mirror of
				https://github.com/RetroDECK/Duckstation.git
				synced 2025-04-10 19:15:14 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			504 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			HLSL
		
	
	
	
	
	
			
		
		
	
	
			504 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			HLSL
		
	
	
	
	
	
| #ifndef _SPECIAL_FUNCTIONS_H
 | |
| #define _SPECIAL_FUNCTIONS_H
 | |
| 
 | |
| /////////////////////////////////  MIT LICENSE  ////////////////////////////////
 | |
| 
 | |
| //  Copyright (C) 2014 TroggleMonkey
 | |
| //
 | |
| //  Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
| //  of this software and associated documentation files (the "Software"), to
 | |
| //  deal in the Software without restriction, including without limitation the
 | |
| //  rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 | |
| //  sell copies of the Software, and to permit persons to whom the Software is
 | |
| //  furnished to do so, subject to the following conditions:
 | |
| //
 | |
| //  The above copyright notice and this permission notice shall be included in
 | |
| //  all copies or substantial portions of the Software.
 | |
| //
 | |
| //  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
| //  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
| //  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | |
| //  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
| //  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 | |
| //  FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 | |
| //  IN THE SOFTWARE.
 | |
| 
 | |
| 
 | |
| /////////////////////////////////  DESCRIPTION  ////////////////////////////////
 | |
| 
 | |
| //  This file implements the following mathematical special functions:
 | |
| //  1.) erf() = 2/sqrt(pi) * indefinite_integral(e**(-x**2))
 | |
| //  2.) gamma(s), a real-numbered extension of the integer factorial function
 | |
| //  It also implements normalized_ligamma(s, z), a normalized lower incomplete
 | |
| //  gamma function for s < 0.5 only.  Both gamma() and normalized_ligamma() can
 | |
| //  be called with an _impl suffix to use an implementation version with a few
 | |
| //  extra precomputed parameters (which may be useful for the caller to reuse).
 | |
| //  See below for details.
 | |
| //
 | |
| //  Design Rationale:
 | |
| //  Pretty much every line of code in this file is duplicated four times for
 | |
| //  different input types (float4/float3/float2/float).  This is unfortunate,
 | |
| //  but Cg doesn't allow function templates.  Macros would be far less verbose,
 | |
| //  but they would make the code harder to document and read.  I don't expect
 | |
| //  these functions will require a whole lot of maintenance changes unless
 | |
| //  someone ever has need for more robust incomplete gamma functions, so code
 | |
| //  duplication seems to be the lesser evil in this case.
 | |
| 
 | |
| 
 | |
| ///////////////////////////  GAUSSIAN ERROR FUNCTION  //////////////////////////
 | |
| 
 | |
| float4 erf6(float4 x)
 | |
| {
 | |
|     //  Requires:   x is the standard parameter to erf().
 | |
|     //  Returns:    Return an Abramowitz/Stegun approximation of erf(), where:
 | |
|     //                  erf(x) = 2/sqrt(pi) * integral(e**(-x**2))
 | |
|     //              This approximation has a max absolute error of 2.5*10**-5
 | |
|     //              with solid numerical robustness and efficiency.  See:
 | |
|     //                  https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions
 | |
|     const float4 sign_x = sign(x);
 | |
|     const float4 t = 1.0/(1.0 + 0.47047*abs(x));
 | |
|     const float4 result = 1.0 - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
 | |
|         exp(-(x*x));
 | |
|     return result * sign_x;
 | |
| }
 | |
| 
 | |
| float3 erf6(const float3 x)
 | |
| {
 | |
|     //  Float3 version:
 | |
|     const float3 sign_x = sign(x);
 | |
|     const float3 t = 1.0/(1.0 + 0.47047*abs(x));
 | |
|     const float3 result = 1.0 - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
 | |
|         exp(-(x*x));
 | |
|     return result * sign_x;
 | |
| }
 | |
| 
 | |
| float2 erf6(const float2 x)
 | |
| {
 | |
|     //  Float2 version:
 | |
|     const float2 sign_x = sign(x);
 | |
|     const float2 t = 1.0/(1.0 + 0.47047*abs(x));
 | |
|     const float2 result = 1.0 - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
 | |
|         exp(-(x*x));
 | |
|     return result * sign_x;
 | |
| }
 | |
| 
 | |
| float erf6(const float x)
 | |
| {
 | |
|     //  Float version:
 | |
|     const float sign_x = sign(x);
 | |
|     const float t = 1.0/(1.0 + 0.47047*abs(x));
 | |
|     const float result = 1.0 - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
 | |
|         exp(-(x*x));
 | |
|     return result * sign_x;
 | |
| }
 | |
| 
 | |
| float4 erft(const float4 x)
 | |
| {
 | |
|     //  Requires:   x is the standard parameter to erf().
 | |
|     //  Returns:    Approximate erf() with the hyperbolic tangent.  The error is
 | |
|     //              visually noticeable, but it's blazing fast and perceptually
 | |
|     //              close...at least on ATI hardware.  See:
 | |
|     //                  http://www.maplesoft.com/applications/view.aspx?SID=5525&view=html
 | |
|     //  Warning:    Only use this if your hardware drivers correctly implement
 | |
|     //              tanh(): My nVidia 8800GTS returns garbage output.
 | |
|     return tanh(1.202760580 * x);
 | |
| }
 | |
| 
 | |
| float3 erft(const float3 x)
 | |
| {
 | |
|     //  Float3 version:
 | |
|     return tanh(1.202760580 * x);
 | |
| }
 | |
| 
 | |
| float2 erft(const float2 x)
 | |
| {
 | |
|     //  Float2 version:
 | |
|     return tanh(1.202760580 * x);
 | |
| }
 | |
| 
 | |
| float erft(const float x)
 | |
| {
 | |
|     //  Float version:
 | |
|     return tanh(1.202760580 * x);
 | |
| }
 | |
| 
 | |
| float4 erf(const float4 x)
 | |
| {
 | |
|     //  Requires:   x is the standard parameter to erf().
 | |
|     //  Returns:    Some approximation of erf(x), depending on user settings.
 | |
|     #ifdef ERF_FAST_APPROXIMATION
 | |
|         return erft(x);
 | |
|     #else
 | |
|         return erf6(x);
 | |
|     #endif
 | |
| }
 | |
| 
 | |
| float3 erf(const float3 x)
 | |
| {
 | |
|     //  Float3 version:
 | |
|     #ifdef ERF_FAST_APPROXIMATION
 | |
|         return erft(x);
 | |
|     #else
 | |
|         return erf6(x);
 | |
|     #endif
 | |
| }
 | |
| 
 | |
| float2 erf(const float2 x)
 | |
| {
 | |
|     //  Float2 version:
 | |
|     #ifdef ERF_FAST_APPROXIMATION
 | |
|         return erft(x);
 | |
|     #else
 | |
|         return erf6(x);
 | |
|     #endif
 | |
| }
 | |
| 
 | |
| float erf(const float x)
 | |
| {
 | |
|     //  Float version:
 | |
|     #ifdef ERF_FAST_APPROXIMATION
 | |
|         return erft(x);
 | |
|     #else
 | |
|         return erf6(x);
 | |
|     #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| ///////////////////////////  COMPLETE GAMMA FUNCTION  //////////////////////////
 | |
| 
 | |
| float4 gamma_impl(const float4 s, const float4 s_inv)
 | |
| {
 | |
|     //  Requires:   1.) s is the standard parameter to the gamma function, and
 | |
|     //                  it should lie in the [0, 36] range.
 | |
|     //              2.) s_inv = 1.0/s.  This implementation function requires
 | |
|     //                  the caller to precompute this value, giving users the
 | |
|     //                  opportunity to reuse it.
 | |
|     //  Returns:    Return approximate gamma function (real-numbered factorial)
 | |
|     //              output using the Lanczos approximation with two coefficients
 | |
|     //              calculated using Paul Godfrey's method here:
 | |
|     //                  http://my.fit.edu/~gabdo/gamma.txt
 | |
|     //              An optimal g value for s in [0, 36] is ~1.12906830989, with
 | |
|     //              a maximum relative error of 0.000463 for 2**16 equally
 | |
|     //              evals.  We could use three coeffs (0.0000346 error) without
 | |
|     //              hurting latency, but this allows more parallelism with
 | |
|     //              outside instructions.
 | |
|     static const float g = 1.12906830989;
 | |
|     static const float c0 = 0.8109119309638332633713423362694399653724431;
 | |
|     static const float c1 = 0.4808354605142681877121661197951496120000040;
 | |
|     static const float e = 2.71828182845904523536028747135266249775724709;
 | |
|     const float4 sph = s + 0.5;
 | |
|     const float4 lanczos_sum = c0 + c1/(s + 1.0);
 | |
|     const float4 base = (sph + g)/e;  //  or (s + g + float4(0.5))/e
 | |
|     //  gamma(s + 1) = base**sph * lanczos_sum; divide by s for gamma(s).
 | |
|     //  This has less error for small s's than (s -= 1.0) at the beginning.
 | |
|     return (pow(base, sph) * lanczos_sum) * s_inv;
 | |
| }
 | |
| 
 | |
| float3 gamma_impl(const float3 s, const float3 s_inv)
 | |
| {
 | |
|     //  Float3 version:
 | |
|     static const float g = 1.12906830989;
 | |
|     static const float c0 = 0.8109119309638332633713423362694399653724431;
 | |
|     static const float c1 = 0.4808354605142681877121661197951496120000040;
 | |
|     static const float e = 2.71828182845904523536028747135266249775724709;
 | |
|     const float3 sph = s + 0.5;
 | |
|     const float3 lanczos_sum = c0 + c1/(s + 1.0);
 | |
|     const float3 base = (sph + g)/e;
 | |
|     return (pow(base, sph) * lanczos_sum) * s_inv;
 | |
| }
 | |
| 
 | |
| float2 gamma_impl(const float2 s, const float2 s_inv)
 | |
| {
 | |
|     //  Float2 version:
 | |
|     static const float g = 1.12906830989;
 | |
|     static const float c0 = 0.8109119309638332633713423362694399653724431;
 | |
|     static const float c1 = 0.4808354605142681877121661197951496120000040;
 | |
|     static const float e = 2.71828182845904523536028747135266249775724709;
 | |
|     const float2 sph = s + 0.5;
 | |
|     const float2 lanczos_sum = c0 + c1/(s + 1.0);
 | |
|     const float2 base = (sph + g)/e;
 | |
|     return (pow(base, sph) * lanczos_sum) * s_inv;
 | |
| }
 | |
| 
 | |
| float gamma_impl(const float s, const float s_inv)
 | |
| {
 | |
|     //  Float version:
 | |
|     static const float g = 1.12906830989;
 | |
|     static const float c0 = 0.8109119309638332633713423362694399653724431;
 | |
|     static const float c1 = 0.4808354605142681877121661197951496120000040;
 | |
|     static const float e = 2.71828182845904523536028747135266249775724709;
 | |
|     const float sph = s + 0.5;
 | |
|     const float lanczos_sum = c0 + c1/(s + 1.0);
 | |
|     const float base = (sph + g)/e;
 | |
|     return (pow(base, sph) * lanczos_sum) * s_inv;
 | |
| }
 | |
| 
 | |
| float4 gamma(const float4 s)
 | |
| {
 | |
|     //  Requires:   s is the standard parameter to the gamma function, and it
 | |
|     //              should lie in the [0, 36] range.
 | |
|     //  Returns:    Return approximate gamma function output with a maximum
 | |
|     //              relative error of 0.000463.  See gamma_impl for details.
 | |
|     return gamma_impl(s, 1.0/s);
 | |
| }
 | |
| 
 | |
| float3 gamma(const float3 s)
 | |
| {
 | |
|     //  Float3 version:
 | |
|     return gamma_impl(s, 1.0/s);
 | |
| }
 | |
| 
 | |
| float2 gamma(const float2 s)
 | |
| {
 | |
|     //  Float2 version:
 | |
|     return gamma_impl(s, 1.0/s);
 | |
| }
 | |
| 
 | |
| float gamma(const float s)
 | |
| {
 | |
|     //  Float version:
 | |
|     return gamma_impl(s, 1.0/s);
 | |
| }
 | |
| 
 | |
| 
 | |
| ////////////////  INCOMPLETE GAMMA FUNCTIONS (RESTRICTED INPUT)  ///////////////
 | |
| 
 | |
| //  Lower incomplete gamma function for small s and z (implementation):
 | |
| float4 ligamma_small_z_impl(const float4 s, const float4 z, const float4 s_inv)
 | |
| {
 | |
|     //  Requires:   1.) s < ~0.5
 | |
|     //              2.) z <= ~0.775075
 | |
|     //              3.) s_inv = 1.0/s (precomputed for outside reuse)
 | |
|     //  Returns:    A series representation for the lower incomplete gamma
 | |
|     //              function for small s and small z (4 terms).
 | |
|     //  The actual "rolled up" summation looks like:
 | |
|     //      last_sign = 1.0; last_pow = 1.0; last_factorial = 1.0;
 | |
|     //      sum = last_sign * last_pow / ((s + k) * last_factorial)
 | |
|     //      for(int i = 0; i < 4; ++i)
 | |
|     //      {
 | |
|     //          last_sign *= -1.0; last_pow *= z; last_factorial *= i;
 | |
|     //          sum += last_sign * last_pow / ((s + k) * last_factorial);
 | |
|     //      }
 | |
|     //  Unrolled, constant-unfolded and arranged for madds and parallelism:
 | |
|     const float4 scale = pow(z, s);
 | |
|     float4 sum = s_inv;  //  Summation iteration 0 result
 | |
|     //  Summation iterations 1, 2, and 3:
 | |
|     const float4 z_sq = z*z;
 | |
|     const float4 denom1 = s + 1.0;
 | |
|     const float4 denom2 = 2.0*s + 4.0;
 | |
|     const float4 denom3 = 6.0*s + 18.0;
 | |
|     //float4 denom4 = 24.0*s + float4(96.0);
 | |
|     sum -= z/denom1;
 | |
|     sum += z_sq/denom2;
 | |
|     sum -= z * z_sq/denom3;
 | |
|     //sum += z_sq * z_sq / denom4;
 | |
|     //  Scale and return:
 | |
|     return scale * sum;
 | |
| }
 | |
| 
 | |
| float3 ligamma_small_z_impl(const float3 s, const float3 z, const float3 s_inv)
 | |
| {
 | |
|     //  Float3 version:
 | |
|     const float3 scale = pow(z, s);
 | |
|     float3 sum = s_inv;
 | |
|     const float3 z_sq = z*z;
 | |
|     const float3 denom1 = s + 1.0;
 | |
|     const float3 denom2 = 2.0*s + 4.0;
 | |
|     const float3 denom3 = 6.0*s + 18.0;
 | |
|     sum -= z/denom1;
 | |
|     sum += z_sq/denom2;
 | |
|     sum -= z * z_sq/denom3;
 | |
|     return scale * sum;
 | |
| }
 | |
| 
 | |
| float2 ligamma_small_z_impl(const float2 s, const float2 z, const float2 s_inv)
 | |
| {
 | |
|     //  Float2 version:
 | |
|     const float2 scale = pow(z, s);
 | |
|     float2 sum = s_inv;
 | |
|     const float2 z_sq = z*z;
 | |
|     const float2 denom1 = s + 1.0;
 | |
|     const float2 denom2 = 2.0*s + 4.0;
 | |
|     const float2 denom3 = 6.0*s + 18.0;
 | |
|     sum -= z/denom1;
 | |
|     sum += z_sq/denom2;
 | |
|     sum -= z * z_sq/denom3;
 | |
|     return scale * sum;
 | |
| }
 | |
| 
 | |
| float ligamma_small_z_impl(const float s, const float z, const float s_inv)
 | |
| {
 | |
|     //  Float version:
 | |
|     const float scale = pow(z, s);
 | |
|     float sum = s_inv;
 | |
|     const float z_sq = z*z;
 | |
|     const float denom1 = s + 1.0;
 | |
|     const float denom2 = 2.0*s + 4.0;
 | |
|     const float denom3 = 6.0*s + 18.0;
 | |
|     sum -= z/denom1;
 | |
|     sum += z_sq/denom2;
 | |
|     sum -= z * z_sq/denom3;
 | |
|     return scale * sum;
 | |
| }
 | |
| 
 | |
| //  Upper incomplete gamma function for small s and large z (implementation):
 | |
| float4 uigamma_large_z_impl(const float4 s, const float4 z)
 | |
| {
 | |
|     //  Requires:   1.) s < ~0.5
 | |
|     //              2.) z > ~0.775075
 | |
|     //  Returns:    Gauss's continued fraction representation for the upper
 | |
|     //              incomplete gamma function (4 terms).
 | |
|     //  The "rolled up" continued fraction looks like this.  The denominator
 | |
|     //  is truncated, and it's calculated "from the bottom up:"
 | |
|     //      denom = float4('inf');
 | |
|     //      float4 one = float4(1.0);
 | |
|     //      for(int i = 4; i > 0; --i)
 | |
|     //      {
 | |
|     //          denom = ((i * 2.0) - one) + z - s + (i * (s - i))/denom;
 | |
|     //      }
 | |
|     //  Unrolled and constant-unfolded for madds and parallelism:
 | |
|     const float4 numerator = pow(z, s) * exp(-z);
 | |
|     float4 denom = 7.0 + z - s;
 | |
|     denom = 5.0 + z - s + (3.0*s - 9.0)/denom;
 | |
|     denom = 3.0 + z - s + (2.0*s - 4.0)/denom;
 | |
|     denom = 1.0 + z - s + (s - 1.0)/denom;
 | |
|     return numerator / denom;
 | |
| }
 | |
| 
 | |
| float3 uigamma_large_z_impl(const float3 s, const float3 z)
 | |
| {
 | |
|     //  Float3 version:
 | |
|     const float3 numerator = pow(z, s) * exp(-z);
 | |
|     float3 denom = 7.0 + z - s;
 | |
|     denom = 5.0 + z - s + (3.0*s - 9.0)/denom;
 | |
|     denom = 3.0 + z - s + (2.0*s - 4.0)/denom;
 | |
|     denom = 1.0 + z - s + (s - 1.0)/denom;
 | |
|     return numerator / denom;
 | |
| }
 | |
| 
 | |
| float2 uigamma_large_z_impl(const float2 s, const float2 z)
 | |
| {
 | |
|     //  Float2 version:
 | |
|     const float2 numerator = pow(z, s) * exp(-z);
 | |
|     float2 denom = 7.0 + z - s;
 | |
|     denom = 5.0 + z - s + (3.0*s - 9.0)/denom;
 | |
|     denom = 3.0 + z - s + (2.0*s - 4.0)/denom;
 | |
|     denom = 1.0 + z - s + (s - 1.0)/denom;
 | |
|     return numerator / denom;
 | |
| }
 | |
| 
 | |
| float uigamma_large_z_impl(const float s, const float z)
 | |
| {
 | |
|     //  Float version:
 | |
|     const float numerator = pow(z, s) * exp(-z);
 | |
|     float denom = 7.0 + z - s;
 | |
|     denom = 5.0 + z - s + (3.0*s - 9.0)/denom;
 | |
|     denom = 3.0 + z - s + (2.0*s - 4.0)/denom;
 | |
|     denom = 1.0 + z - s + (s - 1.0)/denom;
 | |
|     return numerator / denom;
 | |
| }
 | |
| 
 | |
| //  Normalized lower incomplete gamma function for small s (implementation):
 | |
| float4 normalized_ligamma_impl(const float4 s, const float4 z,
 | |
|     const float4 s_inv, const float4 gamma_s_inv)
 | |
| {
 | |
|     //  Requires:   1.) s < ~0.5
 | |
|     //              2.) s_inv = 1/s (precomputed for outside reuse)
 | |
|     //              3.) gamma_s_inv = 1/gamma(s) (precomputed for outside reuse)
 | |
|     //  Returns:    Approximate the normalized lower incomplete gamma function
 | |
|     //              for s < 0.5.  Since we only care about s < 0.5, we only need
 | |
|     //              to evaluate two branches (not four) based on z.  Each branch
 | |
|     //              uses four terms, with a max relative error of ~0.00182.  The
 | |
|     //              branch threshold and specifics were adapted for fewer terms
 | |
|     //              from Gil/Segura/Temme's paper here:
 | |
|     //                  http://oai.cwi.nl/oai/asset/20433/20433B.pdf
 | |
|     //  Evaluate both branches: Real branches test slower even when available.
 | |
|     static const float thresh = 0.775075;
 | |
|     int4 z_is_large;
 | |
|     z_is_large.x = int(z.x > thresh);
 | |
|     z_is_large.y = int(z.y > thresh);
 | |
|     z_is_large.z = int(z.z > thresh);
 | |
|     z_is_large.w = int(z.w > thresh);
 | |
|     const float4 large_z = 1.0 - uigamma_large_z_impl(s, z) * gamma_s_inv;
 | |
|     const float4 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
 | |
|     //  Combine the results from both branches:
 | |
|     int4 inverse_z_is_large = saturate(~(z_is_large));
 | |
|     return large_z * float4(z_is_large) + small_z * float4(inverse_z_is_large);
 | |
| }
 | |
| 
 | |
| float3 normalized_ligamma_impl(const float3 s, const float3 z,
 | |
|     const float3 s_inv, const float3 gamma_s_inv)
 | |
| {
 | |
|     //  Float3 version:
 | |
|     static const float thresh = 0.775075;
 | |
|     int3 z_is_large;
 | |
|     z_is_large.x = int(z.x > thresh);
 | |
|     z_is_large.y = int(z.y > thresh);
 | |
|     z_is_large.z = int(z.z > thresh);
 | |
|     const float3 large_z = 1.0 - uigamma_large_z_impl(s, z) * gamma_s_inv;
 | |
|     const float3 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
 | |
|     int3 inverse_z_is_large = saturate(~(z_is_large));
 | |
|     return large_z * float3(z_is_large) + small_z * float3(inverse_z_is_large);
 | |
| }
 | |
| 
 | |
| float2 normalized_ligamma_impl(const float2 s, const float2 z,
 | |
|     const float2 s_inv, const float2 gamma_s_inv)
 | |
| {
 | |
|     //  Float2 version:
 | |
|     static const float thresh = 0.775075;
 | |
|     int2 z_is_large;
 | |
|     z_is_large.x = int(z.x > thresh);
 | |
|     z_is_large.y = int(z.y > thresh);
 | |
|     const float2 large_z = 1.0 - uigamma_large_z_impl(s, z) * gamma_s_inv;
 | |
|     const float2 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
 | |
|     int2 inverse_z_is_large = saturate(~(z_is_large));
 | |
|     return large_z * float2(z_is_large) + small_z * float2(inverse_z_is_large);
 | |
| }
 | |
| 
 | |
| float normalized_ligamma_impl(const float s, const float z,
 | |
|     const float s_inv, const float gamma_s_inv)
 | |
| {
 | |
|     //  Float version:
 | |
|     static const float thresh = 0.775075;
 | |
|     const bool z_is_large = z > thresh;
 | |
|     const float large_z = 1.0 - uigamma_large_z_impl(s, z) * gamma_s_inv;
 | |
|     const float small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
 | |
|     return large_z * float(z_is_large) + small_z * float(!z_is_large);
 | |
| }
 | |
| 
 | |
| //  Normalized lower incomplete gamma function for small s:
 | |
| float4 normalized_ligamma(const float4 s, const float4 z)
 | |
| {
 | |
|     //  Requires:   s < ~0.5
 | |
|     //  Returns:    Approximate the normalized lower incomplete gamma function
 | |
|     //              for s < 0.5.  See normalized_ligamma_impl() for details.
 | |
|     const float4 s_inv = 1.0/s;
 | |
|     const float4 gamma_s_inv = 1.0/gamma_impl(s, s_inv);
 | |
|     return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
 | |
| }
 | |
| 
 | |
| float3 normalized_ligamma(const float3 s, const float3 z)
 | |
| {
 | |
|     //  Float3 version:
 | |
|     const float3 s_inv = 1.0/s;
 | |
|     const float3 gamma_s_inv = 1.0/gamma_impl(s, s_inv);
 | |
|     return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
 | |
| }
 | |
| 
 | |
| float2 normalized_ligamma(const float2 s, const float2 z)
 | |
| {
 | |
|     //  Float2 version:
 | |
|     const float2 s_inv = 1.0/s;
 | |
|     const float2 gamma_s_inv = 1.0/gamma_impl(s, s_inv);
 | |
|     return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
 | |
| }
 | |
| 
 | |
| float normalized_ligamma(const float s, const float z)
 | |
| {
 | |
|     //  Float version:
 | |
|     const float s_inv = 1.0/s;
 | |
|     const float gamma_s_inv = 1.0/gamma_impl(s, s_inv);
 | |
|     return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
 | |
| }
 | |
| 
 | |
| #endif  //  _SPECIAL_FUNCTIONS_H | 
