Duckstation/src/core/gpu.cpp

2766 lines
98 KiB
C++

// SPDX-FileCopyrightText: 2019-2024 Connor McLaughlin <stenzek@gmail.com>
// SPDX-License-Identifier: (GPL-3.0 OR CC-BY-NC-ND-4.0)
#include "gpu.h"
#include "dma.h"
#include "gpu_shadergen.h"
#include "host.h"
#include "imgui.h"
#include "interrupt_controller.h"
#include "settings.h"
#include "system.h"
#include "timers.h"
#include "util/gpu_device.h"
#include "util/image.h"
#include "util/imgui_manager.h"
#include "util/postprocessing.h"
#include "util/shadergen.h"
#include "util/state_wrapper.h"
#include "common/align.h"
#include "common/file_system.h"
#include "common/heap_array.h"
#include "common/log.h"
#include "common/path.h"
#include "common/small_string.h"
#include "common/string_util.h"
#include "IconsFontAwesome5.h"
#include "fmt/format.h"
#include <cmath>
#include <thread>
Log_SetChannel(GPU);
std::unique_ptr<GPU> g_gpu;
alignas(HOST_PAGE_SIZE) u16 g_vram[VRAM_SIZE / sizeof(u16)];
const GPU::GP0CommandHandlerTable GPU::s_GP0_command_handler_table = GPU::GenerateGP0CommandHandlerTable();
static bool CompressAndWriteTextureToFile(u32 width, u32 height, std::string filename, FileSystem::ManagedCFilePtr fp,
u8 quality, bool clear_alpha, bool flip_y, std::vector<u32> texture_data,
u32 texture_data_stride, GPUTexture::Format texture_format,
bool display_osd_message, bool use_thread);
static void JoinScreenshotThreads();
static std::deque<std::thread> s_screenshot_threads;
static std::mutex s_screenshot_threads_mutex;
GPU::GPU()
{
ResetStatistics();
}
GPU::~GPU()
{
JoinScreenshotThreads();
DestroyDeinterlaceTextures();
g_gpu_device->RecycleTexture(std::move(m_chroma_smoothing_texture));
if (g_gpu_device)
g_gpu_device->SetGPUTimingEnabled(false);
}
bool GPU::Initialize()
{
m_force_progressive_scan = g_settings.gpu_disable_interlacing;
m_force_ntsc_timings = g_settings.gpu_force_ntsc_timings;
m_crtc_tick_event = TimingEvents::CreateTimingEvent(
"GPU CRTC Tick", 1, 1,
[](void* param, TickCount ticks, TickCount ticks_late) { static_cast<GPU*>(param)->CRTCTickEvent(ticks); }, this,
true);
m_command_tick_event = TimingEvents::CreateTimingEvent(
"GPU Command Tick", 1, 1,
[](void* param, TickCount ticks, TickCount ticks_late) { static_cast<GPU*>(param)->CommandTickEvent(ticks); }, this,
true);
m_fifo_size = g_settings.gpu_fifo_size;
m_max_run_ahead = g_settings.gpu_max_run_ahead;
m_console_is_pal = System::IsPALRegion();
UpdateCRTCConfig();
if (!CompileDisplayPipelines(true, true, g_settings.gpu_24bit_chroma_smoothing))
{
Host::ReportErrorAsync("Error", "Failed to compile base GPU pipelines.");
return false;
}
g_gpu_device->SetGPUTimingEnabled(g_settings.display_show_gpu_usage);
return true;
}
void GPU::UpdateSettings(const Settings& old_settings)
{
FlushRender();
m_force_progressive_scan = g_settings.gpu_disable_interlacing;
m_fifo_size = g_settings.gpu_fifo_size;
m_max_run_ahead = g_settings.gpu_max_run_ahead;
if (m_force_ntsc_timings != g_settings.gpu_force_ntsc_timings || m_console_is_pal != System::IsPALRegion())
{
m_force_ntsc_timings = g_settings.gpu_force_ntsc_timings;
m_console_is_pal = System::IsPALRegion();
UpdateCRTCConfig();
}
// Crop mode calls this, so recalculate the display area
UpdateCRTCDisplayParameters();
if (g_settings.display_scaling != old_settings.display_scaling ||
g_settings.display_deinterlacing_mode != old_settings.display_deinterlacing_mode ||
g_settings.gpu_24bit_chroma_smoothing != old_settings.gpu_24bit_chroma_smoothing)
{
// Toss buffers on mode change.
if (g_settings.display_deinterlacing_mode != old_settings.display_deinterlacing_mode)
DestroyDeinterlaceTextures();
if (!CompileDisplayPipelines(g_settings.display_scaling != old_settings.display_scaling,
g_settings.display_deinterlacing_mode != old_settings.display_deinterlacing_mode,
g_settings.gpu_24bit_chroma_smoothing != old_settings.gpu_24bit_chroma_smoothing))
{
Panic("Failed to compile display pipeline on settings change.");
}
}
g_gpu_device->SetGPUTimingEnabled(g_settings.display_show_gpu_usage);
}
void GPU::CPUClockChanged()
{
UpdateCRTCConfig();
}
void GPU::UpdateResolutionScale()
{
}
std::tuple<u32, u32> GPU::GetEffectiveDisplayResolution(bool scaled /* = true */)
{
return std::tie(m_crtc_state.display_vram_width, m_crtc_state.display_vram_height);
}
std::tuple<u32, u32> GPU::GetFullDisplayResolution(bool scaled /* = true */)
{
return std::tie(m_crtc_state.display_width, m_crtc_state.display_height);
}
void GPU::Reset(bool clear_vram)
{
m_GPUSTAT.bits = 0x14802000;
m_set_texture_disable_mask = false;
m_GPUREAD_latch = 0;
m_crtc_state.fractional_ticks = 0;
m_crtc_state.fractional_dot_ticks = 0;
m_crtc_state.current_tick_in_scanline = 0;
m_crtc_state.current_scanline = 0;
m_crtc_state.in_hblank = false;
m_crtc_state.in_vblank = false;
m_crtc_state.interlaced_field = 0;
m_crtc_state.interlaced_display_field = 0;
if (clear_vram)
std::memset(g_vram, 0, sizeof(g_vram));
SoftReset();
UpdateDisplay();
}
void GPU::SoftReset()
{
FlushRender();
if (m_blitter_state == BlitterState::WritingVRAM)
FinishVRAMWrite();
m_GPUSTAT.texture_page_x_base = 0;
m_GPUSTAT.texture_page_y_base = 0;
m_GPUSTAT.semi_transparency_mode = GPUTransparencyMode::HalfBackgroundPlusHalfForeground;
m_GPUSTAT.texture_color_mode = GPUTextureMode::Palette4Bit;
m_GPUSTAT.dither_enable = false;
m_GPUSTAT.draw_to_displayed_field = false;
m_GPUSTAT.set_mask_while_drawing = false;
m_GPUSTAT.check_mask_before_draw = false;
m_GPUSTAT.reverse_flag = false;
m_GPUSTAT.texture_disable = false;
m_GPUSTAT.horizontal_resolution_2 = 0;
m_GPUSTAT.horizontal_resolution_1 = 0;
m_GPUSTAT.vertical_resolution = false;
m_GPUSTAT.pal_mode = System::IsPALRegion();
m_GPUSTAT.display_area_color_depth_24 = false;
m_GPUSTAT.vertical_interlace = false;
m_GPUSTAT.display_disable = true;
m_GPUSTAT.dma_direction = DMADirection::Off;
m_drawing_area.Set(0, 0, 0, 0);
m_drawing_area_changed = true;
m_drawing_offset = {};
std::memset(&m_crtc_state.regs, 0, sizeof(m_crtc_state.regs));
m_crtc_state.regs.horizontal_display_range = 0xC60260;
m_crtc_state.regs.vertical_display_range = 0x3FC10;
m_blitter_state = BlitterState::Idle;
m_pending_command_ticks = 0;
m_command_total_words = 0;
m_vram_transfer = {};
m_fifo.Clear();
m_blit_buffer.clear();
m_blit_remaining_words = 0;
m_draw_mode.texture_window_value = 0xFFFFFFFFu;
SetDrawMode(0);
SetTexturePalette(0);
SetTextureWindow(0);
UpdateDMARequest();
UpdateCRTCConfig();
UpdateCRTCTickEvent();
UpdateCommandTickEvent();
UpdateGPUIdle();
}
bool GPU::DoState(StateWrapper& sw, GPUTexture** host_texture, bool update_display)
{
FlushRender();
if (sw.IsReading())
{
// perform a reset to discard all pending draws/fb state
Reset(host_texture == nullptr);
}
sw.Do(&m_GPUSTAT.bits);
sw.Do(&m_draw_mode.mode_reg.bits);
sw.Do(&m_draw_mode.palette_reg.bits);
sw.Do(&m_draw_mode.texture_window_value);
if (sw.GetVersion() < 62)
{
// texture_page_x, texture_page_y, texture_palette_x, texture_palette_y
DebugAssert(sw.IsReading());
sw.SkipBytes(sizeof(u32) * 4);
}
sw.Do(&m_draw_mode.texture_window.and_x);
sw.Do(&m_draw_mode.texture_window.and_y);
sw.Do(&m_draw_mode.texture_window.or_x);
sw.Do(&m_draw_mode.texture_window.or_y);
sw.Do(&m_draw_mode.texture_x_flip);
sw.Do(&m_draw_mode.texture_y_flip);
sw.Do(&m_drawing_area.left);
sw.Do(&m_drawing_area.top);
sw.Do(&m_drawing_area.right);
sw.Do(&m_drawing_area.bottom);
sw.Do(&m_drawing_offset.x);
sw.Do(&m_drawing_offset.y);
sw.Do(&m_drawing_offset.x);
sw.Do(&m_console_is_pal);
sw.Do(&m_set_texture_disable_mask);
sw.Do(&m_crtc_state.regs.display_address_start);
sw.Do(&m_crtc_state.regs.horizontal_display_range);
sw.Do(&m_crtc_state.regs.vertical_display_range);
sw.Do(&m_crtc_state.dot_clock_divider);
sw.Do(&m_crtc_state.display_width);
sw.Do(&m_crtc_state.display_height);
sw.Do(&m_crtc_state.display_origin_left);
sw.Do(&m_crtc_state.display_origin_top);
sw.Do(&m_crtc_state.display_vram_left);
sw.Do(&m_crtc_state.display_vram_top);
sw.Do(&m_crtc_state.display_vram_width);
sw.Do(&m_crtc_state.display_vram_height);
sw.Do(&m_crtc_state.horizontal_total);
sw.Do(&m_crtc_state.horizontal_visible_start);
sw.Do(&m_crtc_state.horizontal_visible_end);
sw.Do(&m_crtc_state.horizontal_display_start);
sw.Do(&m_crtc_state.horizontal_display_end);
sw.Do(&m_crtc_state.vertical_total);
sw.Do(&m_crtc_state.vertical_visible_start);
sw.Do(&m_crtc_state.vertical_visible_end);
sw.Do(&m_crtc_state.vertical_display_start);
sw.Do(&m_crtc_state.vertical_display_end);
sw.Do(&m_crtc_state.fractional_ticks);
sw.Do(&m_crtc_state.current_tick_in_scanline);
sw.Do(&m_crtc_state.current_scanline);
sw.DoEx(&m_crtc_state.fractional_dot_ticks, 46, 0);
sw.Do(&m_crtc_state.in_hblank);
sw.Do(&m_crtc_state.in_vblank);
sw.Do(&m_crtc_state.interlaced_field);
sw.Do(&m_crtc_state.interlaced_display_field);
sw.Do(&m_crtc_state.active_line_lsb);
sw.Do(&m_blitter_state);
sw.Do(&m_pending_command_ticks);
sw.Do(&m_command_total_words);
sw.Do(&m_GPUREAD_latch);
sw.Do(&m_vram_transfer.x);
sw.Do(&m_vram_transfer.y);
sw.Do(&m_vram_transfer.width);
sw.Do(&m_vram_transfer.height);
sw.Do(&m_vram_transfer.col);
sw.Do(&m_vram_transfer.row);
sw.Do(&m_fifo);
sw.Do(&m_blit_buffer);
sw.Do(&m_blit_remaining_words);
sw.Do(&m_render_command.bits);
sw.Do(&m_max_run_ahead);
sw.Do(&m_fifo_size);
if (sw.IsReading())
{
m_draw_mode.texture_page_changed = true;
m_draw_mode.texture_window_changed = true;
m_drawing_area_changed = true;
UpdateDMARequest();
}
if (!host_texture)
{
if (!sw.DoMarker("GPU-VRAM"))
return false;
if (sw.IsReading())
{
// Still need a temporary here.
FixedHeapArray<u16, VRAM_WIDTH * VRAM_HEIGHT> temp;
sw.DoBytes(temp.data(), VRAM_WIDTH * VRAM_HEIGHT * sizeof(u16));
UpdateVRAM(0, 0, VRAM_WIDTH, VRAM_HEIGHT, temp.data(), false, false);
}
else
{
ReadVRAM(0, 0, VRAM_WIDTH, VRAM_HEIGHT);
sw.DoBytes(g_vram, VRAM_WIDTH * VRAM_HEIGHT * sizeof(u16));
}
}
if (sw.IsReading())
{
UpdateCRTCConfig();
if (update_display)
UpdateDisplay();
UpdateCRTCTickEvent();
UpdateCommandTickEvent();
}
return !sw.HasError();
}
void GPU::RestoreDeviceContext()
{
}
void GPU::UpdateDMARequest()
{
switch (m_blitter_state)
{
case BlitterState::Idle:
m_GPUSTAT.ready_to_send_vram = false;
m_GPUSTAT.ready_to_recieve_dma = (m_fifo.IsEmpty() || m_fifo.GetSize() < m_command_total_words);
break;
case BlitterState::WritingVRAM:
m_GPUSTAT.ready_to_send_vram = false;
m_GPUSTAT.ready_to_recieve_dma = (m_fifo.GetSize() < m_fifo_size);
break;
case BlitterState::ReadingVRAM:
m_GPUSTAT.ready_to_send_vram = true;
m_GPUSTAT.ready_to_recieve_dma = m_fifo.IsEmpty();
break;
case BlitterState::DrawingPolyLine:
m_GPUSTAT.ready_to_send_vram = false;
m_GPUSTAT.ready_to_recieve_dma = (m_fifo.GetSize() < m_fifo_size);
break;
default:
UnreachableCode();
break;
}
bool dma_request;
switch (m_GPUSTAT.dma_direction)
{
case DMADirection::Off:
dma_request = false;
break;
case DMADirection::FIFO:
dma_request = m_GPUSTAT.ready_to_recieve_dma;
break;
case DMADirection::CPUtoGP0:
dma_request = m_GPUSTAT.ready_to_recieve_dma;
break;
case DMADirection::GPUREADtoCPU:
dma_request = m_GPUSTAT.ready_to_send_vram;
break;
default:
dma_request = false;
break;
}
m_GPUSTAT.dma_data_request = dma_request;
DMA::SetRequest(DMA::Channel::GPU, dma_request);
}
void GPU::UpdateGPUIdle()
{
switch (m_blitter_state)
{
case BlitterState::Idle:
m_GPUSTAT.gpu_idle = (m_pending_command_ticks <= 0 && m_fifo.IsEmpty());
break;
case BlitterState::WritingVRAM:
m_GPUSTAT.gpu_idle = false;
break;
case BlitterState::ReadingVRAM:
m_GPUSTAT.gpu_idle = false;
break;
case BlitterState::DrawingPolyLine:
m_GPUSTAT.gpu_idle = false;
break;
default:
UnreachableCode();
break;
}
}
u32 GPU::ReadRegister(u32 offset)
{
switch (offset)
{
case 0x00:
return ReadGPUREAD();
case 0x04:
{
// code can be dependent on the odd/even bit, so update the GPU state when reading.
// we can mitigate this slightly by only updating when the raster is actually hitting a new line
if (IsCRTCScanlinePending())
SynchronizeCRTC();
if (IsCommandCompletionPending())
m_command_tick_event->InvokeEarly();
return m_GPUSTAT.bits;
}
default:
Log_ErrorPrintf("Unhandled register read: %02X", offset);
return UINT32_C(0xFFFFFFFF);
}
}
void GPU::WriteRegister(u32 offset, u32 value)
{
switch (offset)
{
case 0x00:
m_fifo.Push(value);
ExecuteCommands();
UpdateCommandTickEvent();
return;
case 0x04:
WriteGP1(value);
return;
default:
Log_ErrorPrintf("Unhandled register write: %02X <- %08X", offset, value);
return;
}
}
void GPU::DMARead(u32* words, u32 word_count)
{
if (m_GPUSTAT.dma_direction != DMADirection::GPUREADtoCPU)
{
Log_ErrorPrintf("Invalid DMA direction from GPU DMA read");
std::fill_n(words, word_count, UINT32_C(0xFFFFFFFF));
return;
}
for (u32 i = 0; i < word_count; i++)
words[i] = ReadGPUREAD();
}
void GPU::EndDMAWrite()
{
m_fifo_pushed = true;
if (!m_syncing)
{
ExecuteCommands();
UpdateCommandTickEvent();
}
else
{
UpdateDMARequest();
}
}
/**
* NTSC GPU clock 53.693175 MHz
* PAL GPU clock 53.203425 MHz
* courtesy of @ggrtk
*
* NTSC - sysclk * 715909 / 451584
* PAL - sysclk * 709379 / 451584
*/
TickCount GPU::GetCRTCFrequency() const
{
return m_console_is_pal ? 53203425 : 53693175;
}
TickCount GPU::CRTCTicksToSystemTicks(TickCount gpu_ticks, TickCount fractional_ticks) const
{
// convert to master clock, rounding up as we want to overshoot not undershoot
if (!m_console_is_pal)
return static_cast<TickCount>((u64(gpu_ticks) * u64(451584) + fractional_ticks + u64(715908)) / u64(715909));
else
return static_cast<TickCount>((u64(gpu_ticks) * u64(451584) + fractional_ticks + u64(709378)) / u64(709379));
}
TickCount GPU::SystemTicksToCRTCTicks(TickCount sysclk_ticks, TickCount* fractional_ticks) const
{
u64 mul = u64(sysclk_ticks);
mul *= !m_console_is_pal ? u64(715909) : u64(709379);
mul += u64(*fractional_ticks);
const TickCount ticks = static_cast<TickCount>(mul / u64(451584));
*fractional_ticks = static_cast<TickCount>(mul % u64(451584));
return ticks;
}
void GPU::AddCommandTicks(TickCount ticks)
{
m_pending_command_ticks += ticks;
}
void GPU::SynchronizeCRTC()
{
m_crtc_tick_event->InvokeEarly();
}
float GPU::ComputeHorizontalFrequency() const
{
const CRTCState& cs = m_crtc_state;
TickCount fractional_ticks = 0;
return static_cast<float>(
static_cast<double>(SystemTicksToCRTCTicks(System::GetTicksPerSecond(), &fractional_ticks)) /
static_cast<double>(cs.horizontal_total));
}
float GPU::ComputeVerticalFrequency() const
{
const CRTCState& cs = m_crtc_state;
const TickCount ticks_per_frame = cs.horizontal_total * cs.vertical_total;
TickCount fractional_ticks = 0;
return static_cast<float>(
static_cast<double>(SystemTicksToCRTCTicks(System::GetTicksPerSecond(), &fractional_ticks)) /
static_cast<double>(ticks_per_frame));
}
float GPU::ComputeDisplayAspectRatio() const
{
if (g_settings.display_force_4_3_for_24bit && m_GPUSTAT.display_area_color_depth_24)
{
return 4.0f / 3.0f;
}
else if (g_settings.display_aspect_ratio == DisplayAspectRatio::Auto)
{
const CRTCState& cs = m_crtc_state;
float relative_width = static_cast<float>(cs.horizontal_visible_end - cs.horizontal_visible_start);
float relative_height = static_cast<float>(cs.vertical_visible_end - cs.vertical_visible_start);
if (relative_width <= 0 || relative_height <= 0)
return 4.0f / 3.0f;
if (m_GPUSTAT.pal_mode)
{
relative_width /= static_cast<float>(PAL_HORIZONTAL_ACTIVE_END - PAL_HORIZONTAL_ACTIVE_START);
relative_height /= static_cast<float>(PAL_VERTICAL_ACTIVE_END - PAL_VERTICAL_ACTIVE_START);
}
else
{
relative_width /= static_cast<float>(NTSC_HORIZONTAL_ACTIVE_END - NTSC_HORIZONTAL_ACTIVE_START);
relative_height /= static_cast<float>(NTSC_VERTICAL_ACTIVE_END - NTSC_VERTICAL_ACTIVE_START);
}
return (relative_width / relative_height) * (4.0f / 3.0f);
}
else if (g_settings.display_aspect_ratio == DisplayAspectRatio::PAR1_1)
{
if (m_crtc_state.display_width == 0 || m_crtc_state.display_height == 0)
return 4.0f / 3.0f;
return static_cast<float>(m_crtc_state.display_width) / static_cast<float>(m_crtc_state.display_height);
}
else
{
return g_settings.GetDisplayAspectRatioValue();
}
}
void GPU::UpdateCRTCConfig()
{
static constexpr std::array<u16, 8> dot_clock_dividers = {{10, 8, 5, 4, 7, 7, 7, 7}};
CRTCState& cs = m_crtc_state;
if (m_GPUSTAT.pal_mode)
{
cs.vertical_total = PAL_TOTAL_LINES;
cs.current_scanline %= PAL_TOTAL_LINES;
cs.horizontal_total = PAL_TICKS_PER_LINE;
cs.horizontal_sync_start = PAL_HSYNC_TICKS;
cs.current_tick_in_scanline %= System::ScaleTicksToOverclock(PAL_TICKS_PER_LINE);
}
else
{
cs.vertical_total = NTSC_TOTAL_LINES;
cs.current_scanline %= NTSC_TOTAL_LINES;
cs.horizontal_total = NTSC_TICKS_PER_LINE;
cs.horizontal_sync_start = NTSC_HSYNC_TICKS;
cs.current_tick_in_scanline %= System::ScaleTicksToOverclock(NTSC_TICKS_PER_LINE);
}
cs.in_hblank = (cs.current_tick_in_scanline >= cs.horizontal_sync_start);
const u8 horizontal_resolution_index = m_GPUSTAT.horizontal_resolution_1 | (m_GPUSTAT.horizontal_resolution_2 << 2);
cs.dot_clock_divider = dot_clock_dividers[horizontal_resolution_index];
cs.horizontal_display_start =
(std::min<u16>(cs.regs.X1, cs.horizontal_total) / cs.dot_clock_divider) * cs.dot_clock_divider;
cs.horizontal_display_end =
(std::min<u16>(cs.regs.X2, cs.horizontal_total) / cs.dot_clock_divider) * cs.dot_clock_divider;
cs.vertical_display_start = std::min<u16>(cs.regs.Y1, cs.vertical_total);
cs.vertical_display_end = std::min<u16>(cs.regs.Y2, cs.vertical_total);
if (m_GPUSTAT.pal_mode && m_force_ntsc_timings)
{
// scale to NTSC parameters
cs.horizontal_display_start =
static_cast<u16>((static_cast<u32>(cs.horizontal_display_start) * NTSC_TICKS_PER_LINE) / PAL_TICKS_PER_LINE);
cs.horizontal_display_end = static_cast<u16>(
((static_cast<u32>(cs.horizontal_display_end) * NTSC_TICKS_PER_LINE) + (PAL_TICKS_PER_LINE - 1)) /
PAL_TICKS_PER_LINE);
cs.vertical_display_start =
static_cast<u16>((static_cast<u32>(cs.vertical_display_start) * NTSC_TOTAL_LINES) / PAL_TOTAL_LINES);
cs.vertical_display_end = static_cast<u16>(
((static_cast<u32>(cs.vertical_display_end) * NTSC_TOTAL_LINES) + (PAL_TOTAL_LINES - 1)) / PAL_TOTAL_LINES);
cs.vertical_total = NTSC_TOTAL_LINES;
cs.current_scanline %= NTSC_TOTAL_LINES;
cs.horizontal_total = NTSC_TICKS_PER_LINE;
cs.current_tick_in_scanline %= NTSC_TICKS_PER_LINE;
}
cs.horizontal_display_start =
static_cast<u16>(System::ScaleTicksToOverclock(static_cast<TickCount>(cs.horizontal_display_start)));
cs.horizontal_display_end =
static_cast<u16>(System::ScaleTicksToOverclock(static_cast<TickCount>(cs.horizontal_display_end)));
cs.horizontal_total = static_cast<u16>(System::ScaleTicksToOverclock(static_cast<TickCount>(cs.horizontal_total)));
System::SetThrottleFrequency(ComputeVerticalFrequency());
UpdateCRTCDisplayParameters();
UpdateCRTCTickEvent();
}
void GPU::UpdateCRTCDisplayParameters()
{
CRTCState& cs = m_crtc_state;
const DisplayCropMode crop_mode = g_settings.display_crop_mode;
const u16 horizontal_total = m_GPUSTAT.pal_mode ? PAL_TICKS_PER_LINE : NTSC_TICKS_PER_LINE;
const u16 vertical_total = m_GPUSTAT.pal_mode ? PAL_TOTAL_LINES : NTSC_TOTAL_LINES;
const u16 horizontal_display_start =
(std::min<u16>(cs.regs.X1, horizontal_total) / cs.dot_clock_divider) * cs.dot_clock_divider;
const u16 horizontal_display_end =
(std::min<u16>(cs.regs.X2, horizontal_total) / cs.dot_clock_divider) * cs.dot_clock_divider;
const u16 vertical_display_start = std::min<u16>(cs.regs.Y1, vertical_total);
const u16 vertical_display_end = std::min<u16>(cs.regs.Y2, vertical_total);
if (m_GPUSTAT.pal_mode)
{
// TODO: Verify PAL numbers.
switch (crop_mode)
{
case DisplayCropMode::None:
cs.horizontal_visible_start = PAL_HORIZONTAL_ACTIVE_START;
cs.horizontal_visible_end = PAL_HORIZONTAL_ACTIVE_END;
cs.vertical_visible_start = PAL_VERTICAL_ACTIVE_START;
cs.vertical_visible_end = PAL_VERTICAL_ACTIVE_END;
break;
case DisplayCropMode::Overscan:
cs.horizontal_visible_start = static_cast<u16>(std::max<int>(0, 628 + g_settings.display_active_start_offset));
cs.horizontal_visible_end =
static_cast<u16>(std::max<int>(cs.horizontal_visible_start, 3188 + g_settings.display_active_end_offset));
cs.vertical_visible_start = static_cast<u16>(std::max<int>(0, 30 + g_settings.display_line_start_offset));
cs.vertical_visible_end =
static_cast<u16>(std::max<int>(cs.vertical_visible_start, 298 + g_settings.display_line_end_offset));
break;
case DisplayCropMode::Borders:
default:
cs.horizontal_visible_start = horizontal_display_start;
cs.horizontal_visible_end = horizontal_display_end;
cs.vertical_visible_start = vertical_display_start;
cs.vertical_visible_end = vertical_display_end;
break;
}
cs.horizontal_visible_start =
std::clamp<u16>(cs.horizontal_visible_start, PAL_HORIZONTAL_ACTIVE_START, PAL_HORIZONTAL_ACTIVE_END);
cs.horizontal_visible_end =
std::clamp<u16>(cs.horizontal_visible_end, cs.horizontal_visible_start, PAL_HORIZONTAL_ACTIVE_END);
cs.vertical_visible_start =
std::clamp<u16>(cs.vertical_visible_start, PAL_VERTICAL_ACTIVE_START, PAL_VERTICAL_ACTIVE_END);
cs.vertical_visible_end =
std::clamp<u16>(cs.vertical_visible_end, cs.vertical_visible_start, PAL_VERTICAL_ACTIVE_END);
}
else
{
switch (crop_mode)
{
case DisplayCropMode::None:
cs.horizontal_visible_start = NTSC_HORIZONTAL_ACTIVE_START;
cs.horizontal_visible_end = NTSC_HORIZONTAL_ACTIVE_END;
cs.vertical_visible_start = NTSC_VERTICAL_ACTIVE_START;
cs.vertical_visible_end = NTSC_VERTICAL_ACTIVE_END;
break;
case DisplayCropMode::Overscan:
cs.horizontal_visible_start = static_cast<u16>(std::max<int>(0, 608 + g_settings.display_active_start_offset));
cs.horizontal_visible_end =
static_cast<u16>(std::max<int>(cs.horizontal_visible_start, 3168 + g_settings.display_active_end_offset));
cs.vertical_visible_start = static_cast<u16>(std::max<int>(0, 24 + g_settings.display_line_start_offset));
cs.vertical_visible_end =
static_cast<u16>(std::max<int>(cs.vertical_visible_start, 248 + g_settings.display_line_end_offset));
break;
case DisplayCropMode::Borders:
default:
cs.horizontal_visible_start = horizontal_display_start;
cs.horizontal_visible_end = horizontal_display_end;
cs.vertical_visible_start = vertical_display_start;
cs.vertical_visible_end = vertical_display_end;
break;
}
cs.horizontal_visible_start =
std::clamp<u16>(cs.horizontal_visible_start, NTSC_HORIZONTAL_ACTIVE_START, NTSC_HORIZONTAL_ACTIVE_END);
cs.horizontal_visible_end =
std::clamp<u16>(cs.horizontal_visible_end, cs.horizontal_visible_start, NTSC_HORIZONTAL_ACTIVE_END);
cs.vertical_visible_start =
std::clamp<u16>(cs.vertical_visible_start, NTSC_VERTICAL_ACTIVE_START, NTSC_VERTICAL_ACTIVE_END);
cs.vertical_visible_end =
std::clamp<u16>(cs.vertical_visible_end, cs.vertical_visible_start, NTSC_VERTICAL_ACTIVE_END);
}
// If force-progressive is enabled, we only double the height in 480i mode. This way non-interleaved 480i framebuffers
// won't be broken when displayed.
const u8 y_shift = BoolToUInt8(m_GPUSTAT.vertical_interlace && m_GPUSTAT.vertical_resolution);
const u8 height_shift = m_force_progressive_scan ? y_shift : BoolToUInt8(m_GPUSTAT.vertical_interlace);
// Determine screen size.
cs.display_width = (cs.horizontal_visible_end - cs.horizontal_visible_start) / cs.dot_clock_divider;
cs.display_height = (cs.vertical_visible_end - cs.vertical_visible_start) << height_shift;
// Determine number of pixels outputted from VRAM (in general, round to 4-pixel multiple).
// TODO: Verify behavior if values are outside of the active video portion of scanline.
const u16 horizontal_display_ticks =
(horizontal_display_end < horizontal_display_start) ? 0 : (horizontal_display_end - horizontal_display_start);
const u16 horizontal_display_pixels = horizontal_display_ticks / cs.dot_clock_divider;
if (horizontal_display_pixels == 1u)
cs.display_vram_width = 4u;
else
cs.display_vram_width = (horizontal_display_pixels + 2u) & ~3u;
// Determine if we need to adjust the VRAM rectangle (because the display is starting outside the visible area) or add
// padding.
u16 horizontal_skip_pixels;
if (horizontal_display_start >= cs.horizontal_visible_start)
{
cs.display_origin_left = (horizontal_display_start - cs.horizontal_visible_start) / cs.dot_clock_divider;
cs.display_vram_left = cs.regs.X;
horizontal_skip_pixels = 0;
}
else
{
horizontal_skip_pixels = (cs.horizontal_visible_start - horizontal_display_start) / cs.dot_clock_divider;
cs.display_origin_left = 0;
cs.display_vram_left = (cs.regs.X + horizontal_skip_pixels) % VRAM_WIDTH;
}
// apply the crop from the start (usually overscan)
cs.display_vram_width -= std::min(cs.display_vram_width, horizontal_skip_pixels);
// Apply crop from the end by shrinking VRAM rectangle width if display would end outside the visible area.
cs.display_vram_width = std::min<u16>(cs.display_vram_width, cs.display_width - cs.display_origin_left);
if (vertical_display_start >= cs.vertical_visible_start)
{
cs.display_origin_top = (vertical_display_start - cs.vertical_visible_start) << y_shift;
cs.display_vram_top = cs.regs.Y;
}
else
{
cs.display_origin_top = 0;
cs.display_vram_top = (cs.regs.Y + ((cs.vertical_visible_start - vertical_display_start) << y_shift)) % VRAM_HEIGHT;
}
if (vertical_display_end <= cs.vertical_visible_end)
{
cs.display_vram_height =
(vertical_display_end -
std::min(vertical_display_end, std::max(vertical_display_start, cs.vertical_visible_start)))
<< height_shift;
}
else
{
cs.display_vram_height =
(cs.vertical_visible_end -
std::min(cs.vertical_visible_end, std::max(vertical_display_start, cs.vertical_visible_start)))
<< height_shift;
}
}
TickCount GPU::GetPendingCRTCTicks() const
{
const TickCount pending_sysclk_ticks = m_crtc_tick_event->GetTicksSinceLastExecution();
TickCount fractional_ticks = m_crtc_state.fractional_ticks;
return SystemTicksToCRTCTicks(pending_sysclk_ticks, &fractional_ticks);
}
TickCount GPU::GetPendingCommandTicks() const
{
if (!m_command_tick_event->IsActive())
return 0;
return SystemTicksToGPUTicks(m_command_tick_event->GetTicksSinceLastExecution());
}
void GPU::UpdateCRTCTickEvent()
{
// figure out how many GPU ticks until the next vblank or event
TickCount lines_until_event;
if (Timers::IsSyncEnabled(HBLANK_TIMER_INDEX))
{
// when the timer sync is enabled we need to sync at vblank start and end
lines_until_event =
(m_crtc_state.current_scanline >= m_crtc_state.vertical_display_end) ?
(m_crtc_state.vertical_total - m_crtc_state.current_scanline + m_crtc_state.vertical_display_start) :
(m_crtc_state.vertical_display_end - m_crtc_state.current_scanline);
}
else
{
lines_until_event =
(m_crtc_state.current_scanline >= m_crtc_state.vertical_display_end ?
(m_crtc_state.vertical_total - m_crtc_state.current_scanline + m_crtc_state.vertical_display_end) :
(m_crtc_state.vertical_display_end - m_crtc_state.current_scanline));
}
if (Timers::IsExternalIRQEnabled(HBLANK_TIMER_INDEX))
lines_until_event = std::min(lines_until_event, Timers::GetTicksUntilIRQ(HBLANK_TIMER_INDEX));
TickCount ticks_until_event =
lines_until_event * m_crtc_state.horizontal_total - m_crtc_state.current_tick_in_scanline;
if (Timers::IsExternalIRQEnabled(DOT_TIMER_INDEX))
{
const TickCount dots_until_irq = Timers::GetTicksUntilIRQ(DOT_TIMER_INDEX);
const TickCount ticks_until_irq =
(dots_until_irq * m_crtc_state.dot_clock_divider) - m_crtc_state.fractional_dot_ticks;
ticks_until_event = std::min(ticks_until_event, std::max<TickCount>(ticks_until_irq, 0));
}
#if 0
const TickCount ticks_until_hblank =
(m_crtc_state.current_tick_in_scanline >= m_crtc_state.horizontal_display_end) ?
(m_crtc_state.horizontal_total - m_crtc_state.current_tick_in_scanline + m_crtc_state.horizontal_display_end) :
(m_crtc_state.horizontal_display_end - m_crtc_state.current_tick_in_scanline);
#endif
m_crtc_tick_event->Schedule(CRTCTicksToSystemTicks(ticks_until_event, m_crtc_state.fractional_ticks));
}
bool GPU::IsCRTCScanlinePending() const
{
const TickCount ticks = (GetPendingCRTCTicks() + m_crtc_state.current_tick_in_scanline);
return (ticks >= (m_crtc_state.in_hblank ? m_crtc_state.horizontal_total : m_crtc_state.horizontal_sync_start));
}
bool GPU::IsCommandCompletionPending() const
{
return (m_pending_command_ticks > 0 && GetPendingCommandTicks() >= m_pending_command_ticks);
}
void GPU::CRTCTickEvent(TickCount ticks)
{
// convert cpu/master clock to GPU ticks, accounting for partial cycles because of the non-integer divider
{
const TickCount gpu_ticks = SystemTicksToCRTCTicks(ticks, &m_crtc_state.fractional_ticks);
m_crtc_state.current_tick_in_scanline += gpu_ticks;
if (Timers::IsUsingExternalClock(DOT_TIMER_INDEX))
{
m_crtc_state.fractional_dot_ticks += gpu_ticks;
const TickCount dots = m_crtc_state.fractional_dot_ticks / m_crtc_state.dot_clock_divider;
m_crtc_state.fractional_dot_ticks = m_crtc_state.fractional_dot_ticks % m_crtc_state.dot_clock_divider;
if (dots > 0)
Timers::AddTicks(DOT_TIMER_INDEX, dots);
}
}
if (m_crtc_state.current_tick_in_scanline < m_crtc_state.horizontal_total)
{
// short path when we execute <1 line.. this shouldn't occur often.
const bool old_hblank = m_crtc_state.in_hblank;
const bool new_hblank = (m_crtc_state.current_tick_in_scanline >= m_crtc_state.horizontal_sync_start);
m_crtc_state.in_hblank = new_hblank;
if (!old_hblank && new_hblank && Timers::IsUsingExternalClock(HBLANK_TIMER_INDEX))
Timers::AddTicks(HBLANK_TIMER_INDEX, 1);
UpdateCRTCTickEvent();
return;
}
u32 lines_to_draw = m_crtc_state.current_tick_in_scanline / m_crtc_state.horizontal_total;
m_crtc_state.current_tick_in_scanline %= m_crtc_state.horizontal_total;
#if 0
Log_WarningPrintf("Old line: %u, new line: %u, drawing %u", m_crtc_state.current_scanline,
m_crtc_state.current_scanline + lines_to_draw, lines_to_draw);
#endif
const bool old_hblank = m_crtc_state.in_hblank;
const bool new_hblank = (m_crtc_state.current_tick_in_scanline >= m_crtc_state.horizontal_sync_start);
m_crtc_state.in_hblank = new_hblank;
if (Timers::IsUsingExternalClock(HBLANK_TIMER_INDEX))
{
const u32 hblank_timer_ticks = BoolToUInt32(!old_hblank) + BoolToUInt32(new_hblank) + (lines_to_draw - 1);
Timers::AddTicks(HBLANK_TIMER_INDEX, static_cast<TickCount>(hblank_timer_ticks));
}
while (lines_to_draw > 0)
{
const u32 lines_to_draw_this_loop =
std::min(lines_to_draw, m_crtc_state.vertical_total - m_crtc_state.current_scanline);
const u32 prev_scanline = m_crtc_state.current_scanline;
m_crtc_state.current_scanline += lines_to_draw_this_loop;
DebugAssert(m_crtc_state.current_scanline <= m_crtc_state.vertical_total);
lines_to_draw -= lines_to_draw_this_loop;
// clear the vblank flag if the beam would pass through the display area
if (prev_scanline < m_crtc_state.vertical_display_start &&
m_crtc_state.current_scanline >= m_crtc_state.vertical_display_end)
{
Timers::SetGate(HBLANK_TIMER_INDEX, false);
InterruptController::SetLineState(InterruptController::IRQ::VBLANK, false);
m_crtc_state.in_vblank = false;
}
const bool new_vblank = m_crtc_state.current_scanline < m_crtc_state.vertical_display_start ||
m_crtc_state.current_scanline >= m_crtc_state.vertical_display_end;
if (m_crtc_state.in_vblank != new_vblank)
{
if (new_vblank)
{
Log_DebugPrintf("Now in v-blank");
// flush any pending draws and "scan out" the image
// TODO: move present in here I guess
FlushRender();
UpdateDisplay();
TimingEvents::SetFrameDone();
// switch fields early. this is needed so we draw to the correct one.
if (m_GPUSTAT.InInterleaved480iMode())
m_crtc_state.interlaced_display_field = m_crtc_state.interlaced_field ^ 1u;
else
m_crtc_state.interlaced_display_field = 0;
}
Timers::SetGate(HBLANK_TIMER_INDEX, new_vblank);
InterruptController::SetLineState(InterruptController::IRQ::VBLANK, new_vblank);
m_crtc_state.in_vblank = new_vblank;
}
// past the end of vblank?
if (m_crtc_state.current_scanline == m_crtc_state.vertical_total)
{
// start the new frame
m_crtc_state.current_scanline = 0;
if (m_GPUSTAT.vertical_interlace)
{
m_crtc_state.interlaced_field ^= 1u;
m_GPUSTAT.interlaced_field = !m_crtc_state.interlaced_field;
}
else
{
m_crtc_state.interlaced_field = 0;
m_GPUSTAT.interlaced_field = 0u; // new GPU = 1, old GPU = 0
}
}
}
// alternating even line bit in 240-line mode
if (m_GPUSTAT.InInterleaved480iMode())
{
m_crtc_state.active_line_lsb =
Truncate8((m_crtc_state.regs.Y + BoolToUInt32(m_crtc_state.interlaced_display_field)) & u32(1));
m_GPUSTAT.display_line_lsb = ConvertToBoolUnchecked(
(m_crtc_state.regs.Y + (BoolToUInt8(!m_crtc_state.in_vblank) & m_crtc_state.interlaced_display_field)) & u32(1));
}
else
{
m_crtc_state.active_line_lsb = 0;
m_GPUSTAT.display_line_lsb = ConvertToBoolUnchecked((m_crtc_state.regs.Y + m_crtc_state.current_scanline) & u32(1));
}
UpdateCRTCTickEvent();
}
void GPU::CommandTickEvent(TickCount ticks)
{
m_pending_command_ticks -= SystemTicksToGPUTicks(ticks);
m_command_tick_event->Deactivate();
// we can be syncing if this came from a DMA write. recursively executing commands would be bad.
if (!m_syncing)
ExecuteCommands();
UpdateGPUIdle();
if (m_pending_command_ticks <= 0)
m_pending_command_ticks = 0;
else
m_command_tick_event->SetIntervalAndSchedule(GPUTicksToSystemTicks(m_pending_command_ticks));
}
void GPU::UpdateCommandTickEvent()
{
if (m_pending_command_ticks <= 0)
m_command_tick_event->Deactivate();
else if (!m_command_tick_event->IsActive())
m_command_tick_event->SetIntervalAndSchedule(GPUTicksToSystemTicks(m_pending_command_ticks));
}
void GPU::ConvertScreenCoordinatesToDisplayCoordinates(float window_x, float window_y, float* display_x,
float* display_y) const
{
const Common::Rectangle<s32> draw_rc =
CalculateDrawRect(g_gpu_device->GetWindowWidth(), g_gpu_device->GetWindowHeight());
// convert coordinates to active display region, then to full display region
const float scaled_display_x = (window_x - static_cast<float>(draw_rc.left)) / static_cast<float>(draw_rc.GetWidth());
const float scaled_display_y = (window_y - static_cast<float>(draw_rc.top)) / static_cast<float>(draw_rc.GetHeight());
// scale back to internal resolution
*display_x = scaled_display_x * static_cast<float>(m_crtc_state.display_width);
*display_y = scaled_display_y * static_cast<float>(m_crtc_state.display_height);
Log_DevPrintf("win %.0f,%.0f -> local %.0f,%.0f, disp %.2f,%.2f (size %u,%u frac %f,%f)", window_x, window_y,
window_x - draw_rc.left, window_y - draw_rc.top, *display_x, *display_y, m_crtc_state.display_width,
m_crtc_state.display_height, *display_x / static_cast<float>(m_crtc_state.display_width),
*display_y / static_cast<float>(m_crtc_state.display_height));
}
bool GPU::ConvertDisplayCoordinatesToBeamTicksAndLines(float display_x, float display_y, float x_scale, u32* out_tick,
u32* out_line) const
{
if (x_scale != 1.0f)
{
const float dw = static_cast<float>(m_crtc_state.display_width);
float scaled_x = ((display_x / dw) * 2.0f) - 1.0f; // 0..1 -> -1..1
scaled_x *= x_scale;
display_x = (((scaled_x + 1.0f) * 0.5f) * dw); // -1..1 -> 0..1
}
if (display_x < 0 || static_cast<u32>(display_x) >= m_crtc_state.display_width || display_y < 0 ||
static_cast<u32>(display_y) >= m_crtc_state.display_height)
{
return false;
}
*out_line = (static_cast<u32>(std::round(display_y)) >> BoolToUInt8(m_GPUSTAT.vertical_interlace)) +
m_crtc_state.vertical_visible_start;
*out_tick = static_cast<u32>(std::round(display_x * static_cast<float>(m_crtc_state.dot_clock_divider))) +
m_crtc_state.horizontal_visible_start;
return true;
}
u32 GPU::ReadGPUREAD()
{
if (m_blitter_state != BlitterState::ReadingVRAM)
return m_GPUREAD_latch;
// Read two pixels out of VRAM and combine them. Zero fill odd pixel counts.
u32 value = 0;
for (u32 i = 0; i < 2; i++)
{
// Read with correct wrap-around behavior.
const u16 read_x = (m_vram_transfer.x + m_vram_transfer.col) % VRAM_WIDTH;
const u16 read_y = (m_vram_transfer.y + m_vram_transfer.row) % VRAM_HEIGHT;
value |= ZeroExtend32(g_vram[read_y * VRAM_WIDTH + read_x]) << (i * 16);
if (++m_vram_transfer.col == m_vram_transfer.width)
{
m_vram_transfer.col = 0;
if (++m_vram_transfer.row == m_vram_transfer.height)
{
Log_DebugPrintf("End of VRAM->CPU transfer");
m_vram_transfer = {};
m_blitter_state = BlitterState::Idle;
// end of transfer, catch up on any commands which were written (unlikely)
ExecuteCommands();
UpdateCommandTickEvent();
break;
}
}
}
m_GPUREAD_latch = value;
return value;
}
void GPU::WriteGP1(u32 value)
{
const u32 command = (value >> 24) & 0x3Fu;
const u32 param = value & UINT32_C(0x00FFFFFF);
switch (command)
{
case 0x00: // Reset GPU
{
Log_DebugPrintf("GP1 reset GPU");
m_command_tick_event->InvokeEarly();
SynchronizeCRTC();
SoftReset();
}
break;
case 0x01: // Clear FIFO
{
Log_DebugPrintf("GP1 clear FIFO");
m_command_tick_event->InvokeEarly();
SynchronizeCRTC();
// flush partial writes
if (m_blitter_state == BlitterState::WritingVRAM)
FinishVRAMWrite();
m_blitter_state = BlitterState::Idle;
m_command_total_words = 0;
m_vram_transfer = {};
m_fifo.Clear();
m_blit_buffer.clear();
m_blit_remaining_words = 0;
m_pending_command_ticks = 0;
m_command_tick_event->Deactivate();
UpdateDMARequest();
UpdateGPUIdle();
}
break;
case 0x02: // Acknowledge Interrupt
{
Log_DebugPrintf("Acknowledge interrupt");
m_GPUSTAT.interrupt_request = false;
}
break;
case 0x03: // Display on/off
{
const bool disable = ConvertToBoolUnchecked(value & 0x01);
Log_DebugPrintf("Display %s", disable ? "disabled" : "enabled");
SynchronizeCRTC();
if (!m_GPUSTAT.display_disable && disable && m_GPUSTAT.vertical_interlace && !m_force_progressive_scan)
ClearDisplay();
m_GPUSTAT.display_disable = disable;
}
break;
case 0x04: // DMA Direction
{
Log_DebugPrintf("DMA direction <- 0x%02X", static_cast<u32>(param));
if (m_GPUSTAT.dma_direction != static_cast<DMADirection>(param))
{
m_GPUSTAT.dma_direction = static_cast<DMADirection>(param);
UpdateDMARequest();
}
}
break;
case 0x05: // Set display start address
{
const u32 new_value = param & CRTCState::Regs::DISPLAY_ADDRESS_START_MASK;
Log_DebugPrintf("Display address start <- 0x%08X", new_value);
System::IncrementInternalFrameNumber();
if (m_crtc_state.regs.display_address_start != new_value)
{
SynchronizeCRTC();
m_crtc_state.regs.display_address_start = new_value;
UpdateCRTCDisplayParameters();
}
}
break;
case 0x06: // Set horizontal display range
{
const u32 new_value = param & CRTCState::Regs::HORIZONTAL_DISPLAY_RANGE_MASK;
Log_DebugPrintf("Horizontal display range <- 0x%08X", new_value);
if (m_crtc_state.regs.horizontal_display_range != new_value)
{
SynchronizeCRTC();
m_crtc_state.regs.horizontal_display_range = new_value;
UpdateCRTCConfig();
}
}
break;
case 0x07: // Set vertical display range
{
const u32 new_value = param & CRTCState::Regs::VERTICAL_DISPLAY_RANGE_MASK;
Log_DebugPrintf("Vertical display range <- 0x%08X", new_value);
if (m_crtc_state.regs.vertical_display_range != new_value)
{
SynchronizeCRTC();
m_crtc_state.regs.vertical_display_range = new_value;
UpdateCRTCConfig();
}
}
break;
case 0x08: // Set display mode
{
union GP1_08h
{
u32 bits;
BitField<u32, u8, 0, 2> horizontal_resolution_1;
BitField<u32, bool, 2, 1> vertical_resolution;
BitField<u32, bool, 3, 1> pal_mode;
BitField<u32, bool, 4, 1> display_area_color_depth;
BitField<u32, bool, 5, 1> vertical_interlace;
BitField<u32, bool, 6, 1> horizontal_resolution_2;
BitField<u32, bool, 7, 1> reverse_flag;
};
const GP1_08h dm{param};
GPUSTAT new_GPUSTAT{m_GPUSTAT.bits};
new_GPUSTAT.horizontal_resolution_1 = dm.horizontal_resolution_1;
new_GPUSTAT.vertical_resolution = dm.vertical_resolution;
new_GPUSTAT.pal_mode = dm.pal_mode;
new_GPUSTAT.display_area_color_depth_24 = dm.display_area_color_depth;
new_GPUSTAT.vertical_interlace = dm.vertical_interlace;
new_GPUSTAT.horizontal_resolution_2 = dm.horizontal_resolution_2;
new_GPUSTAT.reverse_flag = dm.reverse_flag;
Log_DebugPrintf("Set display mode <- 0x%08X", dm.bits);
if (!m_GPUSTAT.vertical_interlace && dm.vertical_interlace && !m_force_progressive_scan)
{
// bit of a hack, technically we should pull the previous frame in, but this may not exist anymore
ClearDisplay();
}
if (m_GPUSTAT.bits != new_GPUSTAT.bits)
{
// Have to be careful when setting this because Synchronize() can modify GPUSTAT.
static constexpr u32 SET_MASK = UINT32_C(0b00000000011111110100000000000000);
m_command_tick_event->InvokeEarly();
SynchronizeCRTC();
m_GPUSTAT.bits = (m_GPUSTAT.bits & ~SET_MASK) | (new_GPUSTAT.bits & SET_MASK);
UpdateCRTCConfig();
}
}
break;
case 0x09: // Allow texture disable
{
m_set_texture_disable_mask = ConvertToBoolUnchecked(param & 0x01);
Log_DebugPrintf("Set texture disable mask <- %s", m_set_texture_disable_mask ? "allowed" : "ignored");
}
break;
case 0x10:
case 0x11:
case 0x12:
case 0x13:
case 0x14:
case 0x15:
case 0x16:
case 0x17:
case 0x18:
case 0x19:
case 0x1A:
case 0x1B:
case 0x1C:
case 0x1D:
case 0x1E:
case 0x1F:
{
HandleGetGPUInfoCommand(value);
}
break;
default:
Log_ErrorPrintf("Unimplemented GP1 command 0x%02X", command);
break;
}
}
void GPU::HandleGetGPUInfoCommand(u32 value)
{
const u8 subcommand = Truncate8(value & 0x07);
switch (subcommand)
{
case 0x00:
case 0x01:
case 0x06:
case 0x07:
// leave GPUREAD intact
break;
case 0x02: // Get Texture Window
{
Log_DebugPrintf("Get texture window");
m_GPUREAD_latch = m_draw_mode.texture_window_value;
}
break;
case 0x03: // Get Draw Area Top Left
{
Log_DebugPrintf("Get drawing area top left");
m_GPUREAD_latch =
((m_drawing_area.left & UINT32_C(0b1111111111)) | ((m_drawing_area.top & UINT32_C(0b1111111111)) << 10));
}
break;
case 0x04: // Get Draw Area Bottom Right
{
Log_DebugPrintf("Get drawing area bottom right");
m_GPUREAD_latch =
((m_drawing_area.right & UINT32_C(0b1111111111)) | ((m_drawing_area.bottom & UINT32_C(0b1111111111)) << 10));
}
break;
case 0x05: // Get Drawing Offset
{
Log_DebugPrintf("Get drawing offset");
m_GPUREAD_latch =
((m_drawing_offset.x & INT32_C(0b11111111111)) | ((m_drawing_offset.y & INT32_C(0b11111111111)) << 11));
}
break;
default:
Log_WarningPrintf("Unhandled GetGPUInfo(0x%02X)", ZeroExtend32(subcommand));
break;
}
}
void GPU::ClearDisplay()
{
ClearDisplayTexture();
// Just recycle the textures, it'll get re-fetched.
DestroyDeinterlaceTextures();
}
void GPU::UpdateDisplay()
{
}
void GPU::ReadVRAM(u32 x, u32 y, u32 width, u32 height)
{
}
void GPU::FillVRAM(u32 x, u32 y, u32 width, u32 height, u32 color)
{
const u16 color16 = VRAMRGBA8888ToRGBA5551(color);
if ((x + width) <= VRAM_WIDTH && !IsInterlacedRenderingEnabled())
{
for (u32 yoffs = 0; yoffs < height; yoffs++)
{
const u32 row = (y + yoffs) % VRAM_HEIGHT;
std::fill_n(&g_vram[row * VRAM_WIDTH + x], width, color16);
}
}
else if (IsInterlacedRenderingEnabled())
{
// Hardware tests show that fills seem to break on the first two lines when the offset matches the displayed field.
if (IsCRTCScanlinePending())
SynchronizeCRTC();
const u32 active_field = GetActiveLineLSB();
for (u32 yoffs = 0; yoffs < height; yoffs++)
{
const u32 row = (y + yoffs) % VRAM_HEIGHT;
if ((row & u32(1)) == active_field)
continue;
u16* row_ptr = &g_vram[row * VRAM_WIDTH];
for (u32 xoffs = 0; xoffs < width; xoffs++)
{
const u32 col = (x + xoffs) % VRAM_WIDTH;
row_ptr[col] = color16;
}
}
}
else
{
for (u32 yoffs = 0; yoffs < height; yoffs++)
{
const u32 row = (y + yoffs) % VRAM_HEIGHT;
u16* row_ptr = &g_vram[row * VRAM_WIDTH];
for (u32 xoffs = 0; xoffs < width; xoffs++)
{
const u32 col = (x + xoffs) % VRAM_WIDTH;
row_ptr[col] = color16;
}
}
}
}
void GPU::UpdateVRAM(u32 x, u32 y, u32 width, u32 height, const void* data, bool set_mask, bool check_mask)
{
// Fast path when the copy is not oversized.
if ((x + width) <= VRAM_WIDTH && (y + height) <= VRAM_HEIGHT && !set_mask && !check_mask)
{
const u16* src_ptr = static_cast<const u16*>(data);
u16* dst_ptr = &g_vram[y * VRAM_WIDTH + x];
for (u32 yoffs = 0; yoffs < height; yoffs++)
{
std::copy_n(src_ptr, width, dst_ptr);
src_ptr += width;
dst_ptr += VRAM_WIDTH;
}
}
else
{
// Slow path when we need to handle wrap-around.
// During transfer/render operations, if ((dst_pixel & mask_and) == 0) { pixel = src_pixel | mask_or }
const u16* src_ptr = static_cast<const u16*>(data);
const u16 mask_and = check_mask ? 0x8000 : 0;
const u16 mask_or = set_mask ? 0x8000 : 0;
for (u32 row = 0; row < height;)
{
u16* dst_row_ptr = &g_vram[((y + row++) % VRAM_HEIGHT) * VRAM_WIDTH];
for (u32 col = 0; col < width;)
{
// TODO: Handle unaligned reads...
u16* pixel_ptr = &dst_row_ptr[(x + col++) % VRAM_WIDTH];
if (((*pixel_ptr) & mask_and) == 0)
*pixel_ptr = *(src_ptr++) | mask_or;
}
}
}
}
void GPU::CopyVRAM(u32 src_x, u32 src_y, u32 dst_x, u32 dst_y, u32 width, u32 height)
{
// Break up oversized copies. This behavior has not been verified on console.
if ((src_x + width) > VRAM_WIDTH || (dst_x + width) > VRAM_WIDTH)
{
u32 remaining_rows = height;
u32 current_src_y = src_y;
u32 current_dst_y = dst_y;
while (remaining_rows > 0)
{
const u32 rows_to_copy =
std::min<u32>(remaining_rows, std::min<u32>(VRAM_HEIGHT - current_src_y, VRAM_HEIGHT - current_dst_y));
u32 remaining_columns = width;
u32 current_src_x = src_x;
u32 current_dst_x = dst_x;
while (remaining_columns > 0)
{
const u32 columns_to_copy =
std::min<u32>(remaining_columns, std::min<u32>(VRAM_WIDTH - current_src_x, VRAM_WIDTH - current_dst_x));
CopyVRAM(current_src_x, current_src_y, current_dst_x, current_dst_y, columns_to_copy, rows_to_copy);
current_src_x = (current_src_x + columns_to_copy) % VRAM_WIDTH;
current_dst_x = (current_dst_x + columns_to_copy) % VRAM_WIDTH;
remaining_columns -= columns_to_copy;
}
current_src_y = (current_src_y + rows_to_copy) % VRAM_HEIGHT;
current_dst_y = (current_dst_y + rows_to_copy) % VRAM_HEIGHT;
remaining_rows -= rows_to_copy;
}
return;
}
// This doesn't have a fast path, but do we really need one? It's not common.
const u16 mask_and = m_GPUSTAT.GetMaskAND();
const u16 mask_or = m_GPUSTAT.GetMaskOR();
// Copy in reverse when src_x < dst_x, this is verified on console.
if (src_x < dst_x || ((src_x + width - 1) % VRAM_WIDTH) < ((dst_x + width - 1) % VRAM_WIDTH))
{
for (u32 row = 0; row < height; row++)
{
const u16* src_row_ptr = &g_vram[((src_y + row) % VRAM_HEIGHT) * VRAM_WIDTH];
u16* dst_row_ptr = &g_vram[((dst_y + row) % VRAM_HEIGHT) * VRAM_WIDTH];
for (s32 col = static_cast<s32>(width - 1); col >= 0; col--)
{
const u16 src_pixel = src_row_ptr[(src_x + static_cast<u32>(col)) % VRAM_WIDTH];
u16* dst_pixel_ptr = &dst_row_ptr[(dst_x + static_cast<u32>(col)) % VRAM_WIDTH];
if ((*dst_pixel_ptr & mask_and) == 0)
*dst_pixel_ptr = src_pixel | mask_or;
}
}
}
else
{
for (u32 row = 0; row < height; row++)
{
const u16* src_row_ptr = &g_vram[((src_y + row) % VRAM_HEIGHT) * VRAM_WIDTH];
u16* dst_row_ptr = &g_vram[((dst_y + row) % VRAM_HEIGHT) * VRAM_WIDTH];
for (u32 col = 0; col < width; col++)
{
const u16 src_pixel = src_row_ptr[(src_x + col) % VRAM_WIDTH];
u16* dst_pixel_ptr = &dst_row_ptr[(dst_x + col) % VRAM_WIDTH];
if ((*dst_pixel_ptr & mask_and) == 0)
*dst_pixel_ptr = src_pixel | mask_or;
}
}
}
}
void GPU::DispatchRenderCommand()
{
}
void GPU::FlushRender()
{
}
void GPU::SetDrawMode(u16 value)
{
GPUDrawModeReg new_mode_reg{static_cast<u16>(value & GPUDrawModeReg::MASK)};
if (!m_set_texture_disable_mask)
new_mode_reg.texture_disable = false;
if (new_mode_reg.bits == m_draw_mode.mode_reg.bits)
return;
m_draw_mode.texture_page_changed |= ((new_mode_reg.bits & GPUDrawModeReg::TEXTURE_PAGE_MASK) !=
(m_draw_mode.mode_reg.bits & GPUDrawModeReg::TEXTURE_PAGE_MASK));
m_draw_mode.mode_reg.bits = new_mode_reg.bits;
if (m_GPUSTAT.draw_to_displayed_field != new_mode_reg.draw_to_displayed_field)
FlushRender();
// Bits 0..10 are returned in the GPU status register.
m_GPUSTAT.bits = (m_GPUSTAT.bits & ~(GPUDrawModeReg::GPUSTAT_MASK)) |
(ZeroExtend32(new_mode_reg.bits) & GPUDrawModeReg::GPUSTAT_MASK);
m_GPUSTAT.texture_disable = m_draw_mode.mode_reg.texture_disable;
}
void GPU::SetTexturePalette(u16 value)
{
value &= DrawMode::PALETTE_MASK;
if (m_draw_mode.palette_reg.bits == value)
return;
m_draw_mode.palette_reg.bits = value;
m_draw_mode.texture_page_changed = true;
}
void GPU::SetTextureWindow(u32 value)
{
value &= DrawMode::TEXTURE_WINDOW_MASK;
if (m_draw_mode.texture_window_value == value)
return;
FlushRender();
const u8 mask_x = Truncate8(value & UINT32_C(0x1F));
const u8 mask_y = Truncate8((value >> 5) & UINT32_C(0x1F));
const u8 offset_x = Truncate8((value >> 10) & UINT32_C(0x1F));
const u8 offset_y = Truncate8((value >> 15) & UINT32_C(0x1F));
Log_DebugPrintf("Set texture window %02X %02X %02X %02X", mask_x, mask_y, offset_x, offset_y);
m_draw_mode.texture_window.and_x = ~(mask_x * 8);
m_draw_mode.texture_window.and_y = ~(mask_y * 8);
m_draw_mode.texture_window.or_x = (offset_x & mask_x) * 8u;
m_draw_mode.texture_window.or_y = (offset_y & mask_y) * 8u;
m_draw_mode.texture_window_value = value;
m_draw_mode.texture_window_changed = true;
}
bool GPU::CompileDisplayPipelines(bool display, bool deinterlace, bool chroma_smoothing)
{
GPUShaderGen shadergen(g_gpu_device->GetRenderAPI(), g_gpu_device->GetFeatures().dual_source_blend,
g_gpu_device->GetFeatures().framebuffer_fetch);
GPUPipeline::GraphicsConfig plconfig;
plconfig.input_layout.vertex_stride = 0;
plconfig.primitive = GPUPipeline::Primitive::Triangles;
plconfig.rasterization = GPUPipeline::RasterizationState::GetNoCullState();
plconfig.depth = GPUPipeline::DepthState::GetNoTestsState();
plconfig.blend = GPUPipeline::BlendState::GetNoBlendingState();
plconfig.depth_format = GPUTexture::Format::Unknown;
plconfig.samples = 1;
plconfig.per_sample_shading = false;
plconfig.geometry_shader = nullptr;
if (display)
{
plconfig.layout = GPUPipeline::Layout::SingleTextureAndPushConstants;
plconfig.SetTargetFormats(g_gpu_device->HasSurface() ? g_gpu_device->GetWindowFormat() : GPUTexture::Format::RGBA8);
std::string vs = shadergen.GenerateDisplayVertexShader();
std::string fs;
switch (g_settings.display_scaling)
{
case DisplayScalingMode::BilinearSharp:
fs = shadergen.GenerateDisplaySharpBilinearFragmentShader();
break;
case DisplayScalingMode::BilinearSmooth:
fs = shadergen.GenerateDisplayFragmentShader(true);
break;
case DisplayScalingMode::Nearest:
case DisplayScalingMode::NearestInteger:
default:
fs = shadergen.GenerateDisplayFragmentShader(false);
break;
}
std::unique_ptr<GPUShader> vso = g_gpu_device->CreateShader(GPUShaderStage::Vertex, vs);
std::unique_ptr<GPUShader> fso = g_gpu_device->CreateShader(GPUShaderStage::Fragment, fs);
if (!vso || !fso)
return false;
GL_OBJECT_NAME(vso, "Display Vertex Shader");
GL_OBJECT_NAME_FMT(fso, "Display Fragment Shader [{}]",
Settings::GetDisplayScalingName(g_settings.display_scaling));
plconfig.vertex_shader = vso.get();
plconfig.fragment_shader = fso.get();
if (!(m_display_pipeline = g_gpu_device->CreatePipeline(plconfig)))
return false;
GL_OBJECT_NAME_FMT(m_display_pipeline, "Display Pipeline [{}]",
Settings::GetDisplayScalingName(g_settings.display_scaling));
}
if (deinterlace)
{
plconfig.SetTargetFormats(GPUTexture::Format::RGBA8);
std::unique_ptr<GPUShader> vso =
g_gpu_device->CreateShader(GPUShaderStage::Vertex, shadergen.GenerateScreenQuadVertexShader());
if (!vso)
return false;
GL_OBJECT_NAME(vso, "Deinterlace Vertex Shader");
std::unique_ptr<GPUShader> fso;
if (!(fso = g_gpu_device->CreateShader(GPUShaderStage::Fragment,
shadergen.GenerateInterleavedFieldExtractFragmentShader())))
{
return false;
}
GL_OBJECT_NAME(fso, "Deinterlace Field Extract Fragment Shader");
plconfig.layout = GPUPipeline::Layout::SingleTextureAndPushConstants;
plconfig.vertex_shader = vso.get();
plconfig.fragment_shader = fso.get();
if (!(m_deinterlace_extract_pipeline = g_gpu_device->CreatePipeline(plconfig)))
return false;
GL_OBJECT_NAME(m_deinterlace_extract_pipeline, "Deinterlace Field Extract Pipeline");
switch (g_settings.display_deinterlacing_mode)
{
case DisplayDeinterlacingMode::Disabled:
break;
case DisplayDeinterlacingMode::Weave:
{
if (!(fso = g_gpu_device->CreateShader(GPUShaderStage::Fragment,
shadergen.GenerateDeinterlaceWeaveFragmentShader())))
{
return false;
}
GL_OBJECT_NAME(fso, "Weave Deinterlace Fragment Shader");
plconfig.layout = GPUPipeline::Layout::SingleTextureAndPushConstants;
plconfig.vertex_shader = vso.get();
plconfig.fragment_shader = fso.get();
if (!(m_deinterlace_pipeline = g_gpu_device->CreatePipeline(plconfig)))
return false;
GL_OBJECT_NAME(m_deinterlace_pipeline, "Weave Deinterlace Pipeline");
}
break;
case DisplayDeinterlacingMode::Blend:
{
if (!(fso = g_gpu_device->CreateShader(GPUShaderStage::Fragment,
shadergen.GenerateDeinterlaceBlendFragmentShader())))
{
return false;
}
GL_OBJECT_NAME(fso, "Blend Deinterlace Fragment Shader");
plconfig.layout = GPUPipeline::Layout::MultiTextureAndPushConstants;
plconfig.vertex_shader = vso.get();
plconfig.fragment_shader = fso.get();
if (!(m_deinterlace_pipeline = g_gpu_device->CreatePipeline(plconfig)))
return false;
GL_OBJECT_NAME(m_deinterlace_pipeline, "Blend Deinterlace Pipeline");
}
break;
case DisplayDeinterlacingMode::Adaptive:
{
fso =
g_gpu_device->CreateShader(GPUShaderStage::Fragment, shadergen.GenerateFastMADReconstructFragmentShader());
if (!fso)
return false;
GL_OBJECT_NAME(fso, "FastMAD Reconstruct Fragment Shader");
plconfig.layout = GPUPipeline::Layout::MultiTextureAndPushConstants;
plconfig.fragment_shader = fso.get();
if (!(m_deinterlace_pipeline = g_gpu_device->CreatePipeline(plconfig)))
return false;
GL_OBJECT_NAME(m_deinterlace_pipeline, "FastMAD Reconstruct Pipeline");
}
break;
default:
UnreachableCode();
}
}
if (chroma_smoothing)
{
m_chroma_smoothing_pipeline.reset();
g_gpu_device->RecycleTexture(std::move(m_chroma_smoothing_texture));
if (g_settings.gpu_24bit_chroma_smoothing)
{
plconfig.layout = GPUPipeline::Layout::SingleTextureAndPushConstants;
plconfig.SetTargetFormats(GPUTexture::Format::RGBA8);
std::unique_ptr<GPUShader> vso =
g_gpu_device->CreateShader(GPUShaderStage::Vertex, shadergen.GenerateScreenQuadVertexShader());
std::unique_ptr<GPUShader> fso =
g_gpu_device->CreateShader(GPUShaderStage::Fragment, shadergen.GenerateChromaSmoothingFragmentShader());
if (!vso || !fso)
return false;
GL_OBJECT_NAME(vso, "Chroma Smoothing Vertex Shader");
GL_OBJECT_NAME(fso, "Chroma Smoothing Fragment Shader");
plconfig.vertex_shader = vso.get();
plconfig.fragment_shader = fso.get();
if (!(m_chroma_smoothing_pipeline = g_gpu_device->CreatePipeline(plconfig)))
return false;
GL_OBJECT_NAME(m_chroma_smoothing_pipeline, "Chroma Smoothing Pipeline");
}
}
return true;
}
void GPU::ClearDisplayTexture()
{
m_display_texture = nullptr;
m_display_texture_view_x = 0;
m_display_texture_view_y = 0;
m_display_texture_view_width = 0;
m_display_texture_view_height = 0;
}
void GPU::SetDisplayTexture(GPUTexture* texture, s32 view_x, s32 view_y, s32 view_width, s32 view_height)
{
DebugAssert(texture);
m_display_texture = texture;
m_display_texture_view_x = view_x;
m_display_texture_view_y = view_y;
m_display_texture_view_width = view_width;
m_display_texture_view_height = view_height;
}
void GPU::SetDisplayTextureRect(s32 view_x, s32 view_y, s32 view_width, s32 view_height)
{
m_display_texture_view_x = view_x;
m_display_texture_view_y = view_y;
m_display_texture_view_width = view_width;
m_display_texture_view_height = view_height;
}
void GPU::SetDisplayParameters(s32 display_width, s32 display_height, s32 active_left, s32 active_top, s32 active_width,
s32 active_height, float display_aspect_ratio)
{
m_display_width = display_width;
m_display_height = display_height;
m_display_active_left = active_left;
m_display_active_top = active_top;
m_display_active_width = active_width;
m_display_active_height = active_height;
m_display_aspect_ratio = display_aspect_ratio;
}
bool GPU::PresentDisplay()
{
FlushRender();
if (!HasDisplayTexture())
return g_gpu_device->BeginPresent(false);
const Common::Rectangle<s32> draw_rect =
CalculateDrawRect(g_gpu_device->GetWindowWidth(), g_gpu_device->GetWindowHeight());
return RenderDisplay(nullptr, draw_rect, true);
}
bool GPU::RenderDisplay(GPUTexture* target, const Common::Rectangle<s32>& draw_rect, bool postfx)
{
GL_SCOPE_FMT("RenderDisplay: {}x{} at {},{}", draw_rect.left, draw_rect.top, draw_rect.GetWidth(),
draw_rect.GetHeight());
if (m_display_texture)
m_display_texture->MakeReadyForSampling();
bool texture_filter_linear = false;
struct Uniforms
{
float src_rect[4];
float src_size[4];
float clamp_rect[4];
float params[4];
} uniforms;
std::memset(uniforms.params, 0, sizeof(uniforms.params));
switch (g_settings.display_scaling)
{
case DisplayScalingMode::Nearest:
case DisplayScalingMode::NearestInteger:
break;
case DisplayScalingMode::BilinearSmooth:
texture_filter_linear = true;
break;
case DisplayScalingMode::BilinearSharp:
{
texture_filter_linear = true;
uniforms.params[0] = std::max(
std::floor(static_cast<float>(draw_rect.GetWidth()) / static_cast<float>(m_display_texture_view_width)), 1.0f);
uniforms.params[1] = std::max(
std::floor(static_cast<float>(draw_rect.GetHeight()) / static_cast<float>(m_display_texture_view_height)),
1.0f);
uniforms.params[2] = 0.5f - 0.5f / uniforms.params[0];
uniforms.params[3] = 0.5f - 0.5f / uniforms.params[1];
}
break;
default:
UnreachableCode();
break;
}
const GPUTexture::Format hdformat = target ? target->GetFormat() : g_gpu_device->GetWindowFormat();
const u32 target_width = target ? target->GetWidth() : g_gpu_device->GetWindowWidth();
const u32 target_height = target ? target->GetHeight() : g_gpu_device->GetWindowHeight();
const bool really_postfx =
(postfx && HasDisplayTexture() && PostProcessing::IsActive() && !g_gpu_device->GetWindowInfo().IsSurfaceless() &&
hdformat != GPUTexture::Format::Unknown && target_width > 0 && target_height > 0 &&
PostProcessing::CheckTargets(hdformat, target_width, target_height));
const Common::Rectangle<s32> real_draw_rect =
g_gpu_device->UsesLowerLeftOrigin() ? GPUDevice::FlipToLowerLeft(draw_rect, target_height) : draw_rect;
if (really_postfx)
{
g_gpu_device->ClearRenderTarget(PostProcessing::GetInputTexture(), 0);
g_gpu_device->SetRenderTarget(PostProcessing::GetInputTexture());
}
else
{
if (target)
g_gpu_device->SetRenderTarget(target);
else if (!g_gpu_device->BeginPresent(false))
return false;
}
if (!HasDisplayTexture())
return true;
g_gpu_device->SetPipeline(m_display_pipeline.get());
g_gpu_device->SetTextureSampler(
0, m_display_texture, texture_filter_linear ? g_gpu_device->GetLinearSampler() : g_gpu_device->GetNearestSampler());
// For bilinear, clamp to 0.5/SIZE-0.5 to avoid bleeding from the adjacent texels in VRAM. This is because
// 1.0 in UV space is not the bottom-right texel, but a mix of the bottom-right and wrapped/next texel.
const float rcp_width = 1.0f / static_cast<float>(m_display_texture->GetWidth());
const float rcp_height = 1.0f / static_cast<float>(m_display_texture->GetHeight());
uniforms.src_rect[0] = static_cast<float>(m_display_texture_view_x) * rcp_width;
uniforms.src_rect[1] = static_cast<float>(m_display_texture_view_y) * rcp_height;
uniforms.src_rect[2] = static_cast<float>(m_display_texture_view_width) * rcp_width;
uniforms.src_rect[3] = static_cast<float>(m_display_texture_view_height) * rcp_height;
uniforms.clamp_rect[0] = (static_cast<float>(m_display_texture_view_x) + 0.5f) * rcp_width;
uniforms.clamp_rect[1] = (static_cast<float>(m_display_texture_view_y) + 0.5f) * rcp_height;
uniforms.clamp_rect[2] =
(static_cast<float>(m_display_texture_view_x + m_display_texture_view_width) - 0.5f) * rcp_width;
uniforms.clamp_rect[3] =
(static_cast<float>(m_display_texture_view_y + m_display_texture_view_height) - 0.5f) * rcp_height;
uniforms.src_size[0] = static_cast<float>(m_display_texture->GetWidth());
uniforms.src_size[1] = static_cast<float>(m_display_texture->GetHeight());
uniforms.src_size[2] = rcp_width;
uniforms.src_size[3] = rcp_height;
g_gpu_device->PushUniformBuffer(&uniforms, sizeof(uniforms));
g_gpu_device->SetViewportAndScissor(real_draw_rect.left, real_draw_rect.top, real_draw_rect.GetWidth(),
real_draw_rect.GetHeight());
g_gpu_device->Draw(3, 0);
if (really_postfx)
{
return PostProcessing::Apply(target, real_draw_rect.left, real_draw_rect.top, real_draw_rect.GetWidth(),
real_draw_rect.GetHeight(), m_display_texture_view_width,
m_display_texture_view_height);
}
else
{
return true;
}
}
void GPU::DestroyDeinterlaceTextures()
{
for (std::unique_ptr<GPUTexture>& tex : m_deinterlace_buffers)
g_gpu_device->RecycleTexture(std::move(tex));
g_gpu_device->RecycleTexture(std::move(m_deinterlace_texture));
m_current_deinterlace_buffer = 0;
}
bool GPU::Deinterlace(GPUTexture* src, u32 x, u32 y, u32 width, u32 height, u32 field, u32 line_skip)
{
switch (g_settings.display_deinterlacing_mode)
{
case DisplayDeinterlacingMode::Disabled:
{
if (line_skip == 0)
{
SetDisplayTexture(src, x, y, width, height);
return true;
}
// Still have to extract the field.
if (!DeinterlaceExtractField(0, src, x, y, width, height, line_skip)) [[unlikely]]
return false;
SetDisplayTexture(m_deinterlace_buffers[0].get(), 0, 0, width, height);
return true;
}
case DisplayDeinterlacingMode::Weave:
{
GL_SCOPE_FMT("DeinterlaceWeave({{{},{}}}, {}x{}, field={}, line_skip={})", x, y, width, height, field, line_skip);
const u32 full_height = height * 2;
if (!DeinterlaceSetTargetSize(width, full_height, true)) [[unlikely]]
{
ClearDisplayTexture();
return false;
}
src->MakeReadyForSampling();
g_gpu_device->SetRenderTarget(m_deinterlace_texture.get());
g_gpu_device->SetPipeline(m_deinterlace_pipeline.get());
g_gpu_device->SetTextureSampler(0, src, g_gpu_device->GetNearestSampler());
const u32 uniforms[] = {x, y, field, line_skip};
g_gpu_device->PushUniformBuffer(uniforms, sizeof(uniforms));
g_gpu_device->SetViewportAndScissor(0, 0, width, full_height);
g_gpu_device->Draw(3, 0);
m_deinterlace_texture->MakeReadyForSampling();
SetDisplayTexture(m_deinterlace_texture.get(), 0, 0, width, full_height);
return true;
}
case DisplayDeinterlacingMode::Blend:
{
constexpr u32 NUM_BLEND_BUFFERS = 2;
GL_SCOPE_FMT("DeinterlaceBlend({{{},{}}}, {}x{}, field={}, line_skip={})", x, y, width, height, field, line_skip);
const u32 this_buffer = m_current_deinterlace_buffer;
m_current_deinterlace_buffer = (m_current_deinterlace_buffer + 1u) % NUM_BLEND_BUFFERS;
GL_INS_FMT("Current buffer: {}", this_buffer);
if (!DeinterlaceExtractField(this_buffer, src, x, y, width, height, line_skip) ||
!DeinterlaceSetTargetSize(width, height, false)) [[unlikely]]
{
ClearDisplayTexture();
return false;
}
// TODO: could be implemented with alpha blending instead..
g_gpu_device->InvalidateRenderTarget(m_deinterlace_texture.get());
g_gpu_device->SetRenderTarget(m_deinterlace_texture.get());
g_gpu_device->SetPipeline(m_deinterlace_pipeline.get());
g_gpu_device->SetTextureSampler(0, m_deinterlace_buffers[this_buffer].get(), g_gpu_device->GetNearestSampler());
g_gpu_device->SetTextureSampler(1, m_deinterlace_buffers[(this_buffer - 1) % NUM_BLEND_BUFFERS].get(),
g_gpu_device->GetNearestSampler());
g_gpu_device->SetViewportAndScissor(0, 0, width, height);
g_gpu_device->Draw(3, 0);
m_deinterlace_texture->MakeReadyForSampling();
SetDisplayTexture(m_deinterlace_texture.get(), 0, 0, width, height);
return true;
}
case DisplayDeinterlacingMode::Adaptive:
{
GL_SCOPE_FMT("DeinterlaceAdaptive({{{},{}}}, {}x{}, field={}, line_skip={})", x, y, width, height, field,
line_skip);
const u32 full_height = height * 2;
const u32 this_buffer = m_current_deinterlace_buffer;
m_current_deinterlace_buffer = (m_current_deinterlace_buffer + 1u) % DEINTERLACE_BUFFER_COUNT;
GL_INS_FMT("Current buffer: {}", this_buffer);
if (!DeinterlaceExtractField(this_buffer, src, x, y, width, height, line_skip) ||
!DeinterlaceSetTargetSize(width, full_height, false)) [[unlikely]]
{
ClearDisplayTexture();
return false;
}
g_gpu_device->SetRenderTarget(m_deinterlace_texture.get());
g_gpu_device->SetPipeline(m_deinterlace_pipeline.get());
g_gpu_device->SetTextureSampler(0, m_deinterlace_buffers[this_buffer].get(), g_gpu_device->GetNearestSampler());
g_gpu_device->SetTextureSampler(1, m_deinterlace_buffers[(this_buffer - 1) % DEINTERLACE_BUFFER_COUNT].get(),
g_gpu_device->GetNearestSampler());
g_gpu_device->SetTextureSampler(2, m_deinterlace_buffers[(this_buffer - 2) % DEINTERLACE_BUFFER_COUNT].get(),
g_gpu_device->GetNearestSampler());
g_gpu_device->SetTextureSampler(3, m_deinterlace_buffers[(this_buffer - 3) % DEINTERLACE_BUFFER_COUNT].get(),
g_gpu_device->GetNearestSampler());
const u32 uniforms[] = {field, full_height};
g_gpu_device->PushUniformBuffer(uniforms, sizeof(uniforms));
g_gpu_device->SetViewportAndScissor(0, 0, width, full_height);
g_gpu_device->Draw(3, 0);
m_deinterlace_texture->MakeReadyForSampling();
SetDisplayTexture(m_deinterlace_texture.get(), 0, 0, width, full_height);
return true;
}
default:
UnreachableCode();
}
}
bool GPU::DeinterlaceExtractField(u32 dst_bufidx, GPUTexture* src, u32 x, u32 y, u32 width, u32 height, u32 line_skip)
{
if (!m_deinterlace_buffers[dst_bufidx] || m_deinterlace_buffers[dst_bufidx]->GetWidth() != width ||
m_deinterlace_buffers[dst_bufidx]->GetHeight() != height)
{
if (!g_gpu_device->ResizeTexture(&m_deinterlace_buffers[dst_bufidx], width, height, GPUTexture::Type::RenderTarget,
GPUTexture::Format::RGBA8, false)) [[unlikely]]
{
return false;
}
GL_OBJECT_NAME_FMT(m_deinterlace_buffers[dst_bufidx], "Blend Deinterlace Buffer {}", dst_bufidx);
}
GPUTexture* dst = m_deinterlace_buffers[dst_bufidx].get();
g_gpu_device->InvalidateRenderTarget(dst);
// If we're not skipping lines, then we can simply copy the texture.
if (line_skip == 0 && src->GetFormat() == dst->GetFormat())
{
GL_INS_FMT("DeinterlaceExtractField({{{},{}}} {}x{} line_skip={}) => copy direct", x, y, width, height, line_skip);
g_gpu_device->CopyTextureRegion(dst, 0, 0, 0, 0, src, x, y, 0, 0, width, height);
}
else
{
GL_SCOPE_FMT("DeinterlaceExtractField({{{},{}}} {}x{} line_skip={}) => shader copy", x, y, width, height,
line_skip);
// Otherwise, we need to extract every other line from the texture.
src->MakeReadyForSampling();
g_gpu_device->SetRenderTarget(dst);
g_gpu_device->SetPipeline(m_deinterlace_extract_pipeline.get());
g_gpu_device->SetTextureSampler(0, src, g_gpu_device->GetNearestSampler());
const u32 uniforms[] = {x, y, line_skip};
g_gpu_device->PushUniformBuffer(uniforms, sizeof(uniforms));
g_gpu_device->SetViewportAndScissor(0, 0, width, height);
g_gpu_device->Draw(3, 0);
GL_POP();
}
dst->MakeReadyForSampling();
return true;
}
bool GPU::DeinterlaceSetTargetSize(u32 width, u32 height, bool preserve)
{
if (!m_deinterlace_texture || m_deinterlace_texture->GetWidth() != width ||
m_deinterlace_texture->GetHeight() != height)
{
if (!g_gpu_device->ResizeTexture(&m_deinterlace_texture, width, height, GPUTexture::Type::RenderTarget,
GPUTexture::Format::RGBA8, preserve)) [[unlikely]]
{
return false;
}
GL_OBJECT_NAME(m_deinterlace_texture, "Deinterlace target texture");
}
return true;
}
bool GPU::ApplyChromaSmoothing(GPUTexture* src, u32 x, u32 y, u32 width, u32 height)
{
if (!m_chroma_smoothing_texture || m_chroma_smoothing_texture->GetWidth() != width ||
m_chroma_smoothing_texture->GetHeight() != height)
{
if (!g_gpu_device->ResizeTexture(&m_chroma_smoothing_texture, width, height, GPUTexture::Type::RenderTarget,
GPUTexture::Format::RGBA8, false))
{
ClearDisplayTexture();
return false;
}
GL_OBJECT_NAME(m_chroma_smoothing_texture, "Chroma smoothing texture");
}
GL_SCOPE_FMT("ApplyChromaSmoothing({{{},{}}}, {}x{})", x, y, width, height);
src->MakeReadyForSampling();
g_gpu_device->InvalidateRenderTarget(m_chroma_smoothing_texture.get());
g_gpu_device->SetRenderTarget(m_chroma_smoothing_texture.get());
g_gpu_device->SetPipeline(m_chroma_smoothing_pipeline.get());
g_gpu_device->SetTextureSampler(0, src, g_gpu_device->GetNearestSampler());
const u32 uniforms[] = {x, y, width - 1, height - 1};
g_gpu_device->PushUniformBuffer(uniforms, sizeof(uniforms));
g_gpu_device->SetViewportAndScissor(0, 0, width, height);
g_gpu_device->Draw(3, 0);
m_chroma_smoothing_texture->MakeReadyForSampling();
SetDisplayTexture(m_chroma_smoothing_texture.get(), 0, 0, width, height);
return true;
}
Common::Rectangle<float> GPU::CalculateDrawRect(s32 window_width, s32 window_height, float* out_left_padding,
float* out_top_padding, float* out_scale, float* out_x_scale,
bool apply_aspect_ratio /* = true */) const
{
const float window_ratio = static_cast<float>(window_width) / static_cast<float>(window_height);
const float x_scale =
apply_aspect_ratio ?
(m_display_aspect_ratio / (static_cast<float>(m_display_width) / static_cast<float>(m_display_height))) :
1.0f;
const float display_width = g_settings.display_stretch_vertically ? static_cast<float>(m_display_width) :
static_cast<float>(m_display_width) * x_scale;
const float display_height = g_settings.display_stretch_vertically ? static_cast<float>(m_display_height) / x_scale :
static_cast<float>(m_display_height);
const float active_left = g_settings.display_stretch_vertically ? static_cast<float>(m_display_active_left) :
static_cast<float>(m_display_active_left) * x_scale;
const float active_top = g_settings.display_stretch_vertically ? static_cast<float>(m_display_active_top) / x_scale :
static_cast<float>(m_display_active_top);
const float active_width = g_settings.display_stretch_vertically ?
static_cast<float>(m_display_active_width) :
static_cast<float>(m_display_active_width) * x_scale;
const float active_height = g_settings.display_stretch_vertically ?
static_cast<float>(m_display_active_height) / x_scale :
static_cast<float>(m_display_active_height);
if (out_x_scale)
*out_x_scale = x_scale;
// now fit it within the window
float scale;
if ((display_width / display_height) >= window_ratio)
{
// align in middle vertically
scale = static_cast<float>(window_width) / display_width;
if (g_settings.display_scaling == DisplayScalingMode::NearestInteger)
scale = std::max(std::floor(scale), 1.0f);
if (out_left_padding)
{
if (g_settings.display_scaling == DisplayScalingMode::NearestInteger)
*out_left_padding = std::max<float>((static_cast<float>(window_width) - display_width * scale) / 2.0f, 0.0f);
else
*out_left_padding = 0.0f;
}
if (out_top_padding)
{
switch (g_settings.display_alignment)
{
case DisplayAlignment::RightOrBottom:
*out_top_padding = std::max<float>(static_cast<float>(window_height) - (display_height * scale), 0.0f);
break;
case DisplayAlignment::Center:
*out_top_padding =
std::max<float>((static_cast<float>(window_height) - (display_height * scale)) / 2.0f, 0.0f);
break;
case DisplayAlignment::LeftOrTop:
default:
*out_top_padding = 0.0f;
break;
}
}
}
else
{
// align in middle horizontally
scale = static_cast<float>(window_height) / display_height;
if (g_settings.display_scaling == DisplayScalingMode::NearestInteger)
scale = std::max(std::floor(scale), 1.0f);
if (out_left_padding)
{
switch (g_settings.display_alignment)
{
case DisplayAlignment::RightOrBottom:
*out_left_padding = std::max<float>(static_cast<float>(window_width) - (display_width * scale), 0.0f);
break;
case DisplayAlignment::Center:
*out_left_padding =
std::max<float>((static_cast<float>(window_width) - (display_width * scale)) / 2.0f, 0.0f);
break;
case DisplayAlignment::LeftOrTop:
default:
*out_left_padding = 0.0f;
break;
}
}
if (out_top_padding)
{
if (g_settings.display_scaling == DisplayScalingMode::NearestInteger)
*out_top_padding = std::max<float>((static_cast<float>(window_height) - (display_height * scale)) / 2.0f, 0.0f);
else
*out_top_padding = 0.0f;
}
}
if (out_scale)
*out_scale = scale;
return Common::Rectangle<float>::FromExtents(active_left * scale, active_top * scale, active_width * scale,
active_height * scale);
}
Common::Rectangle<s32> GPU::CalculateDrawRect(s32 window_width, s32 window_height,
bool apply_aspect_ratio /* = true */) const
{
float left_padding, top_padding;
const Common::Rectangle<float> draw_rc =
CalculateDrawRect(window_width, window_height, &left_padding, &top_padding, nullptr, nullptr, apply_aspect_ratio);
// TODO: This should be a float rectangle. But because GL is lame, it only has integer viewports...
return Common::Rectangle<s32>::FromExtents(
static_cast<s32>(draw_rc.left + left_padding), static_cast<s32>(draw_rc.top + top_padding),
static_cast<s32>(draw_rc.GetWidth()), static_cast<s32>(draw_rc.GetHeight()));
}
bool CompressAndWriteTextureToFile(u32 width, u32 height, std::string filename, FileSystem::ManagedCFilePtr fp,
u8 quality, bool clear_alpha, bool flip_y, std::vector<u32> texture_data,
u32 texture_data_stride, GPUTexture::Format texture_format, bool display_osd_message,
bool use_thread)
{
std::string osd_key;
if (display_osd_message)
{
// Use a 60 second timeout to give it plenty of time to actually save.
osd_key = fmt::format("ScreenshotSaver_{}", filename);
Host::AddIconOSDMessage(osd_key, ICON_FA_CAMERA,
fmt::format(TRANSLATE_FS("GPU", "Saving screenshot to '{}'."), Path::GetFileName(filename)),
60.0f);
}
static constexpr auto proc = [](u32 width, u32 height, std::string filename, FileSystem::ManagedCFilePtr fp,
u8 quality, bool clear_alpha, bool flip_y, std::vector<u32> texture_data,
u32 texture_data_stride, GPUTexture::Format texture_format, std::string osd_key,
bool use_thread) {
bool result;
const char* extension = std::strrchr(filename.c_str(), '.');
if (extension)
{
if (GPUTexture::ConvertTextureDataToRGBA8(width, height, texture_data, texture_data_stride, texture_format))
{
if (clear_alpha)
{
for (u32& pixel : texture_data)
pixel |= 0xFF000000u;
}
if (flip_y)
GPUTexture::FlipTextureDataRGBA8(width, height, reinterpret_cast<u8*>(texture_data.data()),
texture_data_stride);
Assert(texture_data_stride == sizeof(u32) * width);
RGBA8Image image(width, height, std::move(texture_data));
if (image.SaveToFile(filename.c_str(), fp.get(), quality))
{
result = true;
}
else
{
Log_ErrorPrintf("Unknown extension in filename '%s' or save error: '%s'", filename.c_str(), extension);
result = false;
}
}
else
{
result = false;
}
}
else
{
Log_ErrorPrintf("Unable to determine file extension for '%s'", filename.c_str());
result = false;
}
if (!osd_key.empty())
{
Host::AddIconOSDMessage(std::move(osd_key), ICON_FA_CAMERA,
fmt::format(result ? TRANSLATE_FS("GS", "Saved screenshot to '{}'.") :
TRANSLATE_FS("GPU", "Failed to save screenshot to '{}'."),
Path::GetFileName(filename),
result ? Host::OSD_INFO_DURATION : Host::OSD_ERROR_DURATION));
}
if (use_thread)
{
// remove ourselves from the list, if the GS thread is waiting for us, we won't be in there
const auto this_id = std::this_thread::get_id();
std::unique_lock lock(s_screenshot_threads_mutex);
for (auto it = s_screenshot_threads.begin(); it != s_screenshot_threads.end(); ++it)
{
if (it->get_id() == this_id)
{
it->detach();
s_screenshot_threads.erase(it);
break;
}
}
}
return result;
};
if (!use_thread)
{
return proc(width, height, std::move(filename), std::move(fp), quality, clear_alpha, flip_y,
std::move(texture_data), texture_data_stride, texture_format, std::move(osd_key), use_thread);
}
std::thread thread(proc, width, height, std::move(filename), std::move(fp), quality, clear_alpha, flip_y,
std::move(texture_data), texture_data_stride, texture_format, std::move(osd_key), use_thread);
std::unique_lock lock(s_screenshot_threads_mutex);
s_screenshot_threads.push_back(std::move(thread));
return true;
}
void JoinScreenshotThreads()
{
std::unique_lock lock(s_screenshot_threads_mutex);
while (!s_screenshot_threads.empty())
{
std::thread save_thread(std::move(s_screenshot_threads.front()));
s_screenshot_threads.pop_front();
lock.unlock();
save_thread.join();
lock.lock();
}
}
bool GPU::WriteDisplayTextureToFile(std::string filename, bool compress_on_thread /* = false */)
{
if (!m_display_texture)
return false;
const u32 read_x = static_cast<u32>(m_display_texture_view_x);
const u32 read_y = static_cast<u32>(m_display_texture_view_y);
const u32 read_width = static_cast<u32>(m_display_texture_view_width);
const u32 read_height = static_cast<u32>(m_display_texture_view_height);
const u32 texture_data_stride =
Common::AlignUpPow2(GPUTexture::GetPixelSize(m_display_texture->GetFormat()) * read_width, 4);
std::vector<u32> texture_data((texture_data_stride * read_height) / sizeof(u32));
std::unique_ptr<GPUDownloadTexture> dltex;
if (g_gpu_device->GetFeatures().memory_import)
{
dltex =
g_gpu_device->CreateDownloadTexture(read_width, read_height, m_display_texture->GetFormat(), texture_data.data(),
texture_data.size() * sizeof(u32), texture_data_stride);
}
if (!dltex)
{
if (!(dltex = g_gpu_device->CreateDownloadTexture(read_width, read_height, m_display_texture->GetFormat())))
{
Log_ErrorFmt("Failed to create {}x{} {} download texture", read_width, read_height,
GPUTexture::GetFormatName(m_display_texture->GetFormat()));
return false;
}
}
dltex->CopyFromTexture(0, 0, m_display_texture, read_x, read_y, read_width, read_height, 0, 0, !dltex->IsImported());
if (!dltex->ReadTexels(0, 0, read_width, read_height, texture_data.data(), texture_data_stride))
{
RestoreDeviceContext();
return false;
}
RestoreDeviceContext();
auto fp = FileSystem::OpenManagedCFile(filename.c_str(), "wb");
if (!fp)
{
Log_ErrorPrintf("Can't open file '%s': errno %d", filename.c_str(), errno);
return false;
}
constexpr bool clear_alpha = true;
const bool flip_y = g_gpu_device->UsesLowerLeftOrigin();
return CompressAndWriteTextureToFile(
read_width, read_height, std::move(filename), std::move(fp), g_settings.display_screenshot_quality, clear_alpha,
flip_y, std::move(texture_data), texture_data_stride, m_display_texture->GetFormat(), false, compress_on_thread);
}
bool GPU::RenderScreenshotToBuffer(u32 width, u32 height, const Common::Rectangle<s32>& draw_rect, bool postfx,
std::vector<u32>* out_pixels, u32* out_stride, GPUTexture::Format* out_format)
{
const GPUTexture::Format hdformat =
g_gpu_device->HasSurface() ? g_gpu_device->GetWindowFormat() : GPUTexture::Format::RGBA8;
auto render_texture =
g_gpu_device->FetchAutoRecycleTexture(width, height, 1, 1, 1, GPUTexture::Type::RenderTarget, hdformat);
if (!render_texture)
return false;
g_gpu_device->ClearRenderTarget(render_texture.get(), 0);
// TODO: this should use copy shader instead.
RenderDisplay(render_texture.get(), draw_rect, postfx);
const u32 stride = Common::AlignUpPow2(GPUTexture::GetPixelSize(hdformat) * width, sizeof(u32));
out_pixels->resize((height * stride) / sizeof(u32));
std::unique_ptr<GPUDownloadTexture> dltex;
if (g_gpu_device->GetFeatures().memory_import)
{
dltex = g_gpu_device->CreateDownloadTexture(width, height, hdformat, out_pixels->data(),
out_pixels->size() * sizeof(u32), stride);
}
if (!dltex)
{
if (!(dltex = g_gpu_device->CreateDownloadTexture(width, height, hdformat)))
{
Log_ErrorFmt("Failed to create {}x{} download texture", width, height);
return false;
}
}
dltex->CopyFromTexture(0, 0, render_texture.get(), 0, 0, width, height, 0, 0, false);
if (!dltex->ReadTexels(0, 0, width, height, out_pixels->data(), stride))
{
RestoreDeviceContext();
return false;
}
*out_stride = stride;
*out_format = hdformat;
RestoreDeviceContext();
return true;
}
bool GPU::RenderScreenshotToFile(std::string filename, DisplayScreenshotMode mode, u8 quality, bool compress_on_thread,
bool show_osd_message)
{
u32 width = g_gpu_device->GetWindowWidth();
u32 height = g_gpu_device->GetWindowHeight();
Common::Rectangle<s32> draw_rect = CalculateDrawRect(width, height);
const bool internal_resolution = (mode != DisplayScreenshotMode::ScreenResolution);
if (internal_resolution && m_display_texture_view_width != 0 && m_display_texture_view_height != 0)
{
if (mode == DisplayScreenshotMode::InternalResolution)
{
const u32 draw_width = static_cast<u32>(draw_rect.GetWidth());
const u32 draw_height = static_cast<u32>(draw_rect.GetHeight());
// If internal res, scale the computed draw rectangle to the internal res.
// We re-use the draw rect because it's already been AR corrected.
const float sar =
static_cast<float>(m_display_texture_view_width) / static_cast<float>(m_display_texture_view_height);
const float dar = static_cast<float>(draw_width) / static_cast<float>(draw_height);
if (sar >= dar)
{
// stretch height, preserve width
const float scale = static_cast<float>(m_display_texture_view_width) / static_cast<float>(draw_width);
width = m_display_texture_view_width;
height = static_cast<u32>(std::round(static_cast<float>(draw_height) * scale));
}
else
{
// stretch width, preserve height
const float scale = static_cast<float>(m_display_texture_view_height) / static_cast<float>(draw_height);
width = static_cast<u32>(std::round(static_cast<float>(draw_width) * scale));
height = m_display_texture_view_height;
}
// DX11 won't go past 16K texture size.
const u32 max_texture_size = g_gpu_device->GetMaxTextureSize();
if (width > max_texture_size)
{
height = static_cast<u32>(static_cast<float>(height) /
(static_cast<float>(width) / static_cast<float>(max_texture_size)));
width = max_texture_size;
}
if (height > max_texture_size)
{
height = max_texture_size;
width = static_cast<u32>(static_cast<float>(width) /
(static_cast<float>(height) / static_cast<float>(max_texture_size)));
}
}
else // if (mode == DisplayScreenshotMode::UncorrectedInternalResolution)
{
width = m_display_texture_view_width;
height = m_display_texture_view_height;
}
// Remove padding, it's not part of the framebuffer.
draw_rect.Set(0, 0, static_cast<s32>(width), static_cast<s32>(height));
}
if (width == 0 || height == 0)
return false;
std::vector<u32> pixels;
u32 pixels_stride;
GPUTexture::Format pixels_format;
if (!RenderScreenshotToBuffer(width, height, draw_rect, !internal_resolution, &pixels, &pixels_stride,
&pixels_format))
{
Log_ErrorPrintf("Failed to render %ux%u screenshot", width, height);
return false;
}
// These filenames tend to be fairly long, so remove any MAX_PATH limit.
auto fp = FileSystem::OpenManagedCFile(Path::RemoveLengthLimits(filename).c_str(), "wb");
if (!fp)
{
Log_ErrorPrintf("Can't open file '%s': errno %d", filename.c_str(), errno);
return false;
}
return CompressAndWriteTextureToFile(width, height, std::move(filename), std::move(fp), quality, true,
g_gpu_device->UsesLowerLeftOrigin(), std::move(pixels), pixels_stride,
pixels_format, show_osd_message, compress_on_thread);
}
bool GPU::DumpVRAMToFile(const char* filename)
{
ReadVRAM(0, 0, VRAM_WIDTH, VRAM_HEIGHT);
const char* extension = std::strrchr(filename, '.');
if (extension && StringUtil::Strcasecmp(extension, ".png") == 0)
{
return DumpVRAMToFile(filename, VRAM_WIDTH, VRAM_HEIGHT, sizeof(u16) * VRAM_WIDTH, g_vram, true);
}
else if (extension && StringUtil::Strcasecmp(extension, ".bin") == 0)
{
return FileSystem::WriteBinaryFile(filename, g_vram, VRAM_WIDTH * VRAM_HEIGHT * sizeof(u16));
}
else
{
Log_ErrorPrintf("Unknown extension: '%s'", filename);
return false;
}
}
bool GPU::DumpVRAMToFile(const char* filename, u32 width, u32 height, u32 stride, const void* buffer, bool remove_alpha)
{
RGBA8Image image(width, height);
const char* ptr_in = static_cast<const char*>(buffer);
for (u32 row = 0; row < height; row++)
{
const char* row_ptr_in = ptr_in;
u32* ptr_out = image.GetRowPixels(row);
for (u32 col = 0; col < width; col++)
{
u16 src_col;
std::memcpy(&src_col, row_ptr_in, sizeof(u16));
row_ptr_in += sizeof(u16);
*(ptr_out++) = VRAMRGBA5551ToRGBA8888(remove_alpha ? (src_col | u16(0x8000)) : src_col);
}
ptr_in += stride;
}
return image.SaveToFile(filename);
}
void GPU::DrawDebugStateWindow()
{
const float framebuffer_scale = Host::GetOSDScale();
ImGui::SetNextWindowSize(ImVec2(450.0f * framebuffer_scale, 550.0f * framebuffer_scale), ImGuiCond_FirstUseEver);
if (!ImGui::Begin("GPU", nullptr))
{
ImGui::End();
return;
}
DrawRendererStats();
if (ImGui::CollapsingHeader("GPU", ImGuiTreeNodeFlags_DefaultOpen))
{
static constexpr std::array<const char*, 5> state_strings = {
{"Idle", "Reading VRAM", "Writing VRAM", "Drawing Polyline"}};
ImGui::Text("State: %s", state_strings[static_cast<u8>(m_blitter_state)]);
ImGui::Text("Dither: %s", m_GPUSTAT.dither_enable ? "Enabled" : "Disabled");
ImGui::Text("Draw To Displayed Field: %s", m_GPUSTAT.draw_to_displayed_field ? "Enabled" : "Disabled");
ImGui::Text("Draw Set Mask Bit: %s", m_GPUSTAT.set_mask_while_drawing ? "Yes" : "No");
ImGui::Text("Draw To Masked Pixels: %s", m_GPUSTAT.check_mask_before_draw ? "Yes" : "No");
ImGui::Text("Reverse Flag: %s", m_GPUSTAT.reverse_flag ? "Yes" : "No");
ImGui::Text("Texture Disable: %s", m_GPUSTAT.texture_disable ? "Yes" : "No");
ImGui::Text("PAL Mode: %s", m_GPUSTAT.pal_mode ? "Yes" : "No");
ImGui::Text("Interrupt Request: %s", m_GPUSTAT.interrupt_request ? "Yes" : "No");
ImGui::Text("DMA Request: %s", m_GPUSTAT.dma_data_request ? "Yes" : "No");
}
if (ImGui::CollapsingHeader("CRTC", ImGuiTreeNodeFlags_DefaultOpen))
{
const auto& cs = m_crtc_state;
ImGui::Text("Clock: %s", (m_console_is_pal ? (m_GPUSTAT.pal_mode ? "PAL-on-PAL" : "NTSC-on-PAL") :
(m_GPUSTAT.pal_mode ? "PAL-on-NTSC" : "NTSC-on-NTSC")));
ImGui::Text("Horizontal Frequency: %.3f KHz", ComputeHorizontalFrequency() / 1000.0f);
ImGui::Text("Vertical Frequency: %.3f Hz", ComputeVerticalFrequency());
ImGui::Text("Dot Clock Divider: %u", cs.dot_clock_divider);
ImGui::Text("Vertical Interlace: %s (%s field)", m_GPUSTAT.vertical_interlace ? "Yes" : "No",
cs.interlaced_field ? "odd" : "even");
ImGui::Text("Current Scanline: %u (tick %u)", cs.current_scanline, cs.current_tick_in_scanline);
ImGui::Text("Display Disable: %s", m_GPUSTAT.display_disable ? "Yes" : "No");
ImGui::Text("Displaying Odd Lines: %s", cs.active_line_lsb ? "Yes" : "No");
ImGui::Text("Color Depth: %u-bit", m_GPUSTAT.display_area_color_depth_24 ? 24 : 15);
ImGui::Text("Start Offset in VRAM: (%u, %u)", cs.regs.X.GetValue(), cs.regs.Y.GetValue());
ImGui::Text("Display Total: %u (%u) horizontal, %u vertical", cs.horizontal_total,
cs.horizontal_total / cs.dot_clock_divider, cs.vertical_total);
ImGui::Text("Configured Display Range: %u-%u (%u-%u), %u-%u", cs.regs.X1.GetValue(), cs.regs.X2.GetValue(),
cs.regs.X1.GetValue() / cs.dot_clock_divider, cs.regs.X2.GetValue() / cs.dot_clock_divider,
cs.regs.Y1.GetValue(), cs.regs.Y2.GetValue());
ImGui::Text("Output Display Range: %u-%u (%u-%u), %u-%u", cs.horizontal_display_start, cs.horizontal_display_end,
cs.horizontal_display_start / cs.dot_clock_divider, cs.horizontal_display_end / cs.dot_clock_divider,
cs.vertical_display_start, cs.vertical_display_end);
ImGui::Text("Cropping: %s", Settings::GetDisplayCropModeName(g_settings.display_crop_mode));
ImGui::Text("Visible Display Range: %u-%u (%u-%u), %u-%u", cs.horizontal_visible_start, cs.horizontal_visible_end,
cs.horizontal_visible_start / cs.dot_clock_divider, cs.horizontal_visible_end / cs.dot_clock_divider,
cs.vertical_visible_start, cs.vertical_visible_end);
ImGui::Text("Display Resolution: %ux%u", cs.display_width, cs.display_height);
ImGui::Text("Display Origin: %u, %u", cs.display_origin_left, cs.display_origin_top);
ImGui::Text("Displayed/Visible VRAM Portion: %ux%u @ (%u, %u)", cs.display_vram_width, cs.display_vram_height,
cs.display_vram_left, cs.display_vram_top);
ImGui::Text("Padding: Left=%d, Top=%d, Right=%d, Bottom=%d", cs.display_origin_left, cs.display_origin_top,
cs.display_width - cs.display_vram_width - cs.display_origin_left,
cs.display_height - cs.display_vram_height - cs.display_origin_top);
}
ImGui::End();
}
void GPU::DrawRendererStats()
{
}
void GPU::GetStatsString(SmallStringBase& str)
{
if (IsHardwareRenderer())
{
str.format("{} HW | {} P | {} DC | {} RP | {} RB | {} C | {} W",
GPUDevice::RenderAPIToString(g_gpu_device->GetRenderAPI()), m_stats.num_primitives,
m_stats.host_num_draws, m_stats.host_num_render_passes, m_stats.num_reads, m_stats.num_copies,
m_stats.num_writes);
}
else
{
str.format("{} SW | {} P | {} R | {} C | {} W", GPUDevice::RenderAPIToString(g_gpu_device->GetRenderAPI()),
m_stats.num_primitives, m_stats.num_reads, m_stats.num_copies, m_stats.num_writes);
}
}
void GPU::GetMemoryStatsString(SmallStringBase& str)
{
const u32 vram_usage_mb = static_cast<u32>((g_gpu_device->GetVRAMUsage() + (1048576 - 1)) / 1048576);
const u32 stream_kb = static_cast<u32>((m_stats.host_buffer_streamed + (1024 - 1)) / 1024);
str.format("{} MB VRAM | {} KB STR | {} TC | {} TU", vram_usage_mb, stream_kb, m_stats.host_num_copies,
m_stats.host_num_uploads);
}
void GPU::ResetStatistics()
{
m_counters = {};
g_gpu_device->ResetStatistics();
}
void GPU::UpdateStatistics(u32 frame_count)
{
const GPUDevice::Statistics& stats = g_gpu_device->GetStatistics();
const u32 round = (frame_count - 1);
#define UPDATE_COUNTER(x) m_stats.x = (m_counters.x + round) / frame_count
#define UPDATE_GPU_STAT(x) m_stats.host_##x = (stats.x + round) / frame_count
UPDATE_COUNTER(num_reads);
UPDATE_COUNTER(num_writes);
UPDATE_COUNTER(num_copies);
UPDATE_COUNTER(num_vertices);
UPDATE_COUNTER(num_primitives);
// UPDATE_COUNTER(num_read_texture_updates);
// UPDATE_COUNTER(num_ubo_updates);
UPDATE_GPU_STAT(buffer_streamed);
UPDATE_GPU_STAT(num_draws);
UPDATE_GPU_STAT(num_render_passes);
UPDATE_GPU_STAT(num_copies);
UPDATE_GPU_STAT(num_downloads);
UPDATE_GPU_STAT(num_uploads);
#undef UPDATE_GPU_STAT
#undef UPDATE_COUNTER
ResetStatistics();
}