Duckstation/dep/glslang/glslang/MachineIndependent/linkValidate.cpp
Connor McLaughlin 5bbcde7835 dep: Add glslang
2020-06-19 00:16:59 +10:00

1780 lines
73 KiB
C++

//
// Copyright (C) 2013 LunarG, Inc.
// Copyright (C) 2017 ARM Limited.
// Copyright (C) 2015-2018 Google, Inc.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//
// Do link-time merging and validation of intermediate representations.
//
// Basic model is that during compilation, each compilation unit (shader) is
// compiled into one TIntermediate instance. Then, at link time, multiple
// units for the same stage can be merged together, which can generate errors.
// Then, after all merging, a single instance of TIntermediate represents
// the whole stage. A final error check can be done on the resulting stage,
// even if no merging was done (i.e., the stage was only one compilation unit).
//
#include "localintermediate.h"
#include "../Include/InfoSink.h"
namespace glslang {
//
// Link-time error emitter.
//
void TIntermediate::error(TInfoSink& infoSink, const char* message)
{
#ifndef GLSLANG_WEB
infoSink.info.prefix(EPrefixError);
infoSink.info << "Linking " << StageName(language) << " stage: " << message << "\n";
#endif
++numErrors;
}
// Link-time warning.
void TIntermediate::warn(TInfoSink& infoSink, const char* message)
{
#ifndef GLSLANG_WEB
infoSink.info.prefix(EPrefixWarning);
infoSink.info << "Linking " << StageName(language) << " stage: " << message << "\n";
#endif
}
// TODO: 4.4 offset/align: "Two blocks linked together in the same program with the same block
// name must have the exact same set of members qualified with offset and their integral-constant
// expression values must be the same, or a link-time error results."
//
// Merge the information from 'unit' into 'this'
//
void TIntermediate::merge(TInfoSink& infoSink, TIntermediate& unit)
{
#ifndef GLSLANG_WEB
mergeCallGraphs(infoSink, unit);
mergeModes(infoSink, unit);
mergeTrees(infoSink, unit);
#endif
}
void TIntermediate::mergeCallGraphs(TInfoSink& infoSink, TIntermediate& unit)
{
if (unit.getNumEntryPoints() > 0) {
if (getNumEntryPoints() > 0)
error(infoSink, "can't handle multiple entry points per stage");
else {
entryPointName = unit.getEntryPointName();
entryPointMangledName = unit.getEntryPointMangledName();
}
}
numEntryPoints += unit.getNumEntryPoints();
callGraph.insert(callGraph.end(), unit.callGraph.begin(), unit.callGraph.end());
}
#ifndef GLSLANG_WEB
#define MERGE_MAX(member) member = std::max(member, unit.member)
#define MERGE_TRUE(member) if (unit.member) member = unit.member;
void TIntermediate::mergeModes(TInfoSink& infoSink, TIntermediate& unit)
{
if (language != unit.language)
error(infoSink, "stages must match when linking into a single stage");
if (getSource() == EShSourceNone)
setSource(unit.getSource());
if (getSource() != unit.getSource())
error(infoSink, "can't link compilation units from different source languages");
if (treeRoot == nullptr) {
profile = unit.profile;
version = unit.version;
requestedExtensions = unit.requestedExtensions;
} else {
if ((isEsProfile()) != (unit.isEsProfile()))
error(infoSink, "Cannot cross link ES and desktop profiles");
else if (unit.profile == ECompatibilityProfile)
profile = ECompatibilityProfile;
version = std::max(version, unit.version);
requestedExtensions.insert(unit.requestedExtensions.begin(), unit.requestedExtensions.end());
}
MERGE_MAX(spvVersion.spv);
MERGE_MAX(spvVersion.vulkanGlsl);
MERGE_MAX(spvVersion.vulkan);
MERGE_MAX(spvVersion.openGl);
numErrors += unit.getNumErrors();
// Only one push_constant is allowed, mergeLinkerObjects() will ensure the push_constant
// is the same for all units.
if (numPushConstants > 1 || unit.numPushConstants > 1)
error(infoSink, "Only one push_constant block is allowed per stage");
numPushConstants = std::min(numPushConstants + unit.numPushConstants, 1);
if (unit.invocations != TQualifier::layoutNotSet) {
if (invocations == TQualifier::layoutNotSet)
invocations = unit.invocations;
else if (invocations != unit.invocations)
error(infoSink, "number of invocations must match between compilation units");
}
if (vertices == TQualifier::layoutNotSet)
vertices = unit.vertices;
else if (unit.vertices != TQualifier::layoutNotSet && vertices != unit.vertices) {
if (language == EShLangGeometry || language == EShLangMeshNV)
error(infoSink, "Contradictory layout max_vertices values");
else if (language == EShLangTessControl)
error(infoSink, "Contradictory layout vertices values");
else
assert(0);
}
if (primitives == TQualifier::layoutNotSet)
primitives = unit.primitives;
else if (primitives != unit.primitives) {
if (language == EShLangMeshNV)
error(infoSink, "Contradictory layout max_primitives values");
else
assert(0);
}
if (inputPrimitive == ElgNone)
inputPrimitive = unit.inputPrimitive;
else if (unit.inputPrimitive != ElgNone && inputPrimitive != unit.inputPrimitive)
error(infoSink, "Contradictory input layout primitives");
if (outputPrimitive == ElgNone)
outputPrimitive = unit.outputPrimitive;
else if (unit.outputPrimitive != ElgNone && outputPrimitive != unit.outputPrimitive)
error(infoSink, "Contradictory output layout primitives");
if (originUpperLeft != unit.originUpperLeft || pixelCenterInteger != unit.pixelCenterInteger)
error(infoSink, "gl_FragCoord redeclarations must match across shaders");
if (vertexSpacing == EvsNone)
vertexSpacing = unit.vertexSpacing;
else if (vertexSpacing != unit.vertexSpacing)
error(infoSink, "Contradictory input vertex spacing");
if (vertexOrder == EvoNone)
vertexOrder = unit.vertexOrder;
else if (vertexOrder != unit.vertexOrder)
error(infoSink, "Contradictory triangle ordering");
MERGE_TRUE(pointMode);
for (int i = 0; i < 3; ++i) {
if (!localSizeNotDefault[i] && unit.localSizeNotDefault[i]) {
localSize[i] = unit.localSize[i];
localSizeNotDefault[i] = true;
}
else if (localSize[i] != unit.localSize[i])
error(infoSink, "Contradictory local size");
if (localSizeSpecId[i] == TQualifier::layoutNotSet)
localSizeSpecId[i] = unit.localSizeSpecId[i];
else if (localSizeSpecId[i] != unit.localSizeSpecId[i])
error(infoSink, "Contradictory local size specialization ids");
}
MERGE_TRUE(earlyFragmentTests);
MERGE_TRUE(postDepthCoverage);
if (depthLayout == EldNone)
depthLayout = unit.depthLayout;
else if (depthLayout != unit.depthLayout)
error(infoSink, "Contradictory depth layouts");
MERGE_TRUE(depthReplacing);
MERGE_TRUE(hlslFunctionality1);
blendEquations |= unit.blendEquations;
MERGE_TRUE(xfbMode);
for (size_t b = 0; b < xfbBuffers.size(); ++b) {
if (xfbBuffers[b].stride == TQualifier::layoutXfbStrideEnd)
xfbBuffers[b].stride = unit.xfbBuffers[b].stride;
else if (xfbBuffers[b].stride != unit.xfbBuffers[b].stride)
error(infoSink, "Contradictory xfb_stride");
xfbBuffers[b].implicitStride = std::max(xfbBuffers[b].implicitStride, unit.xfbBuffers[b].implicitStride);
if (unit.xfbBuffers[b].contains64BitType)
xfbBuffers[b].contains64BitType = true;
if (unit.xfbBuffers[b].contains32BitType)
xfbBuffers[b].contains32BitType = true;
if (unit.xfbBuffers[b].contains16BitType)
xfbBuffers[b].contains16BitType = true;
// TODO: 4.4 link: enhanced layouts: compare ranges
}
MERGE_TRUE(multiStream);
MERGE_TRUE(layoutOverrideCoverage);
MERGE_TRUE(geoPassthroughEXT);
for (unsigned int i = 0; i < unit.shiftBinding.size(); ++i) {
if (unit.shiftBinding[i] > 0)
setShiftBinding((TResourceType)i, unit.shiftBinding[i]);
}
for (unsigned int i = 0; i < unit.shiftBindingForSet.size(); ++i) {
for (auto it = unit.shiftBindingForSet[i].begin(); it != unit.shiftBindingForSet[i].end(); ++it)
setShiftBindingForSet((TResourceType)i, it->second, it->first);
}
resourceSetBinding.insert(resourceSetBinding.end(), unit.resourceSetBinding.begin(), unit.resourceSetBinding.end());
MERGE_TRUE(autoMapBindings);
MERGE_TRUE(autoMapLocations);
MERGE_TRUE(invertY);
MERGE_TRUE(flattenUniformArrays);
MERGE_TRUE(useUnknownFormat);
MERGE_TRUE(hlslOffsets);
MERGE_TRUE(useStorageBuffer);
MERGE_TRUE(hlslIoMapping);
// TODO: sourceFile
// TODO: sourceText
// TODO: processes
MERGE_TRUE(needToLegalize);
MERGE_TRUE(binaryDoubleOutput);
MERGE_TRUE(usePhysicalStorageBuffer);
}
//
// Merge the 'unit' AST into 'this' AST.
// That includes rationalizing the unique IDs, which were set up independently,
// and might have overlaps that are not the same symbol, or might have different
// IDs for what should be the same shared symbol.
//
void TIntermediate::mergeTrees(TInfoSink& infoSink, TIntermediate& unit)
{
if (unit.treeRoot == nullptr)
return;
if (treeRoot == nullptr) {
treeRoot = unit.treeRoot;
return;
}
// Getting this far means we have two existing trees to merge...
numShaderRecordBlocks += unit.numShaderRecordBlocks;
numTaskNVBlocks += unit.numTaskNVBlocks;
// Get the top-level globals of each unit
TIntermSequence& globals = treeRoot->getAsAggregate()->getSequence();
TIntermSequence& unitGlobals = unit.treeRoot->getAsAggregate()->getSequence();
// Get the linker-object lists
TIntermSequence& linkerObjects = findLinkerObjects()->getSequence();
const TIntermSequence& unitLinkerObjects = unit.findLinkerObjects()->getSequence();
// Map by global name to unique ID to rationalize the same object having
// differing IDs in different trees.
TIdMaps idMaps;
int maxId;
seedIdMap(idMaps, maxId);
remapIds(idMaps, maxId + 1, unit);
mergeBodies(infoSink, globals, unitGlobals);
mergeLinkerObjects(infoSink, linkerObjects, unitLinkerObjects);
ioAccessed.insert(unit.ioAccessed.begin(), unit.ioAccessed.end());
}
#endif
static const TString& getNameForIdMap(TIntermSymbol* symbol)
{
TShaderInterface si = symbol->getType().getShaderInterface();
if (si == EsiNone)
return symbol->getName();
else
return symbol->getType().getTypeName();
}
// Traverser that seeds an ID map with all built-ins, and tracks the
// maximum ID used.
// (It would be nice to put this in a function, but that causes warnings
// on having no bodies for the copy-constructor/operator=.)
class TBuiltInIdTraverser : public TIntermTraverser {
public:
TBuiltInIdTraverser(TIdMaps& idMaps) : idMaps(idMaps), maxId(0) { }
// If it's a built in, add it to the map.
// Track the max ID.
virtual void visitSymbol(TIntermSymbol* symbol)
{
const TQualifier& qualifier = symbol->getType().getQualifier();
if (qualifier.builtIn != EbvNone) {
TShaderInterface si = symbol->getType().getShaderInterface();
idMaps[si][getNameForIdMap(symbol)] = symbol->getId();
}
maxId = std::max(maxId, symbol->getId());
}
int getMaxId() const { return maxId; }
protected:
TBuiltInIdTraverser(TBuiltInIdTraverser&);
TBuiltInIdTraverser& operator=(TBuiltInIdTraverser&);
TIdMaps& idMaps;
int maxId;
};
// Traverser that seeds an ID map with non-builtins.
// (It would be nice to put this in a function, but that causes warnings
// on having no bodies for the copy-constructor/operator=.)
class TUserIdTraverser : public TIntermTraverser {
public:
TUserIdTraverser(TIdMaps& idMaps) : idMaps(idMaps) { }
// If its a non-built-in global, add it to the map.
virtual void visitSymbol(TIntermSymbol* symbol)
{
const TQualifier& qualifier = symbol->getType().getQualifier();
if (qualifier.builtIn == EbvNone) {
TShaderInterface si = symbol->getType().getShaderInterface();
idMaps[si][getNameForIdMap(symbol)] = symbol->getId();
}
}
protected:
TUserIdTraverser(TUserIdTraverser&);
TUserIdTraverser& operator=(TUserIdTraverser&);
TIdMaps& idMaps; // over biggest id
};
// Initialize the the ID map with what we know of 'this' AST.
void TIntermediate::seedIdMap(TIdMaps& idMaps, int& maxId)
{
// all built-ins everywhere need to align on IDs and contribute to the max ID
TBuiltInIdTraverser builtInIdTraverser(idMaps);
treeRoot->traverse(&builtInIdTraverser);
maxId = builtInIdTraverser.getMaxId();
// user variables in the linker object list need to align on ids
TUserIdTraverser userIdTraverser(idMaps);
findLinkerObjects()->traverse(&userIdTraverser);
}
// Traverser to map an AST ID to what was known from the seeding AST.
// (It would be nice to put this in a function, but that causes warnings
// on having no bodies for the copy-constructor/operator=.)
class TRemapIdTraverser : public TIntermTraverser {
public:
TRemapIdTraverser(const TIdMaps& idMaps, int idShift) : idMaps(idMaps), idShift(idShift) { }
// Do the mapping:
// - if the same symbol, adopt the 'this' ID
// - otherwise, ensure a unique ID by shifting to a new space
virtual void visitSymbol(TIntermSymbol* symbol)
{
const TQualifier& qualifier = symbol->getType().getQualifier();
bool remapped = false;
if (qualifier.isLinkable() || qualifier.builtIn != EbvNone) {
TShaderInterface si = symbol->getType().getShaderInterface();
auto it = idMaps[si].find(getNameForIdMap(symbol));
if (it != idMaps[si].end()) {
symbol->changeId(it->second);
remapped = true;
}
}
if (!remapped)
symbol->changeId(symbol->getId() + idShift);
}
protected:
TRemapIdTraverser(TRemapIdTraverser&);
TRemapIdTraverser& operator=(TRemapIdTraverser&);
const TIdMaps& idMaps;
int idShift;
};
void TIntermediate::remapIds(const TIdMaps& idMaps, int idShift, TIntermediate& unit)
{
// Remap all IDs to either share or be unique, as dictated by the idMap and idShift.
TRemapIdTraverser idTraverser(idMaps, idShift);
unit.getTreeRoot()->traverse(&idTraverser);
}
//
// Merge the function bodies and global-level initializers from unitGlobals into globals.
// Will error check duplication of function bodies for the same signature.
//
void TIntermediate::mergeBodies(TInfoSink& infoSink, TIntermSequence& globals, const TIntermSequence& unitGlobals)
{
// TODO: link-time performance: Processing in alphabetical order will be faster
// Error check the global objects, not including the linker objects
for (unsigned int child = 0; child < globals.size() - 1; ++child) {
for (unsigned int unitChild = 0; unitChild < unitGlobals.size() - 1; ++unitChild) {
TIntermAggregate* body = globals[child]->getAsAggregate();
TIntermAggregate* unitBody = unitGlobals[unitChild]->getAsAggregate();
if (body && unitBody && body->getOp() == EOpFunction && unitBody->getOp() == EOpFunction && body->getName() == unitBody->getName()) {
error(infoSink, "Multiple function bodies in multiple compilation units for the same signature in the same stage:");
infoSink.info << " " << globals[child]->getAsAggregate()->getName() << "\n";
}
}
}
// Merge the global objects, just in front of the linker objects
globals.insert(globals.end() - 1, unitGlobals.begin(), unitGlobals.end() - 1);
}
//
// Merge the linker objects from unitLinkerObjects into linkerObjects.
// Duplication is expected and filtered out, but contradictions are an error.
//
void TIntermediate::mergeLinkerObjects(TInfoSink& infoSink, TIntermSequence& linkerObjects, const TIntermSequence& unitLinkerObjects)
{
// Error check and merge the linker objects (duplicates should not be created)
std::size_t initialNumLinkerObjects = linkerObjects.size();
for (unsigned int unitLinkObj = 0; unitLinkObj < unitLinkerObjects.size(); ++unitLinkObj) {
bool merge = true;
for (std::size_t linkObj = 0; linkObj < initialNumLinkerObjects; ++linkObj) {
TIntermSymbol* symbol = linkerObjects[linkObj]->getAsSymbolNode();
TIntermSymbol* unitSymbol = unitLinkerObjects[unitLinkObj]->getAsSymbolNode();
assert(symbol && unitSymbol);
bool isSameSymbol = false;
// If they are both blocks in the same shader interface,
// match by the block-name, not the identifier name.
if (symbol->getType().getBasicType() == EbtBlock && unitSymbol->getType().getBasicType() == EbtBlock) {
if (symbol->getType().getShaderInterface() == unitSymbol->getType().getShaderInterface()) {
isSameSymbol = symbol->getType().getTypeName() == unitSymbol->getType().getTypeName();
}
}
else if (symbol->getName() == unitSymbol->getName())
isSameSymbol = true;
if (isSameSymbol) {
// filter out copy
merge = false;
// but if one has an initializer and the other does not, update
// the initializer
if (symbol->getConstArray().empty() && ! unitSymbol->getConstArray().empty())
symbol->setConstArray(unitSymbol->getConstArray());
// Similarly for binding
if (! symbol->getQualifier().hasBinding() && unitSymbol->getQualifier().hasBinding())
symbol->getQualifier().layoutBinding = unitSymbol->getQualifier().layoutBinding;
// Update implicit array sizes
mergeImplicitArraySizes(symbol->getWritableType(), unitSymbol->getType());
// Check for consistent types/qualification/initializers etc.
mergeErrorCheck(infoSink, *symbol, *unitSymbol, false);
}
// If different symbols, verify they arn't push_constant since there can only be one per stage
else if (symbol->getQualifier().isPushConstant() && unitSymbol->getQualifier().isPushConstant())
error(infoSink, "Only one push_constant block is allowed per stage");
}
if (merge)
linkerObjects.push_back(unitLinkerObjects[unitLinkObj]);
}
}
// TODO 4.5 link functionality: cull distance array size checking
// Recursively merge the implicit array sizes through the objects' respective type trees.
void TIntermediate::mergeImplicitArraySizes(TType& type, const TType& unitType)
{
if (type.isUnsizedArray()) {
if (unitType.isUnsizedArray()) {
type.updateImplicitArraySize(unitType.getImplicitArraySize());
if (unitType.isArrayVariablyIndexed())
type.setArrayVariablyIndexed();
} else if (unitType.isSizedArray())
type.changeOuterArraySize(unitType.getOuterArraySize());
}
// Type mismatches are caught and reported after this, just be careful for now.
if (! type.isStruct() || ! unitType.isStruct() || type.getStruct()->size() != unitType.getStruct()->size())
return;
for (int i = 0; i < (int)type.getStruct()->size(); ++i)
mergeImplicitArraySizes(*(*type.getStruct())[i].type, *(*unitType.getStruct())[i].type);
}
//
// Compare two global objects from two compilation units and see if they match
// well enough. Rules can be different for intra- vs. cross-stage matching.
//
// This function only does one of intra- or cross-stage matching per call.
//
void TIntermediate::mergeErrorCheck(TInfoSink& infoSink, const TIntermSymbol& symbol, const TIntermSymbol& unitSymbol, bool crossStage)
{
#ifndef GLSLANG_WEB
bool writeTypeComparison = false;
// Types have to match
if (symbol.getType() != unitSymbol.getType()) {
// but, we make an exception if one is an implicit array and the other is sized
if (! (symbol.getType().isArray() && unitSymbol.getType().isArray() &&
symbol.getType().sameElementType(unitSymbol.getType()) &&
(symbol.getType().isUnsizedArray() || unitSymbol.getType().isUnsizedArray()))) {
error(infoSink, "Types must match:");
writeTypeComparison = true;
}
}
// Qualifiers have to (almost) match
// Storage...
if (symbol.getQualifier().storage != unitSymbol.getQualifier().storage) {
error(infoSink, "Storage qualifiers must match:");
writeTypeComparison = true;
}
// Uniform and buffer blocks must either both have an instance name, or
// must both be anonymous. The names don't need to match though.
if (symbol.getQualifier().isUniformOrBuffer() &&
(IsAnonymous(symbol.getName()) != IsAnonymous(unitSymbol.getName()))) {
error(infoSink, "Matched Uniform or Storage blocks must all be anonymous,"
" or all be named:");
writeTypeComparison = true;
}
if (symbol.getQualifier().storage == unitSymbol.getQualifier().storage &&
(IsAnonymous(symbol.getName()) != IsAnonymous(unitSymbol.getName()) ||
(!IsAnonymous(symbol.getName()) && symbol.getName() != unitSymbol.getName()))) {
warn(infoSink, "Matched shader interfaces are using different instance names.");
writeTypeComparison = true;
}
// Precision...
if (symbol.getQualifier().precision != unitSymbol.getQualifier().precision) {
error(infoSink, "Precision qualifiers must match:");
writeTypeComparison = true;
}
// Invariance...
if (! crossStage && symbol.getQualifier().invariant != unitSymbol.getQualifier().invariant) {
error(infoSink, "Presence of invariant qualifier must match:");
writeTypeComparison = true;
}
// Precise...
if (! crossStage && symbol.getQualifier().isNoContraction() != unitSymbol.getQualifier().isNoContraction()) {
error(infoSink, "Presence of precise qualifier must match:");
writeTypeComparison = true;
}
// Auxiliary and interpolation...
if (symbol.getQualifier().centroid != unitSymbol.getQualifier().centroid ||
symbol.getQualifier().smooth != unitSymbol.getQualifier().smooth ||
symbol.getQualifier().flat != unitSymbol.getQualifier().flat ||
symbol.getQualifier().isSample()!= unitSymbol.getQualifier().isSample() ||
symbol.getQualifier().isPatch() != unitSymbol.getQualifier().isPatch() ||
symbol.getQualifier().isNonPerspective() != unitSymbol.getQualifier().isNonPerspective()) {
error(infoSink, "Interpolation and auxiliary storage qualifiers must match:");
writeTypeComparison = true;
}
// Memory...
if (symbol.getQualifier().coherent != unitSymbol.getQualifier().coherent ||
symbol.getQualifier().devicecoherent != unitSymbol.getQualifier().devicecoherent ||
symbol.getQualifier().queuefamilycoherent != unitSymbol.getQualifier().queuefamilycoherent ||
symbol.getQualifier().workgroupcoherent != unitSymbol.getQualifier().workgroupcoherent ||
symbol.getQualifier().subgroupcoherent != unitSymbol.getQualifier().subgroupcoherent ||
symbol.getQualifier().shadercallcoherent!= unitSymbol.getQualifier().shadercallcoherent ||
symbol.getQualifier().nonprivate != unitSymbol.getQualifier().nonprivate ||
symbol.getQualifier().volatil != unitSymbol.getQualifier().volatil ||
symbol.getQualifier().restrict != unitSymbol.getQualifier().restrict ||
symbol.getQualifier().readonly != unitSymbol.getQualifier().readonly ||
symbol.getQualifier().writeonly != unitSymbol.getQualifier().writeonly) {
error(infoSink, "Memory qualifiers must match:");
writeTypeComparison = true;
}
// Layouts...
// TODO: 4.4 enhanced layouts: Generalize to include offset/align: current spec
// requires separate user-supplied offset from actual computed offset, but
// current implementation only has one offset.
if (symbol.getQualifier().layoutMatrix != unitSymbol.getQualifier().layoutMatrix ||
symbol.getQualifier().layoutPacking != unitSymbol.getQualifier().layoutPacking ||
symbol.getQualifier().layoutLocation != unitSymbol.getQualifier().layoutLocation ||
symbol.getQualifier().layoutComponent != unitSymbol.getQualifier().layoutComponent ||
symbol.getQualifier().layoutIndex != unitSymbol.getQualifier().layoutIndex ||
symbol.getQualifier().layoutBinding != unitSymbol.getQualifier().layoutBinding ||
(symbol.getQualifier().hasBinding() && (symbol.getQualifier().layoutOffset != unitSymbol.getQualifier().layoutOffset))) {
error(infoSink, "Layout qualification must match:");
writeTypeComparison = true;
}
// Initializers have to match, if both are present, and if we don't already know the types don't match
if (! writeTypeComparison) {
if (! symbol.getConstArray().empty() && ! unitSymbol.getConstArray().empty()) {
if (symbol.getConstArray() != unitSymbol.getConstArray()) {
error(infoSink, "Initializers must match:");
infoSink.info << " " << symbol.getName() << "\n";
}
}
}
if (writeTypeComparison) {
infoSink.info << " " << symbol.getName() << ": \"" << symbol.getType().getCompleteString() << "\" versus ";
if (symbol.getName() != unitSymbol.getName())
infoSink.info << unitSymbol.getName() << ": ";
infoSink.info << "\"" << unitSymbol.getType().getCompleteString() << "\"\n";
}
#endif
}
//
// Do final link-time error checking of a complete (merged) intermediate representation.
// (Much error checking was done during merging).
//
// Also, lock in defaults of things not set, including array sizes.
//
void TIntermediate::finalCheck(TInfoSink& infoSink, bool keepUncalled)
{
if (getTreeRoot() == nullptr)
return;
if (numEntryPoints < 1) {
if (getSource() == EShSourceGlsl)
error(infoSink, "Missing entry point: Each stage requires one entry point");
else
warn(infoSink, "Entry point not found");
}
// recursion and missing body checking
checkCallGraphCycles(infoSink);
checkCallGraphBodies(infoSink, keepUncalled);
// overlap/alias/missing I/O, etc.
inOutLocationCheck(infoSink);
#ifndef GLSLANG_WEB
if (getNumPushConstants() > 1)
error(infoSink, "Only one push_constant block is allowed per stage");
// invocations
if (invocations == TQualifier::layoutNotSet)
invocations = 1;
if (inIoAccessed("gl_ClipDistance") && inIoAccessed("gl_ClipVertex"))
error(infoSink, "Can only use one of gl_ClipDistance or gl_ClipVertex (gl_ClipDistance is preferred)");
if (inIoAccessed("gl_CullDistance") && inIoAccessed("gl_ClipVertex"))
error(infoSink, "Can only use one of gl_CullDistance or gl_ClipVertex (gl_ClipDistance is preferred)");
if (userOutputUsed() && (inIoAccessed("gl_FragColor") || inIoAccessed("gl_FragData")))
error(infoSink, "Cannot use gl_FragColor or gl_FragData when using user-defined outputs");
if (inIoAccessed("gl_FragColor") && inIoAccessed("gl_FragData"))
error(infoSink, "Cannot use both gl_FragColor and gl_FragData");
for (size_t b = 0; b < xfbBuffers.size(); ++b) {
if (xfbBuffers[b].contains64BitType)
RoundToPow2(xfbBuffers[b].implicitStride, 8);
else if (xfbBuffers[b].contains32BitType)
RoundToPow2(xfbBuffers[b].implicitStride, 4);
else if (xfbBuffers[b].contains16BitType)
RoundToPow2(xfbBuffers[b].implicitStride, 2);
// "It is a compile-time or link-time error to have
// any xfb_offset that overflows xfb_stride, whether stated on declarations before or after the xfb_stride, or
// in different compilation units. While xfb_stride can be declared multiple times for the same buffer, it is a
// compile-time or link-time error to have different values specified for the stride for the same buffer."
if (xfbBuffers[b].stride != TQualifier::layoutXfbStrideEnd && xfbBuffers[b].implicitStride > xfbBuffers[b].stride) {
error(infoSink, "xfb_stride is too small to hold all buffer entries:");
infoSink.info.prefix(EPrefixError);
infoSink.info << " xfb_buffer " << (unsigned int)b << ", xfb_stride " << xfbBuffers[b].stride << ", minimum stride needed: " << xfbBuffers[b].implicitStride << "\n";
}
if (xfbBuffers[b].stride == TQualifier::layoutXfbStrideEnd)
xfbBuffers[b].stride = xfbBuffers[b].implicitStride;
// "If the buffer is capturing any
// outputs with double-precision or 64-bit integer components, the stride must be a multiple of 8, otherwise it must be a
// multiple of 4, or a compile-time or link-time error results."
if (xfbBuffers[b].contains64BitType && ! IsMultipleOfPow2(xfbBuffers[b].stride, 8)) {
error(infoSink, "xfb_stride must be multiple of 8 for buffer holding a double or 64-bit integer:");
infoSink.info.prefix(EPrefixError);
infoSink.info << " xfb_buffer " << (unsigned int)b << ", xfb_stride " << xfbBuffers[b].stride << "\n";
} else if (xfbBuffers[b].contains32BitType && ! IsMultipleOfPow2(xfbBuffers[b].stride, 4)) {
error(infoSink, "xfb_stride must be multiple of 4:");
infoSink.info.prefix(EPrefixError);
infoSink.info << " xfb_buffer " << (unsigned int)b << ", xfb_stride " << xfbBuffers[b].stride << "\n";
}
// "If the buffer is capturing any
// outputs with half-precision or 16-bit integer components, the stride must be a multiple of 2"
else if (xfbBuffers[b].contains16BitType && ! IsMultipleOfPow2(xfbBuffers[b].stride, 2)) {
error(infoSink, "xfb_stride must be multiple of 2 for buffer holding a half float or 16-bit integer:");
infoSink.info.prefix(EPrefixError);
infoSink.info << " xfb_buffer " << (unsigned int)b << ", xfb_stride " << xfbBuffers[b].stride << "\n";
}
// "The resulting stride (implicit or explicit), when divided by 4, must be less than or equal to the
// implementation-dependent constant gl_MaxTransformFeedbackInterleavedComponents."
if (xfbBuffers[b].stride > (unsigned int)(4 * resources.maxTransformFeedbackInterleavedComponents)) {
error(infoSink, "xfb_stride is too large:");
infoSink.info.prefix(EPrefixError);
infoSink.info << " xfb_buffer " << (unsigned int)b << ", components (1/4 stride) needed are " << xfbBuffers[b].stride/4 << ", gl_MaxTransformFeedbackInterleavedComponents is " << resources.maxTransformFeedbackInterleavedComponents << "\n";
}
}
switch (language) {
case EShLangVertex:
break;
case EShLangTessControl:
if (vertices == TQualifier::layoutNotSet)
error(infoSink, "At least one shader must specify an output layout(vertices=...)");
break;
case EShLangTessEvaluation:
if (getSource() == EShSourceGlsl) {
if (inputPrimitive == ElgNone)
error(infoSink, "At least one shader must specify an input layout primitive");
if (vertexSpacing == EvsNone)
vertexSpacing = EvsEqual;
if (vertexOrder == EvoNone)
vertexOrder = EvoCcw;
}
break;
case EShLangGeometry:
if (inputPrimitive == ElgNone)
error(infoSink, "At least one shader must specify an input layout primitive");
if (outputPrimitive == ElgNone)
error(infoSink, "At least one shader must specify an output layout primitive");
if (vertices == TQualifier::layoutNotSet)
error(infoSink, "At least one shader must specify a layout(max_vertices = value)");
break;
case EShLangFragment:
// for GL_ARB_post_depth_coverage, EarlyFragmentTest is set automatically in
// ParseHelper.cpp. So if we reach here, this must be GL_EXT_post_depth_coverage
// requiring explicit early_fragment_tests
if (getPostDepthCoverage() && !getEarlyFragmentTests())
error(infoSink, "post_depth_coverage requires early_fragment_tests");
break;
case EShLangCompute:
break;
case EShLangRayGen:
case EShLangIntersect:
case EShLangAnyHit:
case EShLangClosestHit:
case EShLangMiss:
case EShLangCallable:
if (numShaderRecordBlocks > 1)
error(infoSink, "Only one shaderRecordNV buffer block is allowed per stage");
break;
case EShLangMeshNV:
// NV_mesh_shader doesn't allow use of both single-view and per-view builtins.
if (inIoAccessed("gl_Position") && inIoAccessed("gl_PositionPerViewNV"))
error(infoSink, "Can only use one of gl_Position or gl_PositionPerViewNV");
if (inIoAccessed("gl_ClipDistance") && inIoAccessed("gl_ClipDistancePerViewNV"))
error(infoSink, "Can only use one of gl_ClipDistance or gl_ClipDistancePerViewNV");
if (inIoAccessed("gl_CullDistance") && inIoAccessed("gl_CullDistancePerViewNV"))
error(infoSink, "Can only use one of gl_CullDistance or gl_CullDistancePerViewNV");
if (inIoAccessed("gl_Layer") && inIoAccessed("gl_LayerPerViewNV"))
error(infoSink, "Can only use one of gl_Layer or gl_LayerPerViewNV");
if (inIoAccessed("gl_ViewportMask") && inIoAccessed("gl_ViewportMaskPerViewNV"))
error(infoSink, "Can only use one of gl_ViewportMask or gl_ViewportMaskPerViewNV");
if (outputPrimitive == ElgNone)
error(infoSink, "At least one shader must specify an output layout primitive");
if (vertices == TQualifier::layoutNotSet)
error(infoSink, "At least one shader must specify a layout(max_vertices = value)");
if (primitives == TQualifier::layoutNotSet)
error(infoSink, "At least one shader must specify a layout(max_primitives = value)");
// fall through
case EShLangTaskNV:
if (numTaskNVBlocks > 1)
error(infoSink, "Only one taskNV interface block is allowed per shader");
break;
default:
error(infoSink, "Unknown Stage.");
break;
}
// Process the tree for any node-specific work.
class TFinalLinkTraverser : public TIntermTraverser {
public:
TFinalLinkTraverser() { }
virtual ~TFinalLinkTraverser() { }
virtual void visitSymbol(TIntermSymbol* symbol)
{
// Implicitly size arrays.
// If an unsized array is left as unsized, it effectively
// becomes run-time sized.
symbol->getWritableType().adoptImplicitArraySizes(false);
}
} finalLinkTraverser;
treeRoot->traverse(&finalLinkTraverser);
#endif
}
//
// See if the call graph contains any static recursion, which is disallowed
// by the specification.
//
void TIntermediate::checkCallGraphCycles(TInfoSink& infoSink)
{
// Clear fields we'll use for this.
for (TGraph::iterator call = callGraph.begin(); call != callGraph.end(); ++call) {
call->visited = false;
call->currentPath = false;
call->errorGiven = false;
}
//
// Loop, looking for a new connected subgraph. One subgraph is handled per loop iteration.
//
TCall* newRoot;
do {
// See if we have unvisited parts of the graph.
newRoot = 0;
for (TGraph::iterator call = callGraph.begin(); call != callGraph.end(); ++call) {
if (! call->visited) {
newRoot = &(*call);
break;
}
}
// If not, we are done.
if (! newRoot)
break;
// Otherwise, we found a new subgraph, process it:
// See what all can be reached by this new root, and if any of
// that is recursive. This is done by depth-first traversals, seeing
// if a new call is found that was already in the currentPath (a back edge),
// thereby detecting recursion.
std::list<TCall*> stack;
newRoot->currentPath = true; // currentPath will be true iff it is on the stack
stack.push_back(newRoot);
while (! stack.empty()) {
// get a caller
TCall* call = stack.back();
// Add to the stack just one callee.
// This algorithm always terminates, because only !visited and !currentPath causes a push
// and all pushes change currentPath to true, and all pops change visited to true.
TGraph::iterator child = callGraph.begin();
for (; child != callGraph.end(); ++child) {
// If we already visited this node, its whole subgraph has already been processed, so skip it.
if (child->visited)
continue;
if (call->callee == child->caller) {
if (child->currentPath) {
// Then, we found a back edge
if (! child->errorGiven) {
error(infoSink, "Recursion detected:");
infoSink.info << " " << call->callee << " calling " << child->callee << "\n";
child->errorGiven = true;
recursive = true;
}
} else {
child->currentPath = true;
stack.push_back(&(*child));
break;
}
}
}
if (child == callGraph.end()) {
// no more callees, we bottomed out, never look at this node again
stack.back()->currentPath = false;
stack.back()->visited = true;
stack.pop_back();
}
} // end while, meaning nothing left to process in this subtree
} while (newRoot); // redundant loop check; should always exit via the 'break' above
}
//
// See which functions are reachable from the entry point and which have bodies.
// Reachable ones with missing bodies are errors.
// Unreachable bodies are dead code.
//
void TIntermediate::checkCallGraphBodies(TInfoSink& infoSink, bool keepUncalled)
{
// Clear fields we'll use for this.
for (TGraph::iterator call = callGraph.begin(); call != callGraph.end(); ++call) {
call->visited = false;
call->calleeBodyPosition = -1;
}
// The top level of the AST includes function definitions (bodies).
// Compare these to function calls in the call graph.
// We'll end up knowing which have bodies, and if so,
// how to map the call-graph node to the location in the AST.
TIntermSequence &functionSequence = getTreeRoot()->getAsAggregate()->getSequence();
std::vector<bool> reachable(functionSequence.size(), true); // so that non-functions are reachable
for (int f = 0; f < (int)functionSequence.size(); ++f) {
glslang::TIntermAggregate* node = functionSequence[f]->getAsAggregate();
if (node && (node->getOp() == glslang::EOpFunction)) {
if (node->getName().compare(getEntryPointMangledName().c_str()) != 0)
reachable[f] = false; // so that function bodies are unreachable, until proven otherwise
for (TGraph::iterator call = callGraph.begin(); call != callGraph.end(); ++call) {
if (call->callee == node->getName())
call->calleeBodyPosition = f;
}
}
}
// Start call-graph traversal by visiting the entry point nodes.
for (TGraph::iterator call = callGraph.begin(); call != callGraph.end(); ++call) {
if (call->caller.compare(getEntryPointMangledName().c_str()) == 0)
call->visited = true;
}
// Propagate 'visited' through the call-graph to every part of the graph it
// can reach (seeded with the entry-point setting above).
bool changed;
do {
changed = false;
for (auto call1 = callGraph.begin(); call1 != callGraph.end(); ++call1) {
if (call1->visited) {
for (TGraph::iterator call2 = callGraph.begin(); call2 != callGraph.end(); ++call2) {
if (! call2->visited) {
if (call1->callee == call2->caller) {
changed = true;
call2->visited = true;
}
}
}
}
}
} while (changed);
// Any call-graph node set to visited but without a callee body is an error.
for (TGraph::iterator call = callGraph.begin(); call != callGraph.end(); ++call) {
if (call->visited) {
if (call->calleeBodyPosition == -1) {
error(infoSink, "No function definition (body) found: ");
infoSink.info << " " << call->callee << "\n";
} else
reachable[call->calleeBodyPosition] = true;
}
}
// Bodies in the AST not reached by the call graph are dead;
// clear them out, since they can't be reached and also can't
// be translated further due to possibility of being ill defined.
if (! keepUncalled) {
for (int f = 0; f < (int)functionSequence.size(); ++f) {
if (! reachable[f])
functionSequence[f] = nullptr;
}
functionSequence.erase(std::remove(functionSequence.begin(), functionSequence.end(), nullptr), functionSequence.end());
}
}
//
// Satisfy rules for location qualifiers on inputs and outputs
//
void TIntermediate::inOutLocationCheck(TInfoSink& infoSink)
{
// ES 3.0 requires all outputs to have location qualifiers if there is more than one output
bool fragOutWithNoLocation = false;
int numFragOut = 0;
// TODO: linker functionality: location collision checking
TIntermSequence& linkObjects = findLinkerObjects()->getSequence();
for (size_t i = 0; i < linkObjects.size(); ++i) {
const TType& type = linkObjects[i]->getAsTyped()->getType();
const TQualifier& qualifier = type.getQualifier();
if (language == EShLangFragment) {
if (qualifier.storage == EvqVaryingOut && qualifier.builtIn == EbvNone) {
++numFragOut;
if (!qualifier.hasAnyLocation())
fragOutWithNoLocation = true;
}
}
}
if (isEsProfile()) {
if (numFragOut > 1 && fragOutWithNoLocation)
error(infoSink, "when more than one fragment shader output, all must have location qualifiers");
}
}
TIntermAggregate* TIntermediate::findLinkerObjects() const
{
// Get the top-level globals
TIntermSequence& globals = treeRoot->getAsAggregate()->getSequence();
// Get the last member of the sequences, expected to be the linker-object lists
assert(globals.back()->getAsAggregate()->getOp() == EOpLinkerObjects);
return globals.back()->getAsAggregate();
}
// See if a variable was both a user-declared output and used.
// Note: the spec discusses writing to one, but this looks at read or write, which
// is more useful, and perhaps the spec should be changed to reflect that.
bool TIntermediate::userOutputUsed() const
{
const TIntermSequence& linkerObjects = findLinkerObjects()->getSequence();
bool found = false;
for (size_t i = 0; i < linkerObjects.size(); ++i) {
const TIntermSymbol& symbolNode = *linkerObjects[i]->getAsSymbolNode();
if (symbolNode.getQualifier().storage == EvqVaryingOut &&
symbolNode.getName().compare(0, 3, "gl_") != 0 &&
inIoAccessed(symbolNode.getName())) {
found = true;
break;
}
}
return found;
}
// Accumulate locations used for inputs, outputs, and uniforms, and check for collisions
// as the accumulation is done.
//
// Returns < 0 if no collision, >= 0 if collision and the value returned is a colliding value.
//
// typeCollision is set to true if there is no direct collision, but the types in the same location
// are different.
//
int TIntermediate::addUsedLocation(const TQualifier& qualifier, const TType& type, bool& typeCollision)
{
typeCollision = false;
int set;
if (qualifier.isPipeInput())
set = 0;
else if (qualifier.isPipeOutput())
set = 1;
else if (qualifier.storage == EvqUniform)
set = 2;
else if (qualifier.storage == EvqBuffer)
set = 3;
else
return -1;
int size;
if (qualifier.isUniformOrBuffer() || qualifier.isTaskMemory()) {
if (type.isSizedArray())
size = type.getCumulativeArraySize();
else
size = 1;
} else {
// Strip off the outer array dimension for those having an extra one.
if (type.isArray() && qualifier.isArrayedIo(language)) {
TType elementType(type, 0);
size = computeTypeLocationSize(elementType, language);
} else
size = computeTypeLocationSize(type, language);
}
// Locations, and components within locations.
//
// Almost always, dealing with components means a single location is involved.
// The exception is a dvec3. From the spec:
//
// "A dvec3 will consume all four components of the first location and components 0 and 1 of
// the second location. This leaves components 2 and 3 available for other component-qualified
// declarations."
//
// That means, without ever mentioning a component, a component range
// for a different location gets specified, if it's not a vertex shader input. (!)
// (A vertex shader input will show using only one location, even for a dvec3/4.)
//
// So, for the case of dvec3, we need two independent ioRanges.
int collision = -1; // no collision
#ifndef GLSLANG_WEB
if (size == 2 && type.getBasicType() == EbtDouble && type.getVectorSize() == 3 &&
(qualifier.isPipeInput() || qualifier.isPipeOutput())) {
// Dealing with dvec3 in/out split across two locations.
// Need two io-ranges.
// The case where the dvec3 doesn't start at component 0 was previously caught as overflow.
// First range:
TRange locationRange(qualifier.layoutLocation, qualifier.layoutLocation);
TRange componentRange(0, 3);
TIoRange range(locationRange, componentRange, type.getBasicType(), 0);
// check for collisions
collision = checkLocationRange(set, range, type, typeCollision);
if (collision < 0) {
usedIo[set].push_back(range);
// Second range:
TRange locationRange2(qualifier.layoutLocation + 1, qualifier.layoutLocation + 1);
TRange componentRange2(0, 1);
TIoRange range2(locationRange2, componentRange2, type.getBasicType(), 0);
// check for collisions
collision = checkLocationRange(set, range2, type, typeCollision);
if (collision < 0)
usedIo[set].push_back(range2);
}
} else
#endif
{
// Not a dvec3 in/out split across two locations, generic path.
// Need a single IO-range block.
TRange locationRange(qualifier.layoutLocation, qualifier.layoutLocation + size - 1);
TRange componentRange(0, 3);
if (qualifier.hasComponent() || type.getVectorSize() > 0) {
int consumedComponents = type.getVectorSize() * (type.getBasicType() == EbtDouble ? 2 : 1);
if (qualifier.hasComponent())
componentRange.start = qualifier.layoutComponent;
componentRange.last = componentRange.start + consumedComponents - 1;
}
// combine location and component ranges
TIoRange range(locationRange, componentRange, type.getBasicType(), qualifier.hasIndex() ? qualifier.getIndex() : 0);
// check for collisions, except for vertex inputs on desktop targeting OpenGL
if (! (!isEsProfile() && language == EShLangVertex && qualifier.isPipeInput()) || spvVersion.vulkan > 0)
collision = checkLocationRange(set, range, type, typeCollision);
if (collision < 0)
usedIo[set].push_back(range);
}
return collision;
}
// Compare a new (the passed in) 'range' against the existing set, and see
// if there are any collisions.
//
// Returns < 0 if no collision, >= 0 if collision and the value returned is a colliding value.
//
int TIntermediate::checkLocationRange(int set, const TIoRange& range, const TType& type, bool& typeCollision)
{
for (size_t r = 0; r < usedIo[set].size(); ++r) {
if (range.overlap(usedIo[set][r])) {
// there is a collision; pick one
return std::max(range.location.start, usedIo[set][r].location.start);
} else if (range.location.overlap(usedIo[set][r].location) && type.getBasicType() != usedIo[set][r].basicType) {
// aliased-type mismatch
typeCollision = true;
return std::max(range.location.start, usedIo[set][r].location.start);
}
}
return -1; // no collision
}
// Accumulate bindings and offsets, and check for collisions
// as the accumulation is done.
//
// Returns < 0 if no collision, >= 0 if collision and the value returned is a colliding value.
//
int TIntermediate::addUsedOffsets(int binding, int offset, int numOffsets)
{
TRange bindingRange(binding, binding);
TRange offsetRange(offset, offset + numOffsets - 1);
TOffsetRange range(bindingRange, offsetRange);
// check for collisions, except for vertex inputs on desktop
for (size_t r = 0; r < usedAtomics.size(); ++r) {
if (range.overlap(usedAtomics[r])) {
// there is a collision; pick one
return std::max(offset, usedAtomics[r].offset.start);
}
}
usedAtomics.push_back(range);
return -1; // no collision
}
// Accumulate used constant_id values.
//
// Return false is one was already used.
bool TIntermediate::addUsedConstantId(int id)
{
if (usedConstantId.find(id) != usedConstantId.end())
return false;
usedConstantId.insert(id);
return true;
}
// Recursively figure out how many locations are used up by an input or output type.
// Return the size of type, as measured by "locations".
int TIntermediate::computeTypeLocationSize(const TType& type, EShLanguage stage)
{
// "If the declared input is an array of size n and each element takes m locations, it will be assigned m * n
// consecutive locations..."
if (type.isArray()) {
// TODO: perf: this can be flattened by using getCumulativeArraySize(), and a deref that discards all arrayness
// TODO: are there valid cases of having an unsized array with a location? If so, running this code too early.
TType elementType(type, 0);
if (type.isSizedArray() && !type.getQualifier().isPerView())
return type.getOuterArraySize() * computeTypeLocationSize(elementType, stage);
else {
#ifndef GLSLANG_WEB
// unset perViewNV attributes for arrayed per-view outputs: "perviewNV vec4 v[MAX_VIEWS][3];"
elementType.getQualifier().perViewNV = false;
#endif
return computeTypeLocationSize(elementType, stage);
}
}
// "The locations consumed by block and structure members are determined by applying the rules above
// recursively..."
if (type.isStruct()) {
int size = 0;
for (int member = 0; member < (int)type.getStruct()->size(); ++member) {
TType memberType(type, member);
size += computeTypeLocationSize(memberType, stage);
}
return size;
}
// ES: "If a shader input is any scalar or vector type, it will consume a single location."
// Desktop: "If a vertex shader input is any scalar or vector type, it will consume a single location. If a non-vertex
// shader input is a scalar or vector type other than dvec3 or dvec4, it will consume a single location, while
// types dvec3 or dvec4 will consume two consecutive locations. Inputs of type double and dvec2 will
// consume only a single location, in all stages."
if (type.isScalar())
return 1;
if (type.isVector()) {
if (stage == EShLangVertex && type.getQualifier().isPipeInput())
return 1;
if (type.getBasicType() == EbtDouble && type.getVectorSize() > 2)
return 2;
else
return 1;
}
// "If the declared input is an n x m single- or double-precision matrix, ...
// The number of locations assigned for each matrix will be the same as
// for an n-element array of m-component vectors..."
if (type.isMatrix()) {
TType columnType(type, 0);
return type.getMatrixCols() * computeTypeLocationSize(columnType, stage);
}
assert(0);
return 1;
}
// Same as computeTypeLocationSize but for uniforms
int TIntermediate::computeTypeUniformLocationSize(const TType& type)
{
// "Individual elements of a uniform array are assigned
// consecutive locations with the first element taking location
// location."
if (type.isArray()) {
// TODO: perf: this can be flattened by using getCumulativeArraySize(), and a deref that discards all arrayness
TType elementType(type, 0);
if (type.isSizedArray()) {
return type.getOuterArraySize() * computeTypeUniformLocationSize(elementType);
} else {
// TODO: are there valid cases of having an implicitly-sized array with a location? If so, running this code too early.
return computeTypeUniformLocationSize(elementType);
}
}
// "Each subsequent inner-most member or element gets incremental
// locations for the entire structure or array."
if (type.isStruct()) {
int size = 0;
for (int member = 0; member < (int)type.getStruct()->size(); ++member) {
TType memberType(type, member);
size += computeTypeUniformLocationSize(memberType);
}
return size;
}
return 1;
}
#ifndef GLSLANG_WEB
// Accumulate xfb buffer ranges and check for collisions as the accumulation is done.
//
// Returns < 0 if no collision, >= 0 if collision and the value returned is a colliding value.
//
int TIntermediate::addXfbBufferOffset(const TType& type)
{
const TQualifier& qualifier = type.getQualifier();
assert(qualifier.hasXfbOffset() && qualifier.hasXfbBuffer());
TXfbBuffer& buffer = xfbBuffers[qualifier.layoutXfbBuffer];
// compute the range
unsigned int size = computeTypeXfbSize(type, buffer.contains64BitType, buffer.contains32BitType, buffer.contains16BitType);
buffer.implicitStride = std::max(buffer.implicitStride, qualifier.layoutXfbOffset + size);
TRange range(qualifier.layoutXfbOffset, qualifier.layoutXfbOffset + size - 1);
// check for collisions
for (size_t r = 0; r < buffer.ranges.size(); ++r) {
if (range.overlap(buffer.ranges[r])) {
// there is a collision; pick an example to return
return std::max(range.start, buffer.ranges[r].start);
}
}
buffer.ranges.push_back(range);
return -1; // no collision
}
// Recursively figure out how many bytes of xfb buffer are used by the given type.
// Return the size of type, in bytes.
// Sets contains64BitType to true if the type contains a 64-bit data type.
// Sets contains32BitType to true if the type contains a 32-bit data type.
// Sets contains16BitType to true if the type contains a 16-bit data type.
// N.B. Caller must set contains64BitType, contains32BitType, and contains16BitType to false before calling.
unsigned int TIntermediate::computeTypeXfbSize(const TType& type, bool& contains64BitType, bool& contains32BitType, bool& contains16BitType) const
{
// "...if applied to an aggregate containing a double or 64-bit integer, the offset must also be a multiple of 8,
// and the space taken in the buffer will be a multiple of 8.
// ...within the qualified entity, subsequent components are each
// assigned, in order, to the next available offset aligned to a multiple of
// that component's size. Aggregate types are flattened down to the component
// level to get this sequence of components."
if (type.isArray()) {
// TODO: perf: this can be flattened by using getCumulativeArraySize(), and a deref that discards all arrayness
assert(type.isSizedArray());
TType elementType(type, 0);
return type.getOuterArraySize() * computeTypeXfbSize(elementType, contains64BitType, contains16BitType, contains16BitType);
}
if (type.isStruct()) {
unsigned int size = 0;
bool structContains64BitType = false;
bool structContains32BitType = false;
bool structContains16BitType = false;
for (int member = 0; member < (int)type.getStruct()->size(); ++member) {
TType memberType(type, member);
// "... if applied to
// an aggregate containing a double or 64-bit integer, the offset must also be a multiple of 8,
// and the space taken in the buffer will be a multiple of 8."
bool memberContains64BitType = false;
bool memberContains32BitType = false;
bool memberContains16BitType = false;
int memberSize = computeTypeXfbSize(memberType, memberContains64BitType, memberContains32BitType, memberContains16BitType);
if (memberContains64BitType) {
structContains64BitType = true;
RoundToPow2(size, 8);
} else if (memberContains32BitType) {
structContains32BitType = true;
RoundToPow2(size, 4);
} else if (memberContains16BitType) {
structContains16BitType = true;
RoundToPow2(size, 2);
}
size += memberSize;
}
if (structContains64BitType) {
contains64BitType = true;
RoundToPow2(size, 8);
} else if (structContains32BitType) {
contains32BitType = true;
RoundToPow2(size, 4);
} else if (structContains16BitType) {
contains16BitType = true;
RoundToPow2(size, 2);
}
return size;
}
int numComponents;
if (type.isScalar())
numComponents = 1;
else if (type.isVector())
numComponents = type.getVectorSize();
else if (type.isMatrix())
numComponents = type.getMatrixCols() * type.getMatrixRows();
else {
assert(0);
numComponents = 1;
}
if (type.getBasicType() == EbtDouble || type.getBasicType() == EbtInt64 || type.getBasicType() == EbtUint64) {
contains64BitType = true;
return 8 * numComponents;
} else if (type.getBasicType() == EbtFloat16 || type.getBasicType() == EbtInt16 || type.getBasicType() == EbtUint16) {
contains16BitType = true;
return 2 * numComponents;
} else if (type.getBasicType() == EbtInt8 || type.getBasicType() == EbtUint8)
return numComponents;
else {
contains32BitType = true;
return 4 * numComponents;
}
}
#endif
const int baseAlignmentVec4Std140 = 16;
// Return the size and alignment of a component of the given type.
// The size is returned in the 'size' parameter
// Return value is the alignment..
int TIntermediate::getBaseAlignmentScalar(const TType& type, int& size)
{
#ifdef GLSLANG_WEB
size = 4; return 4;
#endif
switch (type.getBasicType()) {
case EbtInt64:
case EbtUint64:
case EbtDouble: size = 8; return 8;
case EbtFloat16: size = 2; return 2;
case EbtInt8:
case EbtUint8: size = 1; return 1;
case EbtInt16:
case EbtUint16: size = 2; return 2;
case EbtReference: size = 8; return 8;
default: size = 4; return 4;
}
}
// Implement base-alignment and size rules from section 7.6.2.2 Standard Uniform Block Layout
// Operates recursively.
//
// If std140 is true, it does the rounding up to vec4 size required by std140,
// otherwise it does not, yielding std430 rules.
//
// The size is returned in the 'size' parameter
//
// The stride is only non-0 for arrays or matrices, and is the stride of the
// top-level object nested within the type. E.g., for an array of matrices,
// it is the distances needed between matrices, despite the rules saying the
// stride comes from the flattening down to vectors.
//
// Return value is the alignment of the type.
int TIntermediate::getBaseAlignment(const TType& type, int& size, int& stride, TLayoutPacking layoutPacking, bool rowMajor)
{
int alignment;
bool std140 = layoutPacking == glslang::ElpStd140;
// When using the std140 storage layout, structures will be laid out in buffer
// storage with its members stored in monotonically increasing order based on their
// location in the declaration. A structure and each structure member have a base
// offset and a base alignment, from which an aligned offset is computed by rounding
// the base offset up to a multiple of the base alignment. The base offset of the first
// member of a structure is taken from the aligned offset of the structure itself. The
// base offset of all other structure members is derived by taking the offset of the
// last basic machine unit consumed by the previous member and adding one. Each
// structure member is stored in memory at its aligned offset. The members of a top-
// level uniform block are laid out in buffer storage by treating the uniform block as
// a structure with a base offset of zero.
//
// 1. If the member is a scalar consuming N basic machine units, the base alignment is N.
//
// 2. If the member is a two- or four-component vector with components consuming N basic
// machine units, the base alignment is 2N or 4N, respectively.
//
// 3. If the member is a three-component vector with components consuming N
// basic machine units, the base alignment is 4N.
//
// 4. If the member is an array of scalars or vectors, the base alignment and array
// stride are set to match the base alignment of a single array element, according
// to rules (1), (2), and (3), and rounded up to the base alignment of a vec4. The
// array may have padding at the end; the base offset of the member following
// the array is rounded up to the next multiple of the base alignment.
//
// 5. If the member is a column-major matrix with C columns and R rows, the
// matrix is stored identically to an array of C column vectors with R
// components each, according to rule (4).
//
// 6. If the member is an array of S column-major matrices with C columns and
// R rows, the matrix is stored identically to a row of S X C column vectors
// with R components each, according to rule (4).
//
// 7. If the member is a row-major matrix with C columns and R rows, the matrix
// is stored identically to an array of R row vectors with C components each,
// according to rule (4).
//
// 8. If the member is an array of S row-major matrices with C columns and R
// rows, the matrix is stored identically to a row of S X R row vectors with C
// components each, according to rule (4).
//
// 9. If the member is a structure, the base alignment of the structure is N , where
// N is the largest base alignment value of any of its members, and rounded
// up to the base alignment of a vec4. The individual members of this substructure
// are then assigned offsets by applying this set of rules recursively,
// where the base offset of the first member of the sub-structure is equal to the
// aligned offset of the structure. The structure may have padding at the end;
// the base offset of the member following the sub-structure is rounded up to
// the next multiple of the base alignment of the structure.
//
// 10. If the member is an array of S structures, the S elements of the array are laid
// out in order, according to rule (9).
//
// Assuming, for rule 10: The stride is the same as the size of an element.
stride = 0;
int dummyStride;
// rules 4, 6, 8, and 10
if (type.isArray()) {
// TODO: perf: this might be flattened by using getCumulativeArraySize(), and a deref that discards all arrayness
TType derefType(type, 0);
alignment = getBaseAlignment(derefType, size, dummyStride, layoutPacking, rowMajor);
if (std140)
alignment = std::max(baseAlignmentVec4Std140, alignment);
RoundToPow2(size, alignment);
stride = size; // uses full matrix size for stride of an array of matrices (not quite what rule 6/8, but what's expected)
// uses the assumption for rule 10 in the comment above
size = stride * type.getOuterArraySize();
return alignment;
}
// rule 9
if (type.getBasicType() == EbtStruct) {
const TTypeList& memberList = *type.getStruct();
size = 0;
int maxAlignment = std140 ? baseAlignmentVec4Std140 : 0;
for (size_t m = 0; m < memberList.size(); ++m) {
int memberSize;
// modify just the children's view of matrix layout, if there is one for this member
TLayoutMatrix subMatrixLayout = memberList[m].type->getQualifier().layoutMatrix;
int memberAlignment = getBaseAlignment(*memberList[m].type, memberSize, dummyStride, layoutPacking,
(subMatrixLayout != ElmNone) ? (subMatrixLayout == ElmRowMajor) : rowMajor);
maxAlignment = std::max(maxAlignment, memberAlignment);
RoundToPow2(size, memberAlignment);
size += memberSize;
}
// The structure may have padding at the end; the base offset of
// the member following the sub-structure is rounded up to the next
// multiple of the base alignment of the structure.
RoundToPow2(size, maxAlignment);
return maxAlignment;
}
// rule 1
if (type.isScalar())
return getBaseAlignmentScalar(type, size);
// rules 2 and 3
if (type.isVector()) {
int scalarAlign = getBaseAlignmentScalar(type, size);
switch (type.getVectorSize()) {
case 1: // HLSL has this, GLSL does not
return scalarAlign;
case 2:
size *= 2;
return 2 * scalarAlign;
default:
size *= type.getVectorSize();
return 4 * scalarAlign;
}
}
// rules 5 and 7
if (type.isMatrix()) {
// rule 5: deref to row, not to column, meaning the size of vector is num columns instead of num rows
TType derefType(type, 0, rowMajor);
alignment = getBaseAlignment(derefType, size, dummyStride, layoutPacking, rowMajor);
if (std140)
alignment = std::max(baseAlignmentVec4Std140, alignment);
RoundToPow2(size, alignment);
stride = size; // use intra-matrix stride for stride of a just a matrix
if (rowMajor)
size = stride * type.getMatrixRows();
else
size = stride * type.getMatrixCols();
return alignment;
}
assert(0); // all cases should be covered above
size = baseAlignmentVec4Std140;
return baseAlignmentVec4Std140;
}
// To aid the basic HLSL rule about crossing vec4 boundaries.
bool TIntermediate::improperStraddle(const TType& type, int size, int offset)
{
if (! type.isVector() || type.isArray())
return false;
return size <= 16 ? offset / 16 != (offset + size - 1) / 16
: offset % 16 != 0;
}
int TIntermediate::getScalarAlignment(const TType& type, int& size, int& stride, bool rowMajor)
{
int alignment;
stride = 0;
int dummyStride;
if (type.isArray()) {
TType derefType(type, 0);
alignment = getScalarAlignment(derefType, size, dummyStride, rowMajor);
stride = size;
RoundToPow2(stride, alignment);
size = stride * (type.getOuterArraySize() - 1) + size;
return alignment;
}
if (type.getBasicType() == EbtStruct) {
const TTypeList& memberList = *type.getStruct();
size = 0;
int maxAlignment = 0;
for (size_t m = 0; m < memberList.size(); ++m) {
int memberSize;
// modify just the children's view of matrix layout, if there is one for this member
TLayoutMatrix subMatrixLayout = memberList[m].type->getQualifier().layoutMatrix;
int memberAlignment = getScalarAlignment(*memberList[m].type, memberSize, dummyStride,
(subMatrixLayout != ElmNone) ? (subMatrixLayout == ElmRowMajor) : rowMajor);
maxAlignment = std::max(maxAlignment, memberAlignment);
RoundToPow2(size, memberAlignment);
size += memberSize;
}
return maxAlignment;
}
if (type.isScalar())
return getBaseAlignmentScalar(type, size);
if (type.isVector()) {
int scalarAlign = getBaseAlignmentScalar(type, size);
size *= type.getVectorSize();
return scalarAlign;
}
if (type.isMatrix()) {
TType derefType(type, 0, rowMajor);
alignment = getScalarAlignment(derefType, size, dummyStride, rowMajor);
stride = size; // use intra-matrix stride for stride of a just a matrix
if (rowMajor)
size = stride * type.getMatrixRows();
else
size = stride * type.getMatrixCols();
return alignment;
}
assert(0); // all cases should be covered above
size = 1;
return 1;
}
int TIntermediate::getMemberAlignment(const TType& type, int& size, int& stride, TLayoutPacking layoutPacking, bool rowMajor)
{
if (layoutPacking == glslang::ElpScalar) {
return getScalarAlignment(type, size, stride, rowMajor);
} else {
return getBaseAlignment(type, size, stride, layoutPacking, rowMajor);
}
}
// shared calculation by getOffset and getOffsets
void TIntermediate::updateOffset(const TType& parentType, const TType& memberType, int& offset, int& memberSize)
{
int dummyStride;
// modify just the children's view of matrix layout, if there is one for this member
TLayoutMatrix subMatrixLayout = memberType.getQualifier().layoutMatrix;
int memberAlignment = getMemberAlignment(memberType, memberSize, dummyStride,
parentType.getQualifier().layoutPacking,
subMatrixLayout != ElmNone
? subMatrixLayout == ElmRowMajor
: parentType.getQualifier().layoutMatrix == ElmRowMajor);
RoundToPow2(offset, memberAlignment);
}
// Lookup or calculate the offset of a block member, using the recursively
// defined block offset rules.
int TIntermediate::getOffset(const TType& type, int index)
{
const TTypeList& memberList = *type.getStruct();
// Don't calculate offset if one is present, it could be user supplied
// and different than what would be calculated. That is, this is faster,
// but not just an optimization.
if (memberList[index].type->getQualifier().hasOffset())
return memberList[index].type->getQualifier().layoutOffset;
int memberSize = 0;
int offset = 0;
for (int m = 0; m <= index; ++m) {
updateOffset(type, *memberList[m].type, offset, memberSize);
if (m < index)
offset += memberSize;
}
return offset;
}
// Calculate the block data size.
// Block arrayness is not taken into account, each element is backed by a separate buffer.
int TIntermediate::getBlockSize(const TType& blockType)
{
const TTypeList& memberList = *blockType.getStruct();
int lastIndex = (int)memberList.size() - 1;
int lastOffset = getOffset(blockType, lastIndex);
int lastMemberSize;
int dummyStride;
getMemberAlignment(*memberList[lastIndex].type, lastMemberSize, dummyStride,
blockType.getQualifier().layoutPacking,
blockType.getQualifier().layoutMatrix == ElmRowMajor);
return lastOffset + lastMemberSize;
}
int TIntermediate::computeBufferReferenceTypeSize(const TType& type)
{
assert(type.isReference());
int size = getBlockSize(*type.getReferentType());
int align = type.getBufferReferenceAlignment();
if (align) {
size = (size + align - 1) & ~(align-1);
}
return size;
}
} // end namespace glslang