branch_instruction = IsBranchInstruction(instruction);
info.is_direct_branch_instruction = IsDirectBranchInstruction(instruction);
info.is_unconditional_branch_instruction = IsUnconditionalBranchInstruction(instruction);
info.is_load_instruction = IsMemoryLoadInstruction(instruction);
info.is_store_instruction = IsMemoryStoreInstruction(instruction);
info.has_load_delay = InstructionHasLoadDelay(instruction);
info.can_trap = CanInstructionTrap(instruction, false /*InUserMode()*/);
info.is_direct_branch_instruction = IsDirectBranchInstruction(instruction);
if (g_settings.cpu_recompiler_icache)
{
const u32 icache_line = GetICacheLine(pc);
if (icache_line != last_cache_line)
{
metadata->icache_line_count++;
last_cache_line = icache_line;
}
}
metadata->uncached_fetch_ticks += GetInstructionReadTicks(pc);
if (info.is_load_instruction || info.is_store_instruction)
metadata->flags |= BlockFlags::ContainsLoadStoreInstructions;
pc += sizeof(Instruction);
if (is_branch_delay_slot && info.is_branch_instruction)
{
const BlockInstructionInfoPair& prev = instructions->back();
if (!prev.second.is_unconditional_branch_instruction || !prev.second.is_direct_branch_instruction)
{
Log_WarningPrintf("Conditional or indirect branch delay slot at %08X, skipping block", info.pc);
return false;
}
if (!IsDirectBranchInstruction(instruction))
{
Log_WarningPrintf("Indirect branch in delay slot at %08X, skipping block", info.pc);
return false;
}
// change the pc for the second branch's delay slot, it comes from the first branch
pc = GetDirectBranchTarget(prev.first, prev.second.pc);
Log_DevPrintf("Double branch at %08X, using delay slot from %08X -> %08X", info.pc, prev.second.pc, pc);
}
// instruction is decoded now
instructions->emplace_back(instruction, info);
// if we're in a branch delay slot, the block is now done
// except if this is a branch in a branch delay slot, then we grab the one after that, and so on...
if (is_branch_delay_slot && !info.is_branch_instruction)
break;
// if this is a branch, we grab the next instruction (delay slot), and then exit
is_branch_delay_slot = info.is_branch_instruction;
// same for load delay
is_load_delay_slot = info.has_load_delay;
// is this a non-branchy exit? (e.g. syscall)
if (IsExitBlockInstruction(instruction))
break;
}
if (instructions->empty())
{
Log_WarningFmt("Empty block compiled at 0x{:08X}", start_pc);
return false;
}
instructions->back().second.is_last_instruction = true;
#ifdef _DEBUG
SmallString disasm;
Log_DebugPrintf("Block at 0x%08X", start_pc);
for (const auto& cbi : *instructions)
{
CPU::DisassembleInstruction(&disasm, cbi.second.pc, cbi.first.bits);
Log_DebugPrintf("[%s %s 0x%08X] %08X %s", cbi.second.is_branch_delay_slot ? "BD" : " ",
cbi.second.is_load_delay_slot ? "LD" : " ", cbi.second.pc, cbi.first.bits, disasm.c_str());
}
#endif
return true;
}
void CPU::CodeCache::CopyRegInfo(InstructionInfo* dst, const InstructionInfo* src)
{
std::memcpy(dst->reg_flags, src->reg_flags, sizeof(dst->reg_flags));
std::memcpy(dst->read_reg, src->read_reg, sizeof(dst->read_reg));
}
void CPU::CodeCache::SetRegAccess(InstructionInfo* inst, Reg reg, bool write)
{
if (reg == Reg::zero)
return;
if (!write)
{
for (u32 i = 0; i < std::size(inst->read_reg); i++)
{
if (inst->read_reg[i] == Reg::zero)
{
inst->read_reg[i] = reg;
break;
}
}
}
else
{
#if 0
for (u32 i = 0; i < std::size(inst->write_reg); i++)
{
if (inst->write_reg[i] == Reg::zero)
{
inst->write_reg[i] = reg;
break;
}
}
#endif
}
}
#define BackpropSetReads(reg) \
do \
{ \
if (!(inst->reg_flags[static_cast<u8>(reg)] & RI_USED)) \
inst->reg_flags[static_cast<u8>(reg)] |= RI_LASTUSE; \
prev->reg_flags[static_cast<u8>(reg)] |= RI_LIVE | RI_USED; \
inst->reg_flags[static_cast<u8>(reg)] |= RI_USED; \
SetRegAccess(inst, reg, false); \
} while (0)
#define BackpropSetWrites(reg) \
do \
{ \
prev->reg_flags[static_cast<u8>(reg)] &= ~(RI_LIVE | RI_USED); \
if (!(inst->reg_flags[static_cast<u8>(reg)] & RI_USED)) \
inst->reg_flags[static_cast<u8>(reg)] |= RI_LASTUSE; \
inst->reg_flags[static_cast<u8>(reg)] |= RI_USED; \
SetRegAccess(inst, reg, true); \
} while (0)
// TODO: memory loads should be delayed one instruction because of stupid load delays.
#define BackpropSetWritesDelayed(reg) BackpropSetWrites(reg)
void CPU::CodeCache::FillBlockRegInfo(Block* block)
{
const Instruction* iinst = block->Instructions() + (block->size - 1);
InstructionInfo* const start = block->InstructionsInfo();
InstructionInfo* inst = start + (block->size - 1);
std::memset(inst->reg_flags, RI_LIVE, sizeof(inst->reg_flags));
std::memset(inst->read_reg, 0, sizeof(inst->read_reg));
// std::memset(inst->write_reg, 0, sizeof(inst->write_reg));
while (inst != start)
{
InstructionInfo* prev = inst - 1;
CopyRegInfo(prev, inst);
const Reg rs = iinst->r.rs;
const Reg rt = iinst->r.rt;
switch (iinst->op)
{
case InstructionOp::funct:
{
const Reg rd = iinst->r.rd;
switch (iinst->r.funct)
{
case InstructionFunct::sll:
case InstructionFunct::srl:
case InstructionFunct::sra:
BackpropSetWrites(rd);
BackpropSetReads(rt);
break;
case InstructionFunct::sllv:
case InstructionFunct::srlv:
case InstructionFunct::srav:
case InstructionFunct::add:
case InstructionFunct::addu:
case InstructionFunct::sub:
case InstructionFunct::subu:
case InstructionFunct::and_:
case InstructionFunct::or_:
case InstructionFunct::xor_:
case InstructionFunct::nor:
case InstructionFunct::slt:
case InstructionFunct::sltu:
BackpropSetWrites(rd);
BackpropSetReads(rt);
BackpropSetReads(rs);
break;
case InstructionFunct::jr:
BackpropSetReads(rs);
break;
case InstructionFunct::jalr:
BackpropSetReads(rs);
BackpropSetWrites(rd);
break;
case InstructionFunct::mfhi:
BackpropSetWrites(rd);
BackpropSetReads(Reg::hi);
break;
case InstructionFunct::mflo:
BackpropSetWrites(rd);
BackpropSetReads(Reg::lo);
break;
case InstructionFunct::mthi:
BackpropSetWrites(Reg::hi);
BackpropSetReads(rs);
break;
case InstructionFunct::mtlo:
BackpropSetWrites(Reg::lo);
BackpropSetReads(rs);
break;
case InstructionFunct::mult:
case InstructionFunct::multu:
case InstructionFunct::div:
case InstructionFunct::divu:
BackpropSetWrites(Reg::hi);
BackpropSetWrites(Reg::lo);
BackpropSetReads(rs);
BackpropSetReads(rt);
break;
case InstructionFunct::syscall:
case InstructionFunct::break_:
break;
default:
Log_ErrorPrintf("Unknown funct %u", static_cast<u32>(iinst->r.funct.GetValue()));
break;
}
}
break;
case InstructionOp::b:
{
if ((static_cast<u8>(iinst->i.rt.GetValue()) & u8(0x1E)) == u8(0x10))
BackpropSetWrites(Reg::ra);
BackpropSetReads(rs);
}
break;
case InstructionOp::j:
break;
case InstructionOp::jal:
BackpropSetWrites(Reg::ra);
break;
case InstructionOp::beq:
case InstructionOp::bne:
BackpropSetReads(rs);
BackpropSetReads(rt);
break;
case InstructionOp::blez:
case InstructionOp::bgtz:
BackpropSetReads(rs);
break;
case InstructionOp::addi:
case InstructionOp::addiu:
case InstructionOp::slti:
case InstructionOp::sltiu:
case InstructionOp::andi:
case InstructionOp::ori:
case InstructionOp::xori:
BackpropSetWrites(rt);
BackpropSetReads(rs);
break;
case InstructionOp::lui:
BackpropSetWrites(rt);
break;
case InstructionOp::lb:
case InstructionOp::lh:
case InstructionOp::lw:
case InstructionOp::lbu:
case InstructionOp::lhu:
BackpropSetWritesDelayed(rt);
BackpropSetReads(rs);
break;
case InstructionOp::lwl:
case InstructionOp::lwr:
BackpropSetWritesDelayed(rt);
BackpropSetReads(rs);
BackpropSetReads(rt);
break;
case InstructionOp::sb:
case InstructionOp::sh:
case InstructionOp::swl:
case InstructionOp::sw:
case InstructionOp::swr:
BackpropSetReads(rt);
BackpropSetReads(rs);
break;
case InstructionOp::cop0:
case InstructionOp::cop2:
{
if (iinst->cop.IsCommonInstruction())
{
switch (iinst->cop.CommonOp())
{
case CopCommonInstruction::mfcn:
case CopCommonInstruction::cfcn:
BackpropSetWritesDelayed(rt);
break;
case CopCommonInstruction::mtcn:
case CopCommonInstruction::ctcn:
BackpropSetReads(rt);
break;
}
}
break;
case InstructionOp::lwc2:
case InstructionOp::swc2:
BackpropSetReads(rs);
BackpropSetReads(rt);
break;
default:
Log_ErrorPrintf("Unknown op %u", static_cast<u32>(iinst->r.funct.GetValue()));
break;
}
} // end switch
inst--;
iinst--;
} // end while
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// MARK: - Recompiler Glue
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef ENABLE_RECOMPILER_SUPPORT
void CPU::CodeCache::CompileOrRevalidateBlock(u32 start_pc)
{
// TODO: this doesn't currently handle when the cache overflows...
DebugAssert(IsUsingAnyRecompiler());
MemMap::BeginCodeWrite();
Block* block = LookupBlock(start_pc);
if (block)
{
// we should only be here if the block got invalidated
DebugAssert(block->state != BlockState::Valid);
if (RevalidateBlock(block))
{
DebugAssert(block->host_code);
SetCodeLUT(start_pc, block->host_code);
BacklinkBlocks(start_pc, block->host_code);
MemMap::EndCodeWrite();
return;
}
// remove outward links from this block, since we're recompiling it
UnlinkBlockExits(block);
}
BlockMetadata metadata = {};
if (!ReadBlockInstructions(start_pc, &s_block_instructions, &metadata))
{
Log_ErrorFmt("Failed to read block at 0x{:08X}, falling back to uncached interpreter", start_pc);
SetCodeLUT(start_pc, g_interpret_block);
BacklinkBlocks(start_pc, g_interpret_block);
MemMap::EndCodeWrite();
return;
}
// Ensure we're not going to run out of space while compiling this block.
// We could definitely do better here... TODO: far code is no longer needed for newrec
const u32 block_size = static_cast<u32>(s_block_instructions.size());
if (s_code_buffer.GetFreeCodeSpace() < (block_size * Recompiler::MAX_NEAR_HOST_BYTES_PER_INSTRUCTION) ||
s_code_buffer.GetFreeFarCodeSpace() < (block_size * Recompiler::MAX_FAR_HOST_BYTES_PER_INSTRUCTION))
{
Log_ErrorFmt("Out of code space while compiling {:08X}. Resetting code cache.", start_pc);
CodeCache::Reset();
}
if ((block = CreateBlock(start_pc, s_block_instructions, metadata)) == nullptr || block->size == 0 ||
!CompileBlock(block))
{
Log_ErrorFmt("Failed to compile block at 0x{:08X}, falling back to uncached interpreter", start_pc);
SetCodeLUT(start_pc, g_interpret_block);
BacklinkBlocks(start_pc, g_interpret_block);
MemMap::EndCodeWrite();
return;
}
SetCodeLUT(start_pc, block->host_code);
BacklinkBlocks(start_pc, block->host_code);
MemMap::EndCodeWrite();
}
void CPU::CodeCache::DiscardAndRecompileBlock(u32 start_pc)
{
MemMap::BeginCodeWrite();
Log_DevPrintf("Discard block %08X with manual protection", start_pc);
Block* block = LookupBlock(start_pc);
DebugAssert(block && block->state == BlockState::Valid);
InvalidateBlock(block, BlockState::NeedsRecompile);
CompileOrRevalidateBlock(start_pc);
MemMap::EndCodeWrite();
}
const void* CPU::CodeCache::CreateBlockLink(Block* block, void* code, u32 newpc)
{
// self-linking should be handled by the caller
DebugAssert(newpc != block->pc);
const void* dst = g_dispatcher;
if (g_settings.cpu_recompiler_block_linking)
{
const Block* next_block = LookupBlock(newpc);
if (next_block)
{
dst = (next_block->state == BlockState::Valid) ?
next_block->host_code :
((next_block->state == BlockState::FallbackToInterpreter) ? g_interpret_block :
g_compile_or_revalidate_block);
DebugAssert(dst);
}
else
{
dst = g_compile_or_revalidate_block;
}
BlockLinkMap::iterator iter = s_block_links.emplace(newpc, code);
DebugAssert(block->num_exit_links < MAX_BLOCK_EXIT_LINKS);
block->exit_links[block->num_exit_links++] = iter;
}
Log_DebugPrintf("Linking %p with dst pc %08X to %p%s", code, newpc, dst,
(dst == g_compile_or_revalidate_block) ? "[compiler]" : "");
return dst;
}
void CPU::CodeCache::BacklinkBlocks(u32 pc, const void* dst)
{
if (!g_settings.cpu_recompiler_block_linking)
return;
const auto link_range = s_block_links.equal_range(pc);
for (auto it = link_range.first; it != link_range.second; ++it)
{
Log_DebugPrintf("Backlinking %p with dst pc %08X to %p%s", it->second, pc, dst,
(dst == g_compile_or_revalidate_block) ? "[compiler]" : "");
EmitJump(it->second, dst, true);
}
}
void CPU::CodeCache::UnlinkBlockExits(Block* block)
{
const u32 num_exit_links = block->num_exit_links;
for (u32 i = 0; i < num_exit_links; i++)
s_block_links.erase(block->exit_links[i]);
block->num_exit_links = 0;
}
JitCodeBuffer& CPU::CodeCache::GetCodeBuffer()
{
return s_code_buffer;
}
const void* CPU::CodeCache::GetInterpretUncachedBlockFunction()
{
if (g_settings.gpu_pgxp_enable)
{
if (g_settings.gpu_pgxp_cpu)
return reinterpret_cast<const void*>(InterpretUncachedBlock<PGXPMode::CPU>);
else
return reinterpret_cast<const void*>(InterpretUncachedBlock<PGXPMode::Memory>);
}
else
{
return reinterpret_cast<const void*>(InterpretUncachedBlock<PGXPMode::Disabled>);
}
}
void CPU::CodeCache::ClearASMFunctions()
{
g_enter_recompiler = nullptr;
g_compile_or_revalidate_block = nullptr;
g_check_events_and_dispatch = nullptr;
g_run_events_and_dispatch = nullptr;
g_dispatcher = nullptr;
g_interpret_block = nullptr;
g_discard_and_recompile_block = nullptr;
#ifdef _DEBUG
s_total_instructions_compiled = 0;
s_total_host_instructions_emitted = 0;
#endif
}
void CPU::CodeCache::CompileASMFunctions()
{
MemMap::BeginCodeWrite();
const u32 asm_size = EmitASMFunctions(s_code_buffer.GetFreeCodePointer(), s_code_buffer.GetFreeCodeSpace());
#ifdef ENABLE_RECOMPILER_PROFILING
MIPSPerfScope.Register(s_code_buffer.GetFreeCodePointer(), asm_size, "ASMFunctions");
#endif
s_code_buffer.CommitCode(asm_size);
MemMap::EndCodeWrite();
}
bool CPU::CodeCache::CompileBlock(Block* block)
{
const void* host_code = nullptr;
u32 host_code_size = 0;
u32 host_far_code_size = 0;
#ifdef ENABLE_RECOMPILER
if (g_settings.cpu_execution_mode == CPUExecutionMode::Recompiler)
{
Recompiler::CodeGenerator codegen(&s_code_buffer);
host_code = codegen.CompileBlock(block, &host_code_size, &host_far_code_size);
}
#endif
#ifdef ENABLE_NEWREC
if (g_settings.cpu_execution_mode == CPUExecutionMode::NewRec)
host_code = NewRec::g_compiler->CompileBlock(block, &host_code_size, &host_far_code_size);
#endif
block->host_code = host_code;
if (!host_code)
{
Log_ErrorFmt("Failed to compile host code for block at 0x{:08X}", block->pc);
block->state = BlockState::FallbackToInterpreter;
return false;
}
#ifdef _DEBUG
const u32 host_instructions = GetHostInstructionCount(host_code, host_code_size);
s_total_instructions_compiled += block->size;
s_total_host_instructions_emitted += host_instructions;
Log_ProfileFmt("0x{:08X}: {}/{}b for {}b ({}i), blowup: {:.2f}x, cache: {:.2f}%/{:.2f}%, ipi: {:.2f}/{:.2f}",
block->pc, host_code_size, host_far_code_size, block->size * 4, block->size,
static_cast<float>(host_code_size) / static_cast<float>(block->size * 4), s_code_buffer.GetUsedPct(),
s_code_buffer.GetFarUsedPct(), static_cast<float>(host_instructions) / static_cast<float>(block->size),
static_cast<float>(s_total_host_instructions_emitted) /
static_cast<float>(s_total_instructions_compiled));
#else
Log_ProfileFmt("0x{:08X}: {}/{}b for {}b ({} inst), blowup: {:.2f}x, cache: {:.2f}%/{:.2f}%", block->pc,
host_code_size, host_far_code_size, block->size * 4, block->size,
static_cast<float>(host_code_size) / static_cast<float>(block->size * 4), s_code_buffer.GetUsedPct(),
s_code_buffer.GetFarUsedPct());
#endif
#if 0
Log_DebugPrint("***HOST CODE**");
DisassembleAndLogHostCode(host_code, host_code_size);
#endif
#ifdef ENABLE_RECOMPILER_PROFILING
MIPSPerfScope.RegisterPC(host_code, host_code_size, block->pc);
#endif
return true;
}
void CPU::CodeCache::AddLoadStoreInfo(void* code_address, u32 code_size, u32 guest_pc, const void* thunk_address)
{
DebugAssert(code_size < std::numeric_limits<u8>::max());
auto iter = s_fastmem_backpatch_info.find(code_address);
if (iter != s_fastmem_backpatch_info.end())
s_fastmem_backpatch_info.erase(iter);
LoadstoreBackpatchInfo info;
info.thunk_address = thunk_address;
info.guest_pc = guest_pc;
info.guest_block = 0;
info.code_size = static_cast<u8>(code_size);
s_fastmem_backpatch_info.emplace(code_address, info);
}
void CPU::CodeCache::AddLoadStoreInfo(void* code_address, u32 code_size, u32 guest_pc, u32 guest_block,
TickCount cycles, u32 gpr_bitmask, u8 address_register, u8 data_register,
MemoryAccessSize size, bool is_signed, bool is_load)
{
DebugAssert(code_size < std::numeric_limits<u8>::max());
DebugAssert(cycles >= 0 && cycles < std::numeric_limits<u16>::max());
auto iter = s_fastmem_backpatch_info.find(code_address);
if (iter != s_fastmem_backpatch_info.end())
s_fastmem_backpatch_info.erase(iter);
LoadstoreBackpatchInfo info;
info.thunk_address = nullptr;
info.guest_pc = guest_pc;
info.guest_block = guest_block;
info.gpr_bitmask = gpr_bitmask;
info.cycles = static_cast<u16>(cycles);
info.address_register = address_register;
info.data_register = data_register;
info.size = static_cast<u16>(size);
info.is_signed = is_signed;
info.is_load = is_load;
info.code_size = static_cast<u8>(code_size);
s_fastmem_backpatch_info.emplace(code_address, info);
}
Common::PageFaultHandler::HandlerResult CPU::CodeCache::HandleFastmemException(void* exception_pc, void* fault_address,
bool is_write)
{
// TODO: Catch general RAM writes, not just fastmem
PhysicalMemoryAddress guest_address;
#ifdef ENABLE_MMAP_FASTMEM
if (g_settings.cpu_fastmem_mode == CPUFastmemMode::MMap)
{
if (static_cast<u8*>(fault_address) < static_cast<u8*>(g_state.fastmem_base) ||
(static_cast<u8*>(fault_address) - static_cast<u8*>(g_state.fastmem_base)) >=
static_cast<ptrdiff_t>(Bus::FASTMEM_ARENA_SIZE))
{
return Common::PageFaultHandler::HandlerResult::ExecuteNextHandler;
}
guest_address = static_cast<PhysicalMemoryAddress>(
static_cast<ptrdiff_t>(static_cast<u8*>(fault_address) - static_cast<u8*>(g_state.fastmem_base)));
}
else
#endif
{
// LUT fastmem - we can't compute the address.
guest_address = std::numeric_limits<PhysicalMemoryAddress>::max();
}
Log_DevFmt("Page fault handler invoked at PC={} Address={} {}, fastmem offset {:08X}", exception_pc, fault_address,
is_write ? "(write)" : "(read)", guest_address);
auto iter = s_fastmem_backpatch_info.find(exception_pc);
if (iter == s_fastmem_backpatch_info.end())
{
Log_ErrorFmt("No backpatch info found for {}", exception_pc);
return Common::PageFaultHandler::HandlerResult::ExecuteNextHandler;
}
// if we're writing to ram, let it go through a few times, and use manual block protection to sort it out
// TODO: path for manual protection to return back to read-only pages
LoadstoreBackpatchInfo& info = iter->second;
if (is_write && !g_state.cop0_regs.sr.Isc && AddressInRAM(guest_address))
{
Log_DevFmt("Ignoring fault due to RAM write @ 0x{:08X}", guest_address);
InvalidateBlocksWithPageIndex(Bus::GetRAMCodePageIndex(guest_address));
return Common::PageFaultHandler::HandlerResult::ContinueExecution;
}
Log_DevFmt("Backpatching {} at {}[{}] (pc {:08X} addr {:08X}): Bitmask {:08X} Addr {} Data {} Size {} Signed {:02X}",
info.is_load ? "load" : "store", exception_pc, info.code_size, info.guest_pc, guest_address,
info.gpr_bitmask, static_cast<unsigned>(info.address_register), static_cast<unsigned>(info.data_register),
info.AccessSizeInBytes(), static_cast<unsigned>(info.is_signed));
MemMap::BeginCodeWrite();
BackpatchLoadStore(exception_pc, info);
// queue block for recompilation later
if (g_settings.cpu_execution_mode == CPUExecutionMode::NewRec)
{
Block* block = LookupBlock(info.guest_block);
if (block)
{
// This is a bit annoying, we have to remove it from the page list if it's a RAM block.
Log_DevFmt("Queuing block {:08X} for recompilation due to backpatch", block->pc);
RemoveBlockFromPageList(block);
InvalidateBlock(block, BlockState::NeedsRecompile);
// Need to reset the recompile count, otherwise it'll get trolled into an interpreter fallback.
block->compile_frame = System::GetFrameNumber();
block->compile_count = 1;
}
}
MemMap::EndCodeWrite();
// and store the pc in the faulting list, so that we don't emit another fastmem loadstore
s_fastmem_faulting_pcs.insert(info.guest_pc);
s_fastmem_backpatch_info.erase(iter);
return Common::PageFaultHandler::HandlerResult::ContinueExecution;
}
bool CPU::CodeCache::HasPreviouslyFaultedOnPC(u32 guest_pc)
{
return (s_fastmem_faulting_pcs.find(guest_pc) != s_fastmem_faulting_pcs.end());
}
void CPU::CodeCache::BackpatchLoadStore(void* host_pc, const LoadstoreBackpatchInfo& info)
{
#ifdef ENABLE_RECOMPILER
if (g_settings.cpu_execution_mode == CPUExecutionMode::Recompiler)
Recompiler::CodeGenerator::BackpatchLoadStore(host_pc, info);
#endif
#ifdef ENABLE_NEWREC
if (g_settings.cpu_execution_mode == CPUExecutionMode::NewRec)
NewRec::BackpatchLoadStore(host_pc, info);
#endif
}
#endif // ENABLE_RECOMPILER_SUPPORT