Duckstation/src/util/input_manager.cpp

1972 lines
64 KiB
C++

// SPDX-FileCopyrightText: 2019-2023 Connor McLaughlin <stenzek@gmail.com>
// SPDX-License-Identifier: (GPL-3.0 OR CC-BY-NC-ND-4.0)
#include "input_manager.h"
#include "common/assert.h"
#include "common/file_system.h"
#include "common/log.h"
#include "common/path.h"
#include "common/string_util.h"
#include "common/timer.h"
#include "core/controller.h"
#include "core/host.h"
#include "core/system.h"
#include "imgui_manager.h"
#include "input_source.h"
#include "IconsPromptFont.h"
#include "fmt/core.h"
#include <array>
#include <atomic>
#include <memory>
#include <mutex>
#include <sstream>
#include <unordered_map>
#include <variant>
#include <vector>
Log_SetChannel(InputManager);
namespace {
// ------------------------------------------------------------------------
// Constants
// ------------------------------------------------------------------------
enum : u32
{
MAX_KEYS_PER_BINDING = 4,
MAX_MOTORS_PER_PAD = 2,
FIRST_EXTERNAL_INPUT_SOURCE = static_cast<u32>(InputSourceType::Pointer) + 1u,
LAST_EXTERNAL_INPUT_SOURCE = static_cast<u32>(InputSourceType::Count),
};
// ------------------------------------------------------------------------
// Binding Type
// ------------------------------------------------------------------------
// This class tracks both the keys which make it up (for chords), as well
// as the state of all buttons. For button callbacks, it's fired when
// all keys go active, and for axis callbacks, when all are active and
// the value changes.
struct InputBinding
{
InputBindingKey keys[MAX_KEYS_PER_BINDING] = {};
InputEventHandler handler;
u8 num_keys = 0;
u8 full_mask = 0;
u8 current_mask = 0;
};
struct PadVibrationBinding
{
struct Motor
{
InputBindingKey binding;
u64 last_update_time;
InputSource* source;
float last_intensity;
};
u32 pad_index = 0;
Motor motors[MAX_MOTORS_PER_PAD] = {};
/// Returns true if the two motors are bound to the same host motor.
ALWAYS_INLINE bool AreMotorsCombined() const { return motors[0].binding == motors[1].binding; }
/// Returns the intensity when both motors are combined.
ALWAYS_INLINE float GetCombinedIntensity() const
{
return std::max(motors[0].last_intensity, motors[1].last_intensity);
}
};
struct MacroButton
{
std::vector<u32> buttons; ///< Buttons to activate.
u16 toggle_frequency; ///< Interval at which the buttons will be toggled, if not 0.
u16 toggle_counter; ///< When this counter reaches zero, buttons will be toggled.
bool toggle_state; ///< Current state for turbo.
bool trigger_state; ///< Whether the macro button is active.
bool trigger_toggle; ///< Whether the macro is trigged by holding or press.
};
} // namespace
// ------------------------------------------------------------------------
// Forward Declarations (for static qualifier)
// ------------------------------------------------------------------------
namespace InputManager {
static std::optional<InputBindingKey> ParseHostKeyboardKey(std::string_view source, std::string_view sub_binding);
static std::optional<InputBindingKey> ParsePointerKey(std::string_view source, std::string_view sub_binding);
static std::optional<InputBindingKey> ParseSensorKey(std::string_view source, std::string_view sub_binding);
static std::vector<std::string_view> SplitChord(std::string_view binding);
static bool SplitBinding(std::string_view binding, std::string_view* source, std::string_view* sub_binding);
static void PrettifyInputBindingPart(std::string_view binding, SmallString& ret, bool& changed);
static void AddBindings(const std::vector<std::string>& bindings, const InputEventHandler& handler);
static bool IsAxisHandler(const InputEventHandler& handler);
static float ApplySingleBindingScale(float sensitivity, float deadzone, float value);
static void AddHotkeyBindings(SettingsInterface& si);
static void AddPadBindings(SettingsInterface& si, const std::string& section, u32 pad,
const Controller::ControllerInfo* cinfo);
static void UpdateContinuedVibration();
static void GenerateRelativeMouseEvents();
static bool DoEventHook(InputBindingKey key, float value);
static bool PreprocessEvent(InputBindingKey key, float value, GenericInputBinding generic_key);
static bool ProcessEvent(InputBindingKey key, float value, bool skip_button_handlers);
static void LoadMacroButtonConfig(SettingsInterface& si, const std::string& section, u32 pad,
const Controller::ControllerInfo* cinfo);
static void ApplyMacroButton(u32 pad, const MacroButton& mb);
static void UpdateMacroButtons();
static void UpdateInputSourceState(SettingsInterface& si, std::unique_lock<std::mutex>& settings_lock,
InputSourceType type, std::unique_ptr<InputSource> (*factory_function)());
} // namespace InputManager
// ------------------------------------------------------------------------
// Local Variables
// ------------------------------------------------------------------------
// This is a multimap containing any binds related to the specified key.
using BindingMap = std::unordered_multimap<InputBindingKey, std::shared_ptr<InputBinding>, InputBindingKeyHash>;
using VibrationBindingArray = std::vector<PadVibrationBinding>;
static BindingMap s_binding_map;
static VibrationBindingArray s_pad_vibration_array;
static std::mutex s_binding_map_write_lock;
// Hooks/intercepting (for setting bindings)
static std::mutex m_event_intercept_mutex;
static InputInterceptHook::Callback m_event_intercept_callback;
// Input sources. Keyboard/mouse don't exist here.
static std::array<std::unique_ptr<InputSource>, static_cast<u32>(InputSourceType::Count)> s_input_sources;
// Macro buttons.
static std::array<std::array<MacroButton, InputManager::NUM_MACRO_BUTTONS_PER_CONTROLLER>,
NUM_CONTROLLER_AND_CARD_PORTS>
s_macro_buttons;
// ------------------------------------------------------------------------
// Hotkeys
// ------------------------------------------------------------------------
static const HotkeyInfo* const s_hotkey_list[] = {g_common_hotkeys, g_host_hotkeys};
// ------------------------------------------------------------------------
// Tracking host mouse movement and turning into relative events
// 4 axes: pointer left/right, wheel vertical/horizontal. Last/Next/Normalized.
// ------------------------------------------------------------------------
static constexpr const std::array<const char*, static_cast<u8>(InputPointerAxis::Count)> s_pointer_axis_names = {
{"X", "Y", "WheelX", "WheelY"}};
static constexpr const std::array<const char*, 3> s_pointer_button_names = {
{"LeftButton", "RightButton", "MiddleButton"}};
static constexpr const std::array<const char*, 3> s_sensor_accelerometer_names = {{"Turn", "Tilt", "Rotate"}};
struct PointerAxisState
{
std::atomic<s32> delta;
float last_value;
};
static std::array<std::array<float, static_cast<u8>(InputPointerAxis::Count)>, InputManager::MAX_POINTER_DEVICES>
s_host_pointer_positions;
static std::array<std::array<PointerAxisState, static_cast<u8>(InputPointerAxis::Count)>,
InputManager::MAX_POINTER_DEVICES>
s_pointer_state;
static std::array<float, static_cast<u8>(InputPointerAxis::Count)> s_pointer_axis_scale;
using PointerMoveCallback = std::function<void(InputBindingKey key, float value)>;
static std::vector<std::pair<u32, PointerMoveCallback>> s_pointer_move_callbacks;
// ------------------------------------------------------------------------
// Binding Parsing
// ------------------------------------------------------------------------
std::vector<std::string_view> InputManager::SplitChord(std::string_view binding)
{
std::vector<std::string_view> parts;
// under an if for RVO
if (!binding.empty())
{
std::string_view::size_type last = 0;
std::string_view::size_type next;
while ((next = binding.find('&', last)) != std::string_view::npos)
{
if (last != next)
{
std::string_view part(StringUtil::StripWhitespace(binding.substr(last, next - last)));
if (!part.empty())
parts.push_back(std::move(part));
}
last = next + 1;
}
if (last < (binding.size() - 1))
{
std::string_view part(StringUtil::StripWhitespace(binding.substr(last)));
if (!part.empty())
parts.push_back(std::move(part));
}
}
return parts;
}
bool InputManager::SplitBinding(std::string_view binding, std::string_view* source, std::string_view* sub_binding)
{
const std::string_view::size_type slash_pos = binding.find('/');
if (slash_pos == std::string_view::npos)
{
WARNING_LOG("Malformed binding: '{}'", binding);
return false;
}
*source = std::string_view(binding).substr(0, slash_pos);
*sub_binding = std::string_view(binding).substr(slash_pos + 1);
return true;
}
std::optional<InputBindingKey> InputManager::ParseInputBindingKey(std::string_view binding)
{
std::string_view source, sub_binding;
if (!SplitBinding(binding, &source, &sub_binding))
return std::nullopt;
// lameee, string matching
if (source.starts_with("Keyboard"))
{
return ParseHostKeyboardKey(source, sub_binding);
}
else if (source.starts_with("Pointer"))
{
return ParsePointerKey(source, sub_binding);
}
else if (source.starts_with("Sensor"))
{
return ParseSensorKey(source, sub_binding);
}
else
{
for (u32 i = FIRST_EXTERNAL_INPUT_SOURCE; i < LAST_EXTERNAL_INPUT_SOURCE; i++)
{
if (s_input_sources[i])
{
std::optional<InputBindingKey> key = s_input_sources[i]->ParseKeyString(source, sub_binding);
if (key.has_value())
return key;
}
}
}
return std::nullopt;
}
bool InputManager::ParseBindingAndGetSource(std::string_view binding, InputBindingKey* key, InputSource** source)
{
std::string_view source_string, sub_binding;
if (!SplitBinding(binding, &source_string, &sub_binding))
return false;
for (u32 i = FIRST_EXTERNAL_INPUT_SOURCE; i < LAST_EXTERNAL_INPUT_SOURCE; i++)
{
if (s_input_sources[i])
{
std::optional<InputBindingKey> parsed_key = s_input_sources[i]->ParseKeyString(source_string, sub_binding);
if (parsed_key.has_value())
{
*key = parsed_key.value();
*source = s_input_sources[i].get();
return true;
}
}
}
return false;
}
std::string InputManager::ConvertInputBindingKeyToString(InputBindingInfo::Type binding_type, InputBindingKey key)
{
if (binding_type == InputBindingInfo::Type::Pointer)
{
// pointer and device bindings don't have a data part
if (key.source_type == InputSourceType::Pointer)
{
return GetPointerDeviceName(key.data);
}
else if (key.source_type < InputSourceType::Count && s_input_sources[static_cast<u32>(key.source_type)])
{
// This assumes that it always follows the Type/Binding form.
std::string keystr(s_input_sources[static_cast<u32>(key.source_type)]->ConvertKeyToString(key));
std::string::size_type pos = keystr.find('/');
if (pos != std::string::npos)
keystr.erase(pos);
return keystr;
}
}
else
{
if (key.source_type == InputSourceType::Keyboard)
{
const std::optional<std::string> str(ConvertHostKeyboardCodeToString(key.data));
if (str.has_value() && !str->empty())
return fmt::format("Keyboard/{}", str->c_str());
}
else if (key.source_type == InputSourceType::Pointer)
{
if (key.source_subtype == InputSubclass::PointerButton)
{
if (key.data < s_pointer_button_names.size())
return fmt::format("Pointer-{}/{}", u32{key.source_index}, s_pointer_button_names[key.data]);
else
return fmt::format("Pointer-{}/Button{}", u32{key.source_index}, key.data);
}
else if (key.source_subtype == InputSubclass::PointerAxis)
{
return fmt::format("Pointer-{}/{}{:c}", u32{key.source_index}, s_pointer_axis_names[key.data],
key.modifier == InputModifier::Negate ? '-' : '+');
}
}
else if (key.source_type < InputSourceType::Count && s_input_sources[static_cast<u32>(key.source_type)])
{
return std::string(s_input_sources[static_cast<u32>(key.source_type)]->ConvertKeyToString(key));
}
}
return {};
}
std::string InputManager::ConvertInputBindingKeysToString(InputBindingInfo::Type binding_type,
const InputBindingKey* keys, size_t num_keys)
{
// can't have a chord of devices/pointers
if (binding_type == InputBindingInfo::Type::Pointer)
{
// so only take the first
if (num_keys > 0)
return ConvertInputBindingKeyToString(binding_type, keys[0]);
}
std::stringstream ss;
for (size_t i = 0; i < num_keys; i++)
{
const std::string keystr(ConvertInputBindingKeyToString(binding_type, keys[i]));
if (keystr.empty())
return std::string();
if (i > 0)
ss << " & ";
ss << keystr;
}
return ss.str();
}
bool InputManager::PrettifyInputBinding(SmallStringBase& binding)
{
if (binding.empty())
return false;
const std::string_view binding_view = binding.view();
SmallString ret;
bool changed = false;
std::string_view::size_type last = 0;
std::string_view::size_type next;
while ((next = binding_view.find('&', last)) != std::string_view::npos)
{
if (last != next)
{
const std::string_view part = StringUtil::StripWhitespace(binding_view.substr(last, next - last));
if (!part.empty())
{
if (!ret.empty())
ret.append(" + ");
PrettifyInputBindingPart(part, ret, changed);
}
}
last = next + 1;
}
if (last < (binding_view.size() - 1))
{
const std::string_view part = StringUtil::StripWhitespace(binding_view.substr(last));
if (!part.empty())
{
if (!ret.empty())
ret.append(" + ");
PrettifyInputBindingPart(part, ret, changed);
}
}
if (changed)
binding = ret;
return changed;
}
void InputManager::PrettifyInputBindingPart(const std::string_view binding, SmallString& ret, bool& changed)
{
std::string_view source, sub_binding;
if (!SplitBinding(binding, &source, &sub_binding))
return;
// lameee, string matching
if (source.starts_with("Keyboard"))
{
std::optional<InputBindingKey> key = ParseHostKeyboardKey(source, sub_binding);
const char* icon = key.has_value() ? ConvertHostKeyboardCodeToIcon(key->data) : nullptr;
if (icon)
{
ret.append(icon);
changed = true;
return;
}
}
else if (source.starts_with("Pointer"))
{
const std::optional<InputBindingKey> key = ParsePointerKey(source, sub_binding);
if (key.has_value())
{
if (key->source_subtype == InputSubclass::PointerButton)
{
static constexpr const char* button_icons[] = {
ICON_PF_MOUSE_BUTTON_1, ICON_PF_MOUSE_BUTTON_2, ICON_PF_MOUSE_BUTTON_3,
ICON_PF_MOUSE_BUTTON_4, ICON_PF_MOUSE_BUTTON_5,
};
if (key->data < std::size(button_icons))
{
ret.append(button_icons[key->data]);
changed = true;
return;
}
}
}
}
else if (source.starts_with("Sensor"))
{
}
else
{
for (u32 i = FIRST_EXTERNAL_INPUT_SOURCE; i < LAST_EXTERNAL_INPUT_SOURCE; i++)
{
if (s_input_sources[i])
{
std::optional<InputBindingKey> key = s_input_sources[i]->ParseKeyString(source, sub_binding);
if (key.has_value())
{
const TinyString icon = s_input_sources[i]->ConvertKeyToIcon(key.value());
if (!icon.empty())
{
ret.append(icon);
changed = true;
return;
}
break;
}
}
}
}
ret.append(binding);
}
void InputManager::AddBindings(const std::vector<std::string>& bindings, const InputEventHandler& handler)
{
for (const std::string& binding : bindings)
AddBinding(binding, handler);
}
void InputManager::AddBinding(std::string_view binding, const InputEventHandler& handler)
{
std::shared_ptr<InputBinding> ibinding;
const std::vector<std::string_view> chord_bindings(SplitChord(binding));
for (const std::string_view& chord_binding : chord_bindings)
{
std::optional<InputBindingKey> key = ParseInputBindingKey(chord_binding);
if (!key.has_value())
{
ERROR_LOG("Invalid binding: '{}'", binding);
ibinding.reset();
break;
}
if (!ibinding)
{
ibinding = std::make_shared<InputBinding>();
ibinding->handler = handler;
}
if (ibinding->num_keys == MAX_KEYS_PER_BINDING)
{
ERROR_LOG("Too many chord parts, max is {} ({})", static_cast<unsigned>(MAX_KEYS_PER_BINDING), binding.size());
ibinding.reset();
break;
}
ibinding->keys[ibinding->num_keys] = key.value();
ibinding->full_mask |= (static_cast<u8>(1) << ibinding->num_keys);
ibinding->num_keys++;
}
if (!ibinding)
return;
// plop it in the input map for all the keys
for (u32 i = 0; i < ibinding->num_keys; i++)
s_binding_map.emplace(ibinding->keys[i].MaskDirection(), ibinding);
}
void InputManager::AddVibrationBinding(u32 pad_index, const InputBindingKey* motor_0_binding,
InputSource* motor_0_source, const InputBindingKey* motor_1_binding,
InputSource* motor_1_source)
{
PadVibrationBinding vib;
vib.pad_index = pad_index;
if (motor_0_binding)
{
vib.motors[0].binding = *motor_0_binding;
vib.motors[0].source = motor_0_source;
}
if (motor_1_binding)
{
vib.motors[1].binding = *motor_1_binding;
vib.motors[1].source = motor_1_source;
}
s_pad_vibration_array.push_back(std::move(vib));
}
// ------------------------------------------------------------------------
// Key Decoders
// ------------------------------------------------------------------------
InputBindingKey InputManager::MakeHostKeyboardKey(u32 key_code)
{
InputBindingKey key = {};
key.source_type = InputSourceType::Keyboard;
key.data = key_code;
return key;
}
InputBindingKey InputManager::MakePointerButtonKey(u32 index, u32 button_index)
{
InputBindingKey key = {};
key.source_index = index;
key.source_type = InputSourceType::Pointer;
key.source_subtype = InputSubclass::PointerButton;
key.data = button_index;
return key;
}
InputBindingKey InputManager::MakePointerAxisKey(u32 index, InputPointerAxis axis)
{
InputBindingKey key = {};
key.data = static_cast<u32>(axis);
key.source_index = index;
key.source_type = InputSourceType::Pointer;
key.source_subtype = InputSubclass::PointerAxis;
return key;
}
InputBindingKey InputManager::MakeSensorAxisKey(InputSubclass sensor, u32 axis)
{
InputBindingKey key = {};
key.data = static_cast<u32>(axis);
key.source_index = 0;
key.source_type = InputSourceType::Sensor;
key.source_subtype = sensor;
return key;
}
// ------------------------------------------------------------------------
// Bind Encoders
// ------------------------------------------------------------------------
static std::array<const char*, static_cast<u32>(InputSourceType::Count)> s_input_class_names = {{
"Keyboard",
"Pointer",
"Sensor",
#ifdef _WIN32
"DInput",
"XInput",
"RawInput",
#endif
#ifndef __ANDROID__
"SDL",
#else
"Android",
#endif
}};
InputSource* InputManager::GetInputSourceInterface(InputSourceType type)
{
return s_input_sources[static_cast<u32>(type)].get();
}
const char* InputManager::InputSourceToString(InputSourceType clazz)
{
return s_input_class_names[static_cast<u32>(clazz)];
}
bool InputManager::GetInputSourceDefaultEnabled(InputSourceType type)
{
switch (type)
{
case InputSourceType::Keyboard:
case InputSourceType::Pointer:
return true;
#ifdef _WIN32
case InputSourceType::DInput:
return false;
case InputSourceType::XInput:
return false;
case InputSourceType::RawInput:
return false;
#endif
#ifndef __ANDROID__
case InputSourceType::SDL:
return true;
#else
case InputSourceType::Android:
return true;
#endif
default:
return false;
}
}
std::optional<InputSourceType> InputManager::ParseInputSourceString(std::string_view str)
{
for (u32 i = 0; i < static_cast<u32>(InputSourceType::Count); i++)
{
if (str == s_input_class_names[i])
return static_cast<InputSourceType>(i);
}
return std::nullopt;
}
std::optional<InputBindingKey> InputManager::ParseHostKeyboardKey(std::string_view source, std::string_view sub_binding)
{
if (source != "Keyboard")
return std::nullopt;
const std::optional<s32> code = ConvertHostKeyboardStringToCode(sub_binding);
if (!code.has_value())
return std::nullopt;
InputBindingKey key = {};
key.source_type = InputSourceType::Keyboard;
key.data = static_cast<u32>(code.value());
return key;
}
std::optional<InputBindingKey> InputManager::ParsePointerKey(std::string_view source, std::string_view sub_binding)
{
const std::optional<s32> pointer_index = StringUtil::FromChars<s32>(source.substr(8));
if (!pointer_index.has_value() || pointer_index.value() < 0)
return std::nullopt;
InputBindingKey key = {};
key.source_type = InputSourceType::Pointer;
key.source_index = static_cast<u32>(pointer_index.value());
if (sub_binding.starts_with("Button"))
{
const std::optional<s32> button_number = StringUtil::FromChars<s32>(sub_binding.substr(6));
if (!button_number.has_value() || button_number.value() < 0)
return std::nullopt;
key.source_subtype = InputSubclass::PointerButton;
key.data = static_cast<u32>(button_number.value());
return key;
}
for (u32 i = 0; i < s_pointer_axis_names.size(); i++)
{
if (sub_binding.starts_with(s_pointer_axis_names[i]))
{
key.source_subtype = InputSubclass::PointerAxis;
key.data = i;
const std::string_view dir_part(sub_binding.substr(std::strlen(s_pointer_axis_names[i])));
if (dir_part == "+")
key.modifier = InputModifier::None;
else if (dir_part == "-")
key.modifier = InputModifier::Negate;
else
return std::nullopt;
return key;
}
}
for (u32 i = 0; i < s_pointer_button_names.size(); i++)
{
if (sub_binding == s_pointer_button_names[i])
{
key.source_subtype = InputSubclass::PointerButton;
key.data = i;
return key;
}
}
return std::nullopt;
}
std::optional<u32> InputManager::GetIndexFromPointerBinding(std::string_view source)
{
if (!source.starts_with("Pointer-"))
return std::nullopt;
const std::optional<s32> pointer_index = StringUtil::FromChars<s32>(source.substr(8));
if (!pointer_index.has_value() || pointer_index.value() < 0)
return std::nullopt;
return static_cast<u32>(pointer_index.value());
}
std::string InputManager::GetPointerDeviceName(u32 pointer_index)
{
return fmt::format("Pointer-{}", pointer_index);
}
std::optional<InputBindingKey> InputManager::ParseSensorKey(std::string_view source, std::string_view sub_binding)
{
if (source != "Sensor")
return std::nullopt;
InputBindingKey key = {};
key.source_type = InputSourceType::Sensor;
key.source_index = 0;
for (u32 i = 0; i < s_sensor_accelerometer_names.size(); i++)
{
if (sub_binding.starts_with(s_sensor_accelerometer_names[i]))
{
key.source_subtype = InputSubclass::SensorAccelerometer;
key.data = i;
const std::string_view dir_part(sub_binding.substr(std::strlen(s_sensor_accelerometer_names[i])));
if (dir_part == "+")
key.modifier = InputModifier::None;
else if (dir_part == "-")
key.modifier = InputModifier::Negate;
else
return std::nullopt;
return key;
}
}
return std::nullopt;
}
// ------------------------------------------------------------------------
// Binding Enumeration
// ------------------------------------------------------------------------
float InputManager::ApplySingleBindingScale(float scale, float deadzone, float value)
{
const float svalue = std::clamp(value * scale, 0.0f, 1.0f);
return (deadzone > 0.0f && svalue < deadzone) ? 0.0f : svalue;
}
std::vector<const HotkeyInfo*> InputManager::GetHotkeyList()
{
std::vector<const HotkeyInfo*> ret;
for (const HotkeyInfo* hotkey_list : s_hotkey_list)
{
for (const HotkeyInfo* hotkey = hotkey_list; hotkey->name != nullptr; hotkey++)
ret.push_back(hotkey);
}
return ret;
}
void InputManager::AddHotkeyBindings(SettingsInterface& si)
{
for (const HotkeyInfo* hotkey_list : s_hotkey_list)
{
for (const HotkeyInfo* hotkey = hotkey_list; hotkey->name != nullptr; hotkey++)
{
const std::vector<std::string> bindings(si.GetStringList("Hotkeys", hotkey->name));
if (bindings.empty())
continue;
AddBindings(bindings, InputButtonEventHandler{hotkey->handler});
}
}
}
void InputManager::AddPadBindings(SettingsInterface& si, const std::string& section, u32 pad_index,
const Controller::ControllerInfo* cinfo)
{
for (const Controller::ControllerBindingInfo& bi : cinfo->bindings)
{
const std::vector<std::string> bindings(si.GetStringList(section.c_str(), bi.name));
switch (bi.type)
{
case InputBindingInfo::Type::Button:
case InputBindingInfo::Type::HalfAxis:
case InputBindingInfo::Type::Axis:
{
if (!bindings.empty())
{
const float sensitivity =
si.GetFloatValue(section.c_str(), TinyString::from_format("{}Scale", bi.name), 1.0f);
const float deadzone =
si.GetFloatValue(section.c_str(), TinyString::from_format("{}Deadzone", bi.name), 0.0f);
AddBindings(bindings, InputAxisEventHandler{[pad_index, bind_index = bi.bind_index, sensitivity,
deadzone](float value) {
if (!System::IsValid())
return;
Controller* c = System::GetController(pad_index);
if (c)
c->SetBindState(bind_index, ApplySingleBindingScale(sensitivity, deadzone, value));
}});
}
}
break;
case InputBindingInfo::Type::Pointer:
{
auto cb = [pad_index, base = bi.bind_index](InputBindingKey key, float value) {
if (!System::IsValid())
return;
Controller* c = System::GetController(pad_index);
if (c)
c->SetBindState(base + key.data, value);
};
// bind pointer 0 by default
if (bindings.empty())
{
s_pointer_move_callbacks.emplace_back(0, std::move(cb));
}
else
{
for (const std::string& binding : bindings)
{
const std::optional<u32> key(GetIndexFromPointerBinding(binding));
if (!key.has_value())
continue;
s_pointer_move_callbacks.emplace_back(0, cb);
}
}
}
break;
default:
ERROR_LOG("Unhandled binding info type {}", static_cast<u32>(bi.type));
break;
}
}
for (u32 macro_button_index = 0; macro_button_index < NUM_MACRO_BUTTONS_PER_CONTROLLER; macro_button_index++)
{
const std::vector<std::string> bindings(
si.GetStringList(section.c_str(), fmt::format("Macro{}", macro_button_index + 1u).c_str()));
if (!bindings.empty())
{
AddBindings(bindings, InputButtonEventHandler{[pad_index, macro_button_index](bool state) {
if (!System::IsValid())
return;
SetMacroButtonState(pad_index, macro_button_index, state);
}});
}
}
if (cinfo->vibration_caps != Controller::VibrationCapabilities::NoVibration)
{
PadVibrationBinding vib;
vib.pad_index = pad_index;
bool has_any_bindings = false;
switch (cinfo->vibration_caps)
{
case Controller::VibrationCapabilities::LargeSmallMotors:
{
if (const std::string large_binding(si.GetStringValue(section.c_str(), "LargeMotor")); !large_binding.empty())
has_any_bindings |= ParseBindingAndGetSource(large_binding, &vib.motors[0].binding, &vib.motors[0].source);
if (const std::string small_binding(si.GetStringValue(section.c_str(), "SmallMotor")); !small_binding.empty())
has_any_bindings |= ParseBindingAndGetSource(small_binding, &vib.motors[1].binding, &vib.motors[1].source);
}
break;
case Controller::VibrationCapabilities::SingleMotor:
{
if (const std::string binding(si.GetStringValue(section.c_str(), "Motor")); !binding.empty())
has_any_bindings |= ParseBindingAndGetSource(binding, &vib.motors[0].binding, &vib.motors[0].source);
}
break;
default:
break;
}
if (has_any_bindings)
s_pad_vibration_array.push_back(std::move(vib));
}
}
// ------------------------------------------------------------------------
// Event Handling
// ------------------------------------------------------------------------
bool InputManager::HasAnyBindingsForKey(InputBindingKey key)
{
std::unique_lock lock(s_binding_map_write_lock);
return (s_binding_map.find(key.MaskDirection()) != s_binding_map.end());
}
bool InputManager::HasAnyBindingsForSource(InputBindingKey key)
{
std::unique_lock lock(s_binding_map_write_lock);
for (const auto& it : s_binding_map)
{
const InputBindingKey& okey = it.first;
if (okey.source_type == key.source_type && okey.source_index == key.source_index &&
okey.source_subtype == key.source_subtype)
{
return true;
}
}
return false;
}
bool InputManager::IsAxisHandler(const InputEventHandler& handler)
{
return std::holds_alternative<InputAxisEventHandler>(handler);
}
bool InputManager::InvokeEvents(InputBindingKey key, float value, GenericInputBinding generic_key)
{
if (DoEventHook(key, value))
return true;
// If imgui ate the event, don't fire our handlers.
const bool skip_button_handlers = PreprocessEvent(key, value, generic_key);
return ProcessEvent(key, value, skip_button_handlers);
}
bool InputManager::ProcessEvent(InputBindingKey key, float value, bool skip_button_handlers)
{
// find all the bindings associated with this key
const InputBindingKey masked_key = key.MaskDirection();
const auto range = s_binding_map.equal_range(masked_key);
if (range.first == s_binding_map.end())
return false;
// Now we can actually fire/activate bindings.
u32 min_num_keys = 0;
for (auto it = range.first; it != range.second; ++it)
{
InputBinding* binding = it->second.get();
// find the key which matches us
for (u32 i = 0; i < binding->num_keys; i++)
{
if (binding->keys[i].MaskDirection() != masked_key)
continue;
const u8 bit = static_cast<u8>(1) << i;
const bool negative = binding->keys[i].modifier == InputModifier::Negate;
const bool new_state = (negative ? (value < 0.0f) : (value > 0.0f));
float value_to_pass = 0.0f;
switch (binding->keys[i].modifier)
{
case InputModifier::None:
if (value > 0.0f)
value_to_pass = value;
break;
case InputModifier::Negate:
if (value < 0.0f)
value_to_pass = -value;
break;
case InputModifier::FullAxis:
value_to_pass = value * 0.5f + 0.5f;
break;
}
// handle inverting, needed for some wheels.
value_to_pass = binding->keys[i].invert ? (1.0f - value_to_pass) : value_to_pass;
// axes are fired regardless of a state change, unless they're zero
// (but going from not-zero to zero will still fire, because of the full state)
// for buttons, we can use the state of the last chord key, because it'll be 1 on press,
// and 0 on release (when the full state changes).
if (IsAxisHandler(binding->handler))
{
if (value_to_pass >= 0.0f && (!skip_button_handlers || value_to_pass == 0.0f))
std::get<InputAxisEventHandler>(binding->handler)(value_to_pass);
}
else if (binding->num_keys >= min_num_keys)
{
// update state based on whether the whole chord was activated
const u8 new_mask = (new_state ? (binding->current_mask | bit) : (binding->current_mask & ~bit));
const bool prev_full_state = (binding->current_mask == binding->full_mask);
const bool new_full_state = (new_mask == binding->full_mask);
binding->current_mask = new_mask;
// Workaround for multi-key bindings that share the same keys.
if (binding->num_keys > 1 && new_full_state && prev_full_state != new_full_state && range.first != range.second)
{
// Because the binding map isn't ordered, we could iterate in the order of Shift+F1 and then
// F1, which would mean that F1 wouldn't get cancelled and still activate. So, to handle this
// case, we skip activating any future bindings with a fewer number of keys.
min_num_keys = std::max<u32>(min_num_keys, binding->num_keys);
// Basically, if we bind say, F1 and Shift+F1, and press shift and then F1, we'll fire bindings
// for both F1 and Shift+F1, when we really only want to fire the binding for Shift+F1. So,
// when we activate a multi-key chord (key press), we go through the binding map for all the
// other keys in the chord, and cancel them if they have a shorter chord. If they're longer,
// they could still activate and take precedence over us, so we leave them alone.
for (u32 j = 0; j < binding->num_keys; j++)
{
const auto range2 = s_binding_map.equal_range(binding->keys[j].MaskDirection());
for (auto it2 = range2.first; it2 != range2.second; ++it2)
{
InputBinding* other_binding = it2->second.get();
if (other_binding == binding || IsAxisHandler(other_binding->handler) ||
other_binding->num_keys >= binding->num_keys)
{
continue;
}
// We only need to cancel the binding if it was fully active before. Which in the above
// case of Shift+F1 / F1, it will be.
if (other_binding->current_mask == other_binding->full_mask)
std::get<InputButtonEventHandler>(other_binding->handler)(-1);
// Zero out the current bits so that we don't release this binding, if the other part
// of the chord releases first.
other_binding->current_mask = 0;
}
}
}
if (prev_full_state != new_full_state && binding->num_keys >= min_num_keys)
{
const s32 pressed = skip_button_handlers ? -1 : static_cast<s32>(value_to_pass > 0.0f);
std::get<InputButtonEventHandler>(binding->handler)(pressed);
}
}
// bail out, since we shouldn't have the same key twice in the chord
break;
}
}
return true;
}
void InputManager::ClearBindStateFromSource(InputBindingKey key)
{
// Why are we doing it this way? Because any of the bindings could cause a reload and invalidate our iterators :(.
// Axis handlers should be fine, so we'll do those as a first pass.
for (const auto& [match_key, binding] : s_binding_map)
{
if (key.source_type != match_key.source_type || key.source_subtype != match_key.source_subtype ||
key.source_index != match_key.source_index || !IsAxisHandler(binding->handler))
{
continue;
}
for (u32 i = 0; i < binding->num_keys; i++)
{
if (binding->keys[i].MaskDirection() != match_key)
continue;
std::get<InputAxisEventHandler>(binding->handler)(0.0f);
break;
}
}
// Now go through the button handlers, and pick them off.
bool matched;
do
{
matched = false;
for (const auto& [match_key, binding] : s_binding_map)
{
if (key.source_type != match_key.source_type || key.source_subtype != match_key.source_subtype ||
key.source_index != match_key.source_index || IsAxisHandler(binding->handler))
{
continue;
}
for (u32 i = 0; i < binding->num_keys; i++)
{
if (binding->keys[i].MaskDirection() != match_key)
continue;
// Skip if we weren't pressed.
const u8 bit = static_cast<u8>(1) << i;
if ((binding->current_mask & bit) == 0)
continue;
// Only fire handler if we're changing from active state.
const u8 current_mask = binding->current_mask;
binding->current_mask &= ~bit;
if (current_mask == binding->full_mask)
{
std::get<InputButtonEventHandler>(binding->handler)(0);
matched = true;
break;
}
}
// Need to start again, might've reloaded.
if (matched)
break;
}
} while (matched);
}
bool InputManager::PreprocessEvent(InputBindingKey key, float value, GenericInputBinding generic_key)
{
// does imgui want the event?
if (key.source_type == InputSourceType::Keyboard)
{
if (ImGuiManager::ProcessHostKeyEvent(key, value))
return true;
}
else if (key.source_type == InputSourceType::Pointer && key.source_subtype == InputSubclass::PointerButton)
{
if (ImGuiManager::ProcessPointerButtonEvent(key, value))
return true;
}
else if (generic_key != GenericInputBinding::Unknown)
{
if (ImGuiManager::ProcessGenericInputEvent(generic_key, value) && value != 0.0f)
return true;
}
return false;
}
void InputManager::GenerateRelativeMouseEvents()
{
const bool system_running = System::IsRunning();
for (u32 device = 0; device < MAX_POINTER_DEVICES; device++)
{
for (u32 axis = 0; axis < static_cast<u32>(static_cast<u8>(InputPointerAxis::Count)); axis++)
{
PointerAxisState& state = s_pointer_state[device][axis];
const float delta = static_cast<float>(state.delta.exchange(0, std::memory_order_acquire)) / 65536.0f;
const float unclamped_value = delta * s_pointer_axis_scale[axis];
const InputBindingKey key(MakePointerAxisKey(device, static_cast<InputPointerAxis>(axis)));
if (axis >= static_cast<u32>(InputPointerAxis::WheelX) &&
ImGuiManager::ProcessPointerAxisEvent(key, unclamped_value))
{
continue;
}
if (!system_running)
continue;
const float value = std::clamp(unclamped_value, -1.0f, 1.0f);
if (value != state.last_value)
{
state.last_value = value;
InvokeEvents(key, value, GenericInputBinding::Unknown);
}
if (delta != 0.0f)
{
for (const std::pair<u32, PointerMoveCallback>& pmc : s_pointer_move_callbacks)
{
if (pmc.first == device)
pmc.second(key, delta);
}
}
}
}
}
std::pair<float, float> InputManager::GetPointerAbsolutePosition(u32 index)
{
return std::make_pair(s_host_pointer_positions[index][static_cast<u8>(InputPointerAxis::X)],
s_host_pointer_positions[index][static_cast<u8>(InputPointerAxis::Y)]);
}
void InputManager::UpdatePointerAbsolutePosition(u32 index, float x, float y)
{
const float dx = x - std::exchange(s_host_pointer_positions[index][static_cast<u8>(InputPointerAxis::X)], x);
const float dy = y - std::exchange(s_host_pointer_positions[index][static_cast<u8>(InputPointerAxis::Y)], y);
if (dx != 0.0f)
{
s_pointer_state[index][static_cast<u8>(InputPointerAxis::X)].delta.fetch_add(static_cast<s32>(dx * 65536.0f),
std::memory_order_release);
}
if (dy != 0.0f)
{
s_pointer_state[index][static_cast<u8>(InputPointerAxis::Y)].delta.fetch_add(static_cast<s32>(dy * 65536.0f),
std::memory_order_release);
}
if (index == 0)
ImGuiManager::UpdateMousePosition(x, y);
}
void InputManager::UpdatePointerRelativeDelta(u32 index, InputPointerAxis axis, float d, bool raw_input)
{
if (raw_input != IsUsingRawInput())
return;
s_host_pointer_positions[index][static_cast<u8>(axis)] += d;
s_pointer_state[index][static_cast<u8>(axis)].delta.fetch_add(static_cast<s32>(d * 65536.0f),
std::memory_order_release);
if (index == 0 && axis <= InputPointerAxis::Y)
ImGuiManager::UpdateMousePosition(s_host_pointer_positions[0][0], s_host_pointer_positions[0][1]);
}
void InputManager::UpdateHostMouseMode()
{
// Check for relative mode bindings, and enable if there's anything using it.
bool has_relative_mode_bindings = !s_pointer_move_callbacks.empty();
if (!has_relative_mode_bindings)
{
for (const auto& it : s_binding_map)
{
const InputBindingKey& key = it.first;
if (key.source_type == InputSourceType::Pointer && key.source_subtype == InputSubclass::PointerAxis &&
key.data >= static_cast<u32>(InputPointerAxis::X) && key.data <= static_cast<u32>(InputPointerAxis::Y))
{
has_relative_mode_bindings = true;
break;
}
}
}
const bool has_software_cursor = ImGuiManager::HasSoftwareCursor(0);
Host::SetMouseMode(has_relative_mode_bindings, has_relative_mode_bindings || has_software_cursor);
}
bool InputManager::IsUsingRawInput()
{
#if defined(_WIN32)
return static_cast<bool>(s_input_sources[static_cast<u32>(InputSourceType::RawInput)]);
#else
return false;
#endif
}
void InputManager::SetDefaultSourceConfig(SettingsInterface& si)
{
si.ClearSection("InputSources");
si.SetBoolValue("InputSources", "SDL", true);
si.SetBoolValue("InputSources", "SDLControllerEnhancedMode", false);
si.SetBoolValue("InputSources", "XInput", false);
si.SetBoolValue("InputSources", "RawInput", false);
}
void InputManager::ClearPortBindings(SettingsInterface& si, u32 port)
{
const std::string section(Controller::GetSettingsSection(port));
const std::string type(si.GetStringValue(section.c_str(), "Type", Controller::GetDefaultPadType(port)));
const Controller::ControllerInfo* info = Controller::GetControllerInfo(type);
if (!info)
return;
for (const Controller::ControllerBindingInfo& bi : info->bindings)
si.DeleteValue(section.c_str(), bi.name);
}
void InputManager::CopyConfiguration(SettingsInterface* dest_si, const SettingsInterface& src_si,
bool copy_pad_config /*= true*/, bool copy_pad_bindings /*= true*/,
bool copy_hotkey_bindings /*= true*/)
{
if (copy_pad_config)
dest_si->CopyStringValue(src_si, "ControllerPorts", "MultitapMode");
for (u32 port = 0; port < NUM_CONTROLLER_AND_CARD_PORTS; port++)
{
if (Controller::PadIsMultitapSlot(port))
{
const auto [mt_port, mt_slot] = Controller::ConvertPadToPortAndSlot(port);
if (!g_settings.IsMultitapPortEnabled(mt_port))
continue;
}
const std::string section(Controller::GetSettingsSection(port));
const std::string type(src_si.GetStringValue(section.c_str(), "Type", Controller::GetDefaultPadType(port)));
if (copy_pad_config)
dest_si->SetStringValue(section.c_str(), "Type", type.c_str());
const Controller::ControllerInfo* info = Controller::GetControllerInfo(type);
if (!info)
return;
if (copy_pad_bindings)
{
for (const Controller::ControllerBindingInfo& bi : info->bindings)
dest_si->CopyStringListValue(src_si, section.c_str(), bi.name);
for (u32 i = 0; i < NUM_MACRO_BUTTONS_PER_CONTROLLER; i++)
{
dest_si->CopyStringListValue(src_si, section.c_str(), TinyString::from_format("Macro{}", i + 1));
dest_si->CopyStringValue(src_si, section.c_str(), TinyString::from_format("Macro{}Binds", i + 1));
dest_si->CopyUIntValue(src_si, section.c_str(), TinyString::from_format("Macro{}Frequency", i + 1));
dest_si->CopyBoolValue(src_si, section.c_str(), TinyString::from_format("Macro{}Toggle", i + 1));
}
}
if (copy_pad_config)
{
for (const SettingInfo& csi : info->settings)
{
switch (csi.type)
{
case SettingInfo::Type::Boolean:
dest_si->CopyBoolValue(src_si, section.c_str(), csi.name);
break;
case SettingInfo::Type::Integer:
case SettingInfo::Type::IntegerList:
dest_si->CopyIntValue(src_si, section.c_str(), csi.name);
break;
case SettingInfo::Type::Float:
dest_si->CopyFloatValue(src_si, section.c_str(), csi.name);
break;
case SettingInfo::Type::String:
case SettingInfo::Type::Path:
dest_si->CopyStringValue(src_si, section.c_str(), csi.name);
break;
default:
break;
}
}
}
}
if (copy_hotkey_bindings)
{
std::vector<const HotkeyInfo*> hotkeys(InputManager::GetHotkeyList());
for (const HotkeyInfo* hki : hotkeys)
dest_si->CopyStringListValue(src_si, "Hotkeys", hki->name);
}
}
static u32 TryMapGenericMapping(SettingsInterface& si, const std::string& section,
const GenericInputBindingMapping& mapping, GenericInputBinding generic_name,
const char* bind_name)
{
// find the mapping it corresponds to
const std::string* found_mapping = nullptr;
for (const std::pair<GenericInputBinding, std::string>& it : mapping)
{
if (it.first == generic_name)
{
found_mapping = &it.second;
break;
}
}
if (found_mapping)
{
INFO_LOG("Map {}/{} to '{}'", section, bind_name, *found_mapping);
si.SetStringValue(section.c_str(), bind_name, found_mapping->c_str());
return 1;
}
else
{
si.DeleteValue(section.c_str(), bind_name);
return 0;
}
}
bool InputManager::MapController(SettingsInterface& si, u32 controller,
const std::vector<std::pair<GenericInputBinding, std::string>>& mapping)
{
const std::string section(Controller::GetSettingsSection(controller));
const std::string type(si.GetStringValue(section.c_str(), "Type", Controller::GetDefaultPadType(controller)));
const Controller::ControllerInfo* info = Controller::GetControllerInfo(type);
if (!info)
return false;
u32 num_mappings = 0;
for (const Controller::ControllerBindingInfo& bi : info->bindings)
{
if (bi.generic_mapping == GenericInputBinding::Unknown)
continue;
num_mappings += TryMapGenericMapping(si, section, mapping, bi.generic_mapping, bi.name);
}
if (info->vibration_caps == Controller::VibrationCapabilities::LargeSmallMotors)
{
num_mappings += TryMapGenericMapping(si, section, mapping, GenericInputBinding::SmallMotor, "SmallMotor");
num_mappings += TryMapGenericMapping(si, section, mapping, GenericInputBinding::LargeMotor, "LargeMotor");
}
else if (info->vibration_caps == Controller::VibrationCapabilities::SingleMotor)
{
if (TryMapGenericMapping(si, section, mapping, GenericInputBinding::LargeMotor, "Motor") == 0)
num_mappings += TryMapGenericMapping(si, section, mapping, GenericInputBinding::SmallMotor, "Motor");
else
num_mappings++;
}
return (num_mappings > 0);
}
std::vector<std::string> InputManager::GetInputProfileNames()
{
FileSystem::FindResultsArray results;
FileSystem::FindFiles(EmuFolders::InputProfiles.c_str(), "*.ini",
FILESYSTEM_FIND_FILES | FILESYSTEM_FIND_HIDDEN_FILES | FILESYSTEM_FIND_RELATIVE_PATHS,
&results);
std::vector<std::string> ret;
ret.reserve(results.size());
for (FILESYSTEM_FIND_DATA& fd : results)
ret.emplace_back(Path::GetFileTitle(fd.FileName));
return ret;
}
void InputManager::OnInputDeviceConnected(std::string_view identifier, std::string_view device_name)
{
Host::OnInputDeviceConnected(identifier, device_name);
}
void InputManager::OnInputDeviceDisconnected(InputBindingKey key, std::string_view identifier)
{
Host::OnInputDeviceDisconnected(key, identifier);
}
// ------------------------------------------------------------------------
// Vibration
// ------------------------------------------------------------------------
void InputManager::SetPadVibrationIntensity(u32 pad_index, float large_or_single_motor_intensity,
float small_motor_intensity)
{
for (PadVibrationBinding& pad : s_pad_vibration_array)
{
if (pad.pad_index != pad_index)
continue;
PadVibrationBinding::Motor& large_motor = pad.motors[0];
PadVibrationBinding::Motor& small_motor = pad.motors[1];
if (large_motor.last_intensity == large_or_single_motor_intensity &&
small_motor.last_intensity == small_motor_intensity)
continue;
if (pad.AreMotorsCombined())
{
// if the motors are combined, we need to adjust to the maximum of both
const float report_intensity = std::max(large_or_single_motor_intensity, small_motor_intensity);
if (large_motor.source)
{
large_motor.last_update_time = Common::Timer::GetCurrentValue();
large_motor.source->UpdateMotorState(large_motor.binding, report_intensity);
}
}
else if (large_motor.source == small_motor.source)
{
// both motors are bound to the same source, do an optimal update
large_motor.last_update_time = Common::Timer::GetCurrentValue();
large_motor.source->UpdateMotorState(large_motor.binding, small_motor.binding, large_or_single_motor_intensity,
small_motor_intensity);
}
else
{
// update motors independently
if (large_motor.source && large_motor.last_intensity != large_or_single_motor_intensity)
{
large_motor.last_update_time = Common::Timer::GetCurrentValue();
large_motor.source->UpdateMotorState(large_motor.binding, large_or_single_motor_intensity);
}
if (small_motor.source && small_motor.last_intensity != small_motor_intensity)
{
small_motor.last_update_time = Common::Timer::GetCurrentValue();
small_motor.source->UpdateMotorState(small_motor.binding, small_motor_intensity);
}
}
large_motor.last_intensity = large_or_single_motor_intensity;
small_motor.last_intensity = small_motor_intensity;
}
}
void InputManager::PauseVibration()
{
for (PadVibrationBinding& binding : s_pad_vibration_array)
{
for (u32 motor_index = 0; motor_index < MAX_MOTORS_PER_PAD; motor_index++)
{
PadVibrationBinding::Motor& motor = binding.motors[motor_index];
if (!motor.source || motor.last_intensity == 0.0f)
continue;
// we deliberately don't zero the intensity here, so it can resume later
motor.last_update_time = 0;
motor.source->UpdateMotorState(motor.binding, 0.0f);
}
}
}
void InputManager::UpdateContinuedVibration()
{
// update vibration intensities, so if the game does a long effect, it continues
const u64 current_time = Common::Timer::GetCurrentValue();
for (PadVibrationBinding& pad : s_pad_vibration_array)
{
if (pad.AreMotorsCombined())
{
// motors are combined
PadVibrationBinding::Motor& large_motor = pad.motors[0];
if (!large_motor.source)
continue;
// so only check the first one
const double dt = Common::Timer::ConvertValueToSeconds(current_time - large_motor.last_update_time);
if (dt < VIBRATION_UPDATE_INTERVAL_SECONDS)
continue;
// but take max of both motors for the intensity
const float intensity = pad.GetCombinedIntensity();
if (intensity == 0.0f)
continue;
large_motor.last_update_time = current_time;
large_motor.source->UpdateMotorState(large_motor.binding, intensity);
}
else
{
// independent motor control
for (u32 i = 0; i < MAX_MOTORS_PER_PAD; i++)
{
PadVibrationBinding::Motor& motor = pad.motors[i];
if (!motor.source || motor.last_intensity == 0.0f)
continue;
const double dt = Common::Timer::ConvertValueToSeconds(current_time - motor.last_update_time);
if (dt < VIBRATION_UPDATE_INTERVAL_SECONDS)
continue;
// re-notify the source of the continued effect
motor.last_update_time = current_time;
motor.source->UpdateMotorState(motor.binding, motor.last_intensity);
}
}
}
}
// ------------------------------------------------------------------------
// Macros
// ------------------------------------------------------------------------
void InputManager::LoadMacroButtonConfig(SettingsInterface& si, const std::string& section, u32 pad,
const Controller::ControllerInfo* cinfo)
{
s_macro_buttons[pad] = {};
if (cinfo->bindings.empty())
return;
for (u32 i = 0; i < NUM_MACRO_BUTTONS_PER_CONTROLLER; i++)
{
std::string binds_string;
if (!si.GetStringValue(section.c_str(), TinyString::from_format("Macro{}Binds", i + 1u), &binds_string))
continue;
const u32 frequency =
std::min<u32>(si.GetUIntValue(section.c_str(), TinyString::from_format("Macro{}Frequency", i + 1u), 0u),
std::numeric_limits<u16>::max());
const bool toggle = si.GetBoolValue(section.c_str(), TinyString::from_format("Macro{}Toggle", i + 1u), false);
// convert binds
std::vector<u32> bind_indices;
std::vector<std::string_view> buttons_split(StringUtil::SplitString(binds_string, '&', true));
if (buttons_split.empty())
continue;
for (const std::string_view& button : buttons_split)
{
const Controller::ControllerBindingInfo* binding = nullptr;
for (const Controller::ControllerBindingInfo& bi : cinfo->bindings)
{
if (button == bi.name)
{
binding = &bi;
break;
}
}
if (!binding)
{
DEV_LOG("Invalid bind '{}' in macro button {} for pad {}", button, pad, i);
continue;
}
bind_indices.push_back(binding->bind_index);
}
if (bind_indices.empty())
continue;
s_macro_buttons[pad][i].buttons = std::move(bind_indices);
s_macro_buttons[pad][i].toggle_frequency = static_cast<u16>(frequency);
s_macro_buttons[pad][i].trigger_toggle = toggle;
}
}
void InputManager::SetMacroButtonState(u32 pad, u32 index, bool state)
{
if (pad >= NUM_CONTROLLER_AND_CARD_PORTS || index >= NUM_MACRO_BUTTONS_PER_CONTROLLER)
return;
MacroButton& mb = s_macro_buttons[pad][index];
if (mb.buttons.empty())
return;
const bool trigger_state = (mb.trigger_toggle ? (state ? !mb.trigger_state : mb.trigger_state) : state);
if (mb.trigger_state == trigger_state)
return;
mb.toggle_counter = mb.toggle_frequency;
mb.trigger_state = trigger_state;
if (mb.toggle_state != trigger_state)
{
mb.toggle_state = trigger_state;
ApplyMacroButton(pad, mb);
}
}
void InputManager::ApplyMacroButton(u32 pad, const MacroButton& mb)
{
Controller* const controller = System::GetController(pad);
if (!controller)
return;
const float value = mb.toggle_state ? 1.0f : 0.0f;
for (const u32 btn : mb.buttons)
controller->SetBindState(btn, value);
}
void InputManager::UpdateMacroButtons()
{
for (u32 pad = 0; pad < NUM_CONTROLLER_AND_CARD_PORTS; pad++)
{
for (u32 index = 0; index < NUM_MACRO_BUTTONS_PER_CONTROLLER; index++)
{
MacroButton& mb = s_macro_buttons[pad][index];
if (!mb.trigger_state || mb.toggle_frequency == 0)
continue;
mb.toggle_counter--;
if (mb.toggle_counter > 0)
continue;
mb.toggle_counter = mb.toggle_frequency;
mb.toggle_state = !mb.toggle_state;
ApplyMacroButton(pad, mb);
}
}
}
// ------------------------------------------------------------------------
// Hooks/Event Intercepting
// ------------------------------------------------------------------------
void InputManager::SetHook(InputInterceptHook::Callback callback)
{
std::unique_lock<std::mutex> lock(m_event_intercept_mutex);
DebugAssert(!m_event_intercept_callback);
m_event_intercept_callback = std::move(callback);
}
void InputManager::RemoveHook()
{
std::unique_lock<std::mutex> lock(m_event_intercept_mutex);
if (m_event_intercept_callback)
m_event_intercept_callback = {};
}
bool InputManager::HasHook()
{
std::unique_lock<std::mutex> lock(m_event_intercept_mutex);
return (bool)m_event_intercept_callback;
}
bool InputManager::DoEventHook(InputBindingKey key, float value)
{
std::unique_lock<std::mutex> lock(m_event_intercept_mutex);
if (!m_event_intercept_callback)
return false;
const InputInterceptHook::CallbackResult action = m_event_intercept_callback(key, value);
if (action >= InputInterceptHook::CallbackResult::RemoveHookAndStopProcessingEvent)
m_event_intercept_callback = {};
return (action == InputInterceptHook::CallbackResult::RemoveHookAndStopProcessingEvent ||
action == InputInterceptHook::CallbackResult::StopProcessingEvent);
}
// ------------------------------------------------------------------------
// Binding Updater
// ------------------------------------------------------------------------
void InputManager::ReloadBindings(SettingsInterface& si, SettingsInterface& binding_si,
SettingsInterface& hotkey_binding_si)
{
PauseVibration();
std::unique_lock lock(s_binding_map_write_lock);
s_binding_map.clear();
s_pad_vibration_array.clear();
s_pointer_move_callbacks.clear();
Host::AddFixedInputBindings(binding_si);
// Hotkeys use the base configuration, except if the custom hotkeys option is enabled.
AddHotkeyBindings(hotkey_binding_si);
// If there's an input profile, we load pad bindings from it alone, rather than
// falling back to the base configuration.
for (u32 pad = 0; pad < NUM_CONTROLLER_AND_CARD_PORTS; pad++)
{
const Controller::ControllerInfo* cinfo = Controller::GetControllerInfo(g_settings.controller_types[pad]);
if (!cinfo || cinfo->type == ControllerType::None)
continue;
const std::string section(Controller::GetSettingsSection(pad));
AddPadBindings(binding_si, section, pad, cinfo);
LoadMacroButtonConfig(binding_si, section, pad, cinfo);
}
for (u32 axis = 0; axis < static_cast<u32>(InputPointerAxis::Count); axis++)
{
// From lilypad: 1 mouse pixel = 1/8th way down.
const float default_scale = (axis <= static_cast<u32>(InputPointerAxis::Y)) ? 8.0f : 1.0f;
s_pointer_axis_scale[axis] =
1.0f / std::max(si.GetFloatValue("Pad", fmt::format("Pointer{}Scale", s_pointer_axis_names[axis]).c_str(),
default_scale),
1.0f);
}
UpdateHostMouseMode();
}
// ------------------------------------------------------------------------
// Source Management
// ------------------------------------------------------------------------
bool InputManager::ReloadDevices()
{
bool changed = false;
for (u32 i = FIRST_EXTERNAL_INPUT_SOURCE; i < LAST_EXTERNAL_INPUT_SOURCE; i++)
{
if (s_input_sources[i])
changed |= s_input_sources[i]->ReloadDevices();
}
return changed;
}
void InputManager::CloseSources()
{
for (u32 i = FIRST_EXTERNAL_INPUT_SOURCE; i < LAST_EXTERNAL_INPUT_SOURCE; i++)
{
if (s_input_sources[i])
{
s_input_sources[i]->Shutdown();
s_input_sources[i].reset();
}
}
}
void InputManager::PollSources()
{
for (u32 i = FIRST_EXTERNAL_INPUT_SOURCE; i < LAST_EXTERNAL_INPUT_SOURCE; i++)
{
if (s_input_sources[i])
s_input_sources[i]->PollEvents();
}
GenerateRelativeMouseEvents();
if (System::GetState() == System::State::Running)
{
UpdateMacroButtons();
if (!s_pad_vibration_array.empty())
UpdateContinuedVibration();
}
}
std::vector<std::pair<std::string, std::string>> InputManager::EnumerateDevices()
{
std::vector<std::pair<std::string, std::string>> ret;
ret.emplace_back("Keyboard", "Keyboard");
ret.emplace_back("Mouse", "Mouse");
for (u32 i = FIRST_EXTERNAL_INPUT_SOURCE; i < LAST_EXTERNAL_INPUT_SOURCE; i++)
{
if (s_input_sources[i])
{
std::vector<std::pair<std::string, std::string>> devs(s_input_sources[i]->EnumerateDevices());
if (ret.empty())
ret = std::move(devs);
else
std::move(devs.begin(), devs.end(), std::back_inserter(ret));
}
}
return ret;
}
std::vector<InputBindingKey> InputManager::EnumerateMotors()
{
std::vector<InputBindingKey> ret;
for (u32 i = FIRST_EXTERNAL_INPUT_SOURCE; i < LAST_EXTERNAL_INPUT_SOURCE; i++)
{
if (s_input_sources[i])
{
std::vector<InputBindingKey> devs(s_input_sources[i]->EnumerateMotors());
if (ret.empty())
ret = std::move(devs);
else
std::move(devs.begin(), devs.end(), std::back_inserter(ret));
}
}
return ret;
}
static void GetKeyboardGenericBindingMapping(std::vector<std::pair<GenericInputBinding, std::string>>* mapping)
{
mapping->emplace_back(GenericInputBinding::DPadUp, "Keyboard/Up");
mapping->emplace_back(GenericInputBinding::DPadRight, "Keyboard/Right");
mapping->emplace_back(GenericInputBinding::DPadDown, "Keyboard/Down");
mapping->emplace_back(GenericInputBinding::DPadLeft, "Keyboard/Left");
mapping->emplace_back(GenericInputBinding::LeftStickUp, "Keyboard/W");
mapping->emplace_back(GenericInputBinding::LeftStickRight, "Keyboard/D");
mapping->emplace_back(GenericInputBinding::LeftStickDown, "Keyboard/S");
mapping->emplace_back(GenericInputBinding::LeftStickLeft, "Keyboard/A");
mapping->emplace_back(GenericInputBinding::RightStickUp, "Keyboard/T");
mapping->emplace_back(GenericInputBinding::RightStickRight, "Keyboard/H");
mapping->emplace_back(GenericInputBinding::RightStickDown, "Keyboard/G");
mapping->emplace_back(GenericInputBinding::RightStickLeft, "Keyboard/F");
mapping->emplace_back(GenericInputBinding::Start, "Keyboard/Return");
mapping->emplace_back(GenericInputBinding::Select, "Keyboard/Backspace");
mapping->emplace_back(GenericInputBinding::Triangle, "Keyboard/I");
mapping->emplace_back(GenericInputBinding::Circle, "Keyboard/L");
mapping->emplace_back(GenericInputBinding::Cross, "Keyboard/K");
mapping->emplace_back(GenericInputBinding::Square, "Keyboard/J");
mapping->emplace_back(GenericInputBinding::L1, "Keyboard/Q");
mapping->emplace_back(GenericInputBinding::L2, "Keyboard/1");
mapping->emplace_back(GenericInputBinding::L3, "Keyboard/2");
mapping->emplace_back(GenericInputBinding::R1, "Keyboard/E");
mapping->emplace_back(GenericInputBinding::R2, "Keyboard/3");
mapping->emplace_back(GenericInputBinding::R3, "Keyboard/4");
}
static bool GetInternalGenericBindingMapping(std::string_view device, GenericInputBindingMapping* mapping)
{
if (device == "Keyboard")
{
GetKeyboardGenericBindingMapping(mapping);
return true;
}
return false;
}
GenericInputBindingMapping InputManager::GetGenericBindingMapping(std::string_view device)
{
GenericInputBindingMapping mapping;
if (!GetInternalGenericBindingMapping(device, &mapping))
{
for (u32 i = FIRST_EXTERNAL_INPUT_SOURCE; i < LAST_EXTERNAL_INPUT_SOURCE; i++)
{
if (s_input_sources[i] && s_input_sources[i]->GetGenericBindingMapping(device, &mapping))
break;
}
}
return mapping;
}
bool InputManager::IsInputSourceEnabled(SettingsInterface& si, InputSourceType type)
{
#ifdef __ANDROID__
// Force Android source to always be enabled so nobody accidentally breaks it via ini.
if (type == InputSourceType::Android)
return true;
#endif
return si.GetBoolValue("InputSources", InputManager::InputSourceToString(type), GetInputSourceDefaultEnabled(type));
}
void InputManager::UpdateInputSourceState(SettingsInterface& si, std::unique_lock<std::mutex>& settings_lock,
InputSourceType type, std::unique_ptr<InputSource> (*factory_function)())
{
const bool enabled = IsInputSourceEnabled(si, type);
if (enabled)
{
if (s_input_sources[static_cast<u32>(type)])
{
s_input_sources[static_cast<u32>(type)]->UpdateSettings(si, settings_lock);
}
else
{
std::unique_ptr<InputSource> source(factory_function());
if (!source->Initialize(si, settings_lock))
{
ERROR_LOG("Source '{}' failed to initialize.", InputManager::InputSourceToString(type));
return;
}
s_input_sources[static_cast<u32>(type)] = std::move(source);
}
}
else
{
if (s_input_sources[static_cast<u32>(type)])
{
s_input_sources[static_cast<u32>(type)]->Shutdown();
s_input_sources[static_cast<u32>(type)].reset();
}
}
}
void InputManager::ReloadSources(SettingsInterface& si, std::unique_lock<std::mutex>& settings_lock)
{
#ifdef _WIN32
UpdateInputSourceState(si, settings_lock, InputSourceType::DInput, &InputSource::CreateDInputSource);
UpdateInputSourceState(si, settings_lock, InputSourceType::XInput, &InputSource::CreateXInputSource);
UpdateInputSourceState(si, settings_lock, InputSourceType::RawInput, &InputSource::CreateWin32RawInputSource);
#endif
#ifndef __ANDROID__
UpdateInputSourceState(si, settings_lock, InputSourceType::SDL, &InputSource::CreateSDLSource);
#else
UpdateInputSourceState(si, settings_lock, InputSourceType::Android, &InputSource::CreateAndroidSource);
#endif
}