Duckstation/src/util/postprocessing_shader_fx.cpp

1363 lines
44 KiB
C++

// SPDX-FileCopyrightText: 2019-2023 Connor McLaughlin <stenzek@gmail.com>
// SPDX-License-Identifier: (GPL-3.0 OR CC-BY-NC-ND-4.0)
#include "postprocessing_shader_fx.h"
#include "input_manager.h"
#include "shadergen.h"
// TODO: Remove me
#include "core/host.h"
#include "core/settings.h"
#include "common/assert.h"
#include "common/error.h"
#include "common/file_system.h"
#include "common/image.h"
#include "common/log.h"
#include "common/path.h"
#include "common/string_util.h"
#include "effect_codegen.hpp"
#include "effect_parser.hpp"
#include "effect_preprocessor.hpp"
#include "fmt/format.h"
#include <bitset>
#include <cctype>
#include <cmath>
#include <cstring>
#include <sstream>
Log_SetChannel(ReShadeFXShader);
static constexpr s32 DEFAULT_BUFFER_WIDTH = 3840;
static constexpr s32 DEFAULT_BUFFER_HEIGHT = 2160;
static RenderAPI GetRenderAPI()
{
return g_gpu_device ? g_gpu_device->GetRenderAPI() : RenderAPI::D3D11;
}
static std::unique_ptr<reshadefx::codegen> CreateRFXCodegen()
{
const bool debug_info = g_gpu_device ? g_gpu_device->IsDebugDevice() : false;
const bool uniforms_to_spec_constants = false;
const RenderAPI rapi = GetRenderAPI();
switch (rapi)
{
case RenderAPI::None:
case RenderAPI::D3D11:
case RenderAPI::D3D12:
{
return std::unique_ptr<reshadefx::codegen>(
reshadefx::create_codegen_hlsl(50, debug_info, uniforms_to_spec_constants));
}
case RenderAPI::Vulkan:
case RenderAPI::Metal:
{
return std::unique_ptr<reshadefx::codegen>(reshadefx::create_codegen_glsl(
true, debug_info, uniforms_to_spec_constants, false, (rapi == RenderAPI::Vulkan)));
}
case RenderAPI::OpenGL:
case RenderAPI::OpenGLES:
default:
{
return std::unique_ptr<reshadefx::codegen>(
reshadefx::create_codegen_glsl(false, debug_info, uniforms_to_spec_constants, false, true));
}
}
}
static GPUTexture::Format MapTextureFormat(reshadefx::texture_format format)
{
static constexpr GPUTexture::Format s_mapping[] = {
GPUTexture::Format::Unknown, // unknown
GPUTexture::Format::R8, // r8
GPUTexture::Format::R16, // r16
GPUTexture::Format::R16F, // r16f
GPUTexture::Format::R32I, // r32i
GPUTexture::Format::R32U, // r32u
GPUTexture::Format::R32F, // r32f
GPUTexture::Format::RG8, // rg8
GPUTexture::Format::RG16, // rg16
GPUTexture::Format::RG16F, // rg16f
GPUTexture::Format::RG32F, // rg32f
GPUTexture::Format::RGBA8, // rgba8
GPUTexture::Format::RGBA16, // rgba16
GPUTexture::Format::RGBA16F, // rgba16f
GPUTexture::Format::RGBA32F, // rgba32f
GPUTexture::Format::RGB10A2, // rgb10a2
};
DebugAssert(static_cast<u32>(format) < std::size(s_mapping));
return s_mapping[static_cast<u32>(format)];
}
static GPUSampler::Config MapSampler(const reshadefx::sampler_info& si)
{
GPUSampler::Config config = GPUSampler::GetNearestConfig();
switch (si.filter)
{
case reshadefx::filter_mode::min_mag_mip_point:
config.min_filter = GPUSampler::Filter::Nearest;
config.mag_filter = GPUSampler::Filter::Nearest;
config.mip_filter = GPUSampler::Filter::Nearest;
break;
case reshadefx::filter_mode::min_mag_point_mip_linear:
config.min_filter = GPUSampler::Filter::Nearest;
config.mag_filter = GPUSampler::Filter::Nearest;
config.mip_filter = GPUSampler::Filter::Linear;
break;
case reshadefx::filter_mode::min_point_mag_linear_mip_point:
config.min_filter = GPUSampler::Filter::Linear;
config.mag_filter = GPUSampler::Filter::Linear;
config.mip_filter = GPUSampler::Filter::Nearest;
break;
case reshadefx::filter_mode::min_point_mag_mip_linear:
config.min_filter = GPUSampler::Filter::Nearest;
config.mag_filter = GPUSampler::Filter::Linear;
config.mip_filter = GPUSampler::Filter::Linear;
break;
case reshadefx::filter_mode::min_linear_mag_mip_point:
config.min_filter = GPUSampler::Filter::Linear;
config.mag_filter = GPUSampler::Filter::Nearest;
config.mip_filter = GPUSampler::Filter::Nearest;
break;
case reshadefx::filter_mode::min_linear_mag_point_mip_linear:
config.min_filter = GPUSampler::Filter::Linear;
config.mag_filter = GPUSampler::Filter::Nearest;
config.mip_filter = GPUSampler::Filter::Linear;
break;
case reshadefx::filter_mode::min_mag_linear_mip_point:
config.min_filter = GPUSampler::Filter::Linear;
config.mag_filter = GPUSampler::Filter::Linear;
config.mip_filter = GPUSampler::Filter::Nearest;
break;
case reshadefx::filter_mode::min_mag_mip_linear:
config.min_filter = GPUSampler::Filter::Linear;
config.mag_filter = GPUSampler::Filter::Linear;
config.mip_filter = GPUSampler::Filter::Linear;
break;
default:
break;
}
static constexpr auto map_address_mode = [](const reshadefx::texture_address_mode m) {
switch (m)
{
case reshadefx::texture_address_mode::wrap:
return GPUSampler::AddressMode::Repeat;
case reshadefx::texture_address_mode::mirror:
Panic("Not implemented");
case reshadefx::texture_address_mode::clamp:
return GPUSampler::AddressMode::ClampToEdge;
case reshadefx::texture_address_mode::border:
default:
return GPUSampler::AddressMode::ClampToBorder;
}
};
config.address_u = map_address_mode(si.address_u);
config.address_v = map_address_mode(si.address_v);
config.address_w = map_address_mode(si.address_w);
return config;
}
static GPUPipeline::BlendState MapBlendState(const reshadefx::pass_info& pi)
{
static constexpr auto map_blend_op = [](const reshadefx::pass_blend_op o) {
switch (o)
{
case reshadefx::pass_blend_op::add:
return GPUPipeline::BlendOp::Add;
case reshadefx::pass_blend_op::subtract:
return GPUPipeline::BlendOp::Subtract;
case reshadefx::pass_blend_op::reverse_subtract:
return GPUPipeline::BlendOp::ReverseSubtract;
case reshadefx::pass_blend_op::min:
return GPUPipeline::BlendOp::Min;
case reshadefx::pass_blend_op::max:
default:
return GPUPipeline::BlendOp::Max;
}
};
static constexpr auto map_blend_factor = [](const reshadefx::pass_blend_factor f) {
switch (f)
{
case reshadefx::pass_blend_factor::zero:
return GPUPipeline::BlendFunc::Zero;
case reshadefx::pass_blend_factor::one:
return GPUPipeline::BlendFunc::One;
case reshadefx::pass_blend_factor::source_color:
return GPUPipeline::BlendFunc::SrcColor;
case reshadefx::pass_blend_factor::one_minus_source_color:
return GPUPipeline::BlendFunc::InvSrcColor;
case reshadefx::pass_blend_factor::dest_color:
return GPUPipeline::BlendFunc::DstColor;
case reshadefx::pass_blend_factor::one_minus_dest_color:
return GPUPipeline::BlendFunc::InvDstColor;
case reshadefx::pass_blend_factor::source_alpha:
return GPUPipeline::BlendFunc::SrcAlpha;
case reshadefx::pass_blend_factor::one_minus_source_alpha:
return GPUPipeline::BlendFunc::InvSrcAlpha;
case reshadefx::pass_blend_factor::dest_alpha:
default:
return GPUPipeline::BlendFunc::DstAlpha;
}
};
GPUPipeline::BlendState bs = GPUPipeline::BlendState::GetNoBlendingState();
bs.enable = (pi.blend_enable[0] != 0);
bs.blend_op = map_blend_op(pi.blend_op[0]);
bs.src_blend = map_blend_factor(pi.src_blend[0]);
bs.dst_blend = map_blend_factor(pi.dest_blend[0]);
bs.alpha_blend_op = map_blend_op(pi.blend_op_alpha[0]);
bs.src_alpha_blend = map_blend_factor(pi.src_blend_alpha[0]);
bs.dst_alpha_blend = map_blend_factor(pi.dest_blend_alpha[0]);
bs.write_mask = pi.color_write_mask[0];
return bs;
}
static GPUPipeline::Primitive MapPrimitive(reshadefx::primitive_topology topology)
{
switch (topology)
{
case reshadefx::primitive_topology::point_list:
return GPUPipeline::Primitive::Points;
case reshadefx::primitive_topology::line_list:
return GPUPipeline::Primitive::Lines;
case reshadefx::primitive_topology::line_strip:
Panic("Unhandled line strip");
case reshadefx::primitive_topology::triangle_list:
return GPUPipeline::Primitive::Triangles;
case reshadefx::primitive_topology::triangle_strip:
default:
return GPUPipeline::Primitive::TriangleStrips;
}
}
PostProcessing::ReShadeFXShader::ReShadeFXShader() = default;
PostProcessing::ReShadeFXShader::~ReShadeFXShader() = default;
bool PostProcessing::ReShadeFXShader::LoadFromFile(std::string name, const char* filename, bool only_config,
Error* error)
{
DebugAssert(only_config || g_gpu_device);
m_filename = filename;
m_name = std::move(name);
reshadefx::module temp_module;
if (!CreateModule(only_config ? DEFAULT_BUFFER_WIDTH : g_gpu_device->GetWindowWidth(),
only_config ? DEFAULT_BUFFER_HEIGHT : g_gpu_device->GetWindowHeight(), &temp_module, error))
return false;
if (!CreateOptions(temp_module, error))
return false;
if (!temp_module.techniques.empty())
{
u32 max_rt = 0;
bool has_passes = false;
for (const reshadefx::technique_info& tech : temp_module.techniques)
{
for (const reshadefx::pass_info& pi : tech.passes)
{
has_passes = true;
for (u32 i = 0; i < std::size(pi.render_target_names); i++)
{
if (pi.render_target_names[i].empty())
break;
max_rt = std::max(max_rt, i);
}
if (pi.samplers.size() > GPUDevice::MAX_TEXTURE_SAMPLERS)
{
Error::SetString(error, fmt::format("Too many samplers ({}) in pass {}, only {} are supported.",
pi.samplers.size(), pi.name, GPUDevice::MAX_TEXTURE_SAMPLERS));
return false;
}
}
}
if (!has_passes)
{
Error::SetString(error, "No passes defined in file.");
return false;
}
else if (max_rt > 0)
{
Error::SetString(error, "Shaders with multiple render targets are currently not supported.");
return false;
}
}
// Might go invalid when creating pipelines.
m_valid = true;
return true;
}
bool PostProcessing::ReShadeFXShader::IsValid() const
{
return m_valid;
}
bool PostProcessing::ReShadeFXShader::CreateModule(s32 buffer_width, s32 buffer_height, reshadefx::module* mod,
Error* error)
{
reshadefx::preprocessor pp;
pp.add_include_path(std::filesystem::path(Path::GetDirectory(m_filename)));
pp.add_include_path(std::filesystem::path(Path::Combine(
EmuFolders::Resources, "shaders" FS_OSPATH_SEPARATOR_STR "reshade" FS_OSPATH_SEPARATOR_STR "Shaders")));
pp.add_macro_definition("__RESHADE__", "50901");
pp.add_macro_definition("BUFFER_WIDTH", std::to_string(buffer_width)); // TODO: can we make these uniforms?
pp.add_macro_definition("BUFFER_HEIGHT", std::to_string(buffer_height));
pp.add_macro_definition("BUFFER_RCP_WIDTH", std::to_string(1.0f / static_cast<float>(buffer_width)));
pp.add_macro_definition("BUFFER_RCP_HEIGHT", std::to_string(1.0f / static_cast<float>(buffer_height)));
pp.add_macro_definition("BUFFER_COLOR_BIT_DEPTH", "32");
switch (GetRenderAPI())
{
case RenderAPI::D3D11:
case RenderAPI::D3D12:
pp.add_macro_definition("__RENDERER__", "0x0B000");
break;
case RenderAPI::OpenGL:
case RenderAPI::OpenGLES:
case RenderAPI::Vulkan:
case RenderAPI::Metal:
pp.add_macro_definition("__RENDERER__", "0x14300");
break;
default:
UnreachableCode();
break;
}
if (!pp.append_file(std::filesystem::path(m_filename)))
{
Error::SetString(error, fmt::format("Failed to preprocess:\n{}", pp.errors()));
return false;
}
std::unique_ptr<reshadefx::codegen> cg = CreateRFXCodegen();
if (!cg)
return false;
reshadefx::parser parser;
if (!parser.parse(pp.output(), cg.get()))
{
Error::SetString(error, fmt::format("Failed to parse:\n{}", parser.errors()));
return false;
}
cg->write_result(*mod);
// FileSystem::WriteBinaryFile("D:\\out.txt", mod->code.data(), mod->code.size());
return true;
}
static std::string_view GetStringAnnotationValue(const std::vector<reshadefx::annotation>& annotations,
const std::string_view& annotation_name,
const std::string_view& default_value)
{
for (const reshadefx::annotation& an : annotations)
{
if (an.name != annotation_name)
continue;
if (an.type.base != reshadefx::type::t_string)
continue;
return an.value.string_data;
}
return default_value;
}
static bool GetBooleanAnnotationValue(const std::vector<reshadefx::annotation>& annotations,
const std::string_view& annotation_name, bool default_value)
{
for (const reshadefx::annotation& an : annotations)
{
if (an.name != annotation_name)
continue;
if (an.type.base != reshadefx::type::t_bool)
continue;
return (an.value.as_int[0] != 0);
}
return default_value;
}
static PostProcessing::ShaderOption::ValueVector
GetVectorAnnotationValue(const reshadefx::uniform_info& uniform, const std::string_view& annotation_name,
const PostProcessing::ShaderOption::ValueVector& default_value)
{
PostProcessing::ShaderOption::ValueVector vv = default_value;
for (const reshadefx::annotation& an : uniform.annotations)
{
if (an.name != annotation_name)
continue;
const u32 components = std::min<u32>(an.type.components(), PostProcessing::ShaderOption::MAX_VECTOR_COMPONENTS);
if (an.type.base == uniform.type.base)
{
if (components > 0)
std::memcpy(&vv[0].float_value, &an.value.as_float[0], sizeof(float) * components);
break;
}
else if (an.type.base == reshadefx::type::t_string)
{
// Convert from string.
if (uniform.type.base == reshadefx::type::t_float)
{
if (an.value.string_data == "BUFFER_WIDTH")
vv[0].float_value = DEFAULT_BUFFER_WIDTH;
else if (an.value.string_data == "BUFFER_HEIGHT")
vv[0].float_value = DEFAULT_BUFFER_HEIGHT;
else
vv[0].float_value = StringUtil::FromChars<float>(an.value.string_data).value_or(1000.0f);
}
else if (uniform.type.base == reshadefx::type::t_int)
{
if (an.value.string_data == "BUFFER_WIDTH")
vv[0].int_value = DEFAULT_BUFFER_WIDTH;
else if (an.value.string_data == "BUFFER_HEIGHT")
vv[0].int_value = DEFAULT_BUFFER_HEIGHT;
else
vv[0].int_value = StringUtil::FromChars<s32>(an.value.string_data).value_or(1000);
}
else
{
Log_ErrorFmt("Unhandled string value for '{}' (annotation type: {}, uniform type {})", uniform.name,
an.type.description(), uniform.type.description());
}
break;
}
else if (an.type.base == reshadefx::type::t_int)
{
// Convert from int.
if (uniform.type.base == reshadefx::type::t_float)
{
for (u32 i = 0; i < components; i++)
vv[i].float_value = static_cast<float>(an.value.as_int[i]);
}
else if (uniform.type.base == reshadefx::type::t_bool)
{
for (u32 i = 0; i < components; i++)
vv[i].int_value = (an.value.as_int[i] != 0) ? 1 : 0;
}
}
else if (an.type.base == reshadefx::type::t_float)
{
// Convert from float.
if (uniform.type.base == reshadefx::type::t_int)
{
for (u32 i = 0; i < components; i++)
vv[i].int_value = static_cast<int>(an.value.as_float[i]);
}
else if (uniform.type.base == reshadefx::type::t_bool)
{
for (u32 i = 0; i < components; i++)
vv[i].int_value = (an.value.as_float[i] != 0.0f) ? 1 : 0;
}
}
break;
}
return vv;
}
bool PostProcessing::ReShadeFXShader::CreateOptions(const reshadefx::module& mod, Error* error)
{
for (const reshadefx::uniform_info& ui : mod.uniforms)
{
SourceOptionType so;
if (!GetSourceOption(ui, &so, error))
return false;
if (so != SourceOptionType::None)
{
Log_DevFmt("Add source based option {} at offset {} ({})", static_cast<u32>(so), ui.offset, ui.name);
SourceOption sopt;
sopt.source = so;
sopt.offset = ui.offset;
const ShaderOption::ValueVector min =
GetVectorAnnotationValue(ui, "min", ShaderOption::MakeFloatVector(0, 0, 0, 0));
const ShaderOption::ValueVector max =
GetVectorAnnotationValue(ui, "max", ShaderOption::MakeFloatVector(1, 1, 1, 1));
const ShaderOption::ValueVector smoothing =
GetVectorAnnotationValue(ui, "smoothing", ShaderOption::MakeFloatVector(0));
const ShaderOption::ValueVector step =
GetVectorAnnotationValue(ui, "step", ShaderOption::MakeFloatVector(0, 1, 0, 0));
sopt.min = min[0].float_value;
sopt.max = max[0].float_value;
sopt.smoothing = smoothing[0].float_value;
std::memcpy(&sopt.step[0], &step[0].float_value, sizeof(sopt.value));
std::memcpy(&sopt.value[0], &ui.initializer_value.as_float[0], sizeof(sopt.value));
m_source_options.push_back(std::move(sopt));
continue;
}
ShaderOption opt;
opt.name = ui.name;
if (!GetBooleanAnnotationValue(ui.annotations, "hidden", false))
{
opt.ui_name = GetStringAnnotationValue(ui.annotations, "ui_label", std::string_view());
if (opt.ui_name.empty())
opt.ui_name = ui.name;
}
// const std::string_view ui_type = GetStringAnnotationValue(ui.annotations, "ui_type", std::string_view();
switch (ui.type.base)
{
case reshadefx::type::t_float:
opt.type = ShaderOption::Type::Float;
break;
case reshadefx::type::t_int:
case reshadefx::type::t_uint:
opt.type = ShaderOption::Type::Int;
break;
case reshadefx::type::t_bool:
opt.type = ShaderOption::Type::Bool;
break;
default:
Error::SetString(error, fmt::format("Unhandled uniform type {} ({})", static_cast<u32>(ui.type.base), ui.name));
return false;
}
opt.buffer_offset = ui.offset;
opt.buffer_size = ui.size;
opt.vector_size = ui.type.components();
if (opt.vector_size == 0 || opt.vector_size > ShaderOption::MAX_VECTOR_COMPONENTS)
{
Error::SetString(error,
fmt::format("Unhandled vector size {} ({})", static_cast<u32>(ui.type.components()), ui.name));
return false;
}
opt.min_value = GetVectorAnnotationValue(ui, "ui_min", {});
opt.max_value = GetVectorAnnotationValue(ui, "ui_max", {});
ShaderOption::ValueVector default_step = {};
switch (opt.type)
{
case ShaderOption::Type::Float:
{
for (u32 i = 0; i < opt.vector_size; i++)
{
const float range = opt.max_value[i].float_value - opt.min_value[i].float_value;
default_step[i].float_value = range / 100.0f;
}
}
break;
case ShaderOption::Type::Int:
{
for (u32 i = 0; i < opt.vector_size; i++)
{
const s32 range = opt.max_value[i].int_value - opt.min_value[i].int_value;
default_step[i].int_value = std::max(range / 100, 1);
}
}
break;
default:
break;
}
opt.step_value = GetVectorAnnotationValue(ui, "ui_step", default_step);
if (ui.has_initializer_value)
{
std::memcpy(&opt.default_value[0].float_value, &ui.initializer_value.as_float[0],
sizeof(float) * opt.vector_size);
}
else
{
opt.default_value = {};
}
// Assume default if user doesn't set it.
opt.value = opt.default_value;
m_options.push_back(std::move(opt));
}
m_uniforms_size = mod.total_uniform_size;
Log_DevFmt("{}: {} options", m_filename, m_options.size());
return true;
}
bool PostProcessing::ReShadeFXShader::GetSourceOption(const reshadefx::uniform_info& ui, SourceOptionType* si,
Error* error)
{
const std::string_view source = GetStringAnnotationValue(ui.annotations, "source", {});
if (!source.empty())
{
if (source == "timer")
{
if (ui.type.base != reshadefx::type::t_float || ui.type.components() > 1)
{
Error::SetString(
error, fmt::format("Unexpected type '{}' for timer source in uniform '{}'", ui.type.description(), ui.name));
return false;
}
*si = SourceOptionType::Timer;
return true;
}
else if (source == "framecount")
{
if ((!ui.type.is_integral() && !ui.type.is_floating_point()) || ui.type.components() > 1)
{
Error::SetString(
error, fmt::format("Unexpected type '{}' for timer source in uniform '{}'", ui.type.description(), ui.name));
return false;
}
*si = (ui.type.base == reshadefx::type::t_float) ? SourceOptionType::FrameCountF : SourceOptionType::FrameCount;
return true;
}
else if (source == "frametime")
{
if (ui.type.base != reshadefx::type::t_float || ui.type.components() > 1)
{
Error::SetString(
error, fmt::format("Unexpected type '{}' for timer source in uniform '{}'", ui.type.description(), ui.name));
return false;
}
*si = SourceOptionType::FrameTime;
return true;
}
else if (source == "pingpong")
{
if (!ui.type.is_floating_point() || ui.type.components() < 2)
{
Error::SetString(error, fmt::format("Unexpected type '{}' for pingpong source in uniform '{}'",
ui.type.description(), ui.name));
return false;
}
*si = SourceOptionType::PingPong;
return true;
}
else if (source == "mousepoint")
{
if (!ui.type.is_floating_point() || ui.type.components() < 2)
{
Error::SetString(error, fmt::format("Unexpected type '{}' for mousepoint source in uniform '{}'",
ui.type.description(), ui.name));
return false;
}
*si = SourceOptionType::MousePoint;
return true;
}
else if (source == "random")
{
if ((!ui.type.is_floating_point() && !ui.type.is_integral()) || ui.type.components() != 1)
{
Error::SetString(error, fmt::format("Unexpected type '{}' ({} components) for random source in uniform '{}'",
ui.type.description(), ui.type.components(), ui.name));
return false;
}
// TODO: This is missing min/max handling.
*si = (ui.type.base == reshadefx::type::t_float) ? SourceOptionType::RandomF : SourceOptionType::Random;
return true;
}
else if (source == "overlay_active" || source == "has_depth")
{
*si = SourceOptionType::Zero;
return true;
}
else if (source == "bufferwidth")
{
*si = (ui.type.base == reshadefx::type::t_float) ? SourceOptionType::BufferWidthF : SourceOptionType::BufferWidth;
return true;
}
else if (source == "bufferheight")
{
*si =
(ui.type.base == reshadefx::type::t_float) ? SourceOptionType::BufferHeightF : SourceOptionType::BufferHeight;
return true;
}
else if (source == "internalwidth")
{
*si =
(ui.type.base == reshadefx::type::t_float) ? SourceOptionType::InternalWidthF : SourceOptionType::InternalWidth;
return true;
}
else if (source == "internalheight")
{
*si = (ui.type.base == reshadefx::type::t_float) ? SourceOptionType::InternalHeightF :
SourceOptionType::InternalHeight;
return true;
}
else
{
Error::SetString(error, fmt::format("Unknown source '{}' in uniform '{}'", source, ui.name));
return false;
}
}
if (ui.has_initializer_value)
{
if (ui.initializer_value.string_data == "BUFFER_WIDTH")
{
*si = (ui.type.base == reshadefx::type::t_float) ? SourceOptionType::BufferWidthF : SourceOptionType::BufferWidth;
return true;
}
else if (ui.initializer_value.string_data == "BUFFER_HEIGHT")
{
*si =
(ui.type.base == reshadefx::type::t_float) ? SourceOptionType::BufferHeightF : SourceOptionType::BufferHeight;
return true;
}
}
*si = SourceOptionType::None;
return true;
}
bool PostProcessing::ReShadeFXShader::CreatePasses(GPUTexture::Format backbuffer_format, reshadefx::module& mod,
Error* error)
{
u32 total_passes = 0;
for (const reshadefx::technique_info& tech : mod.techniques)
total_passes += static_cast<u32>(tech.passes.size());
if (total_passes == 0)
{
Error::SetString(error, "No passes defined.");
return false;
}
m_passes.reserve(total_passes);
// Named render targets.
for (const reshadefx::texture_info& ti : mod.textures)
{
Texture tex;
if (!ti.semantic.empty())
{
Log_DevFmt("Ignoring semantic {} texture {}", ti.semantic, ti.unique_name);
continue;
}
if (ti.render_target)
{
tex.rt_scale = 1.0f;
tex.format = MapTextureFormat(ti.format);
Log_DevFmt("Creating render target '{}' {}", ti.unique_name, GPUTexture::GetFormatName(tex.format));
}
else
{
const std::string_view source = GetStringAnnotationValue(ti.annotations, "source", {});
if (source.empty())
{
Error::SetString(error, fmt::format("Non-render target texture '{}' is missing source.", ti.unique_name));
return false;
}
Common::RGBA8Image image;
if (const std::string image_path =
Path::Combine(EmuFolders::Shaders, Path::Combine("reshade" FS_OSPATH_SEPARATOR_STR "Textures", source));
!image.LoadFromFile(image_path.c_str()))
{
// Might be a base file/resource instead.
const std::string resource_name = Path::Combine("shaders/reshade/Textures", source);
if (std::optional<std::vector<u8>> resdata = Host::ReadResourceFile(resource_name.c_str());
!resdata.has_value() || !image.LoadFromBuffer(resource_name.c_str(), resdata->data(), resdata->size()))
{
Error::SetString(error, fmt::format("Failed to load image '{}' (from '{}')", source, image_path).c_str());
return false;
}
}
tex.rt_scale = 0.0f;
tex.texture = g_gpu_device->CreateTexture(image.GetWidth(), image.GetHeight(), 1, 1, 1, GPUTexture::Type::Texture,
GPUTexture::Format::RGBA8, image.GetPixels(), image.GetPitch());
if (!tex.texture)
{
Error::SetString(
error, fmt::format("Failed to create {}x{} texture ({})", image.GetWidth(), image.GetHeight(), source));
return false;
}
Log_DevFmt("Loaded {}x{} texture ({})", image.GetWidth(), image.GetHeight(), source);
}
tex.reshade_name = ti.unique_name;
m_textures.push_back(std::move(tex));
}
for (reshadefx::technique_info& tech : mod.techniques)
{
for (reshadefx::pass_info& pi : tech.passes)
{
const bool is_final = (&tech == &mod.techniques.back() && &pi == &tech.passes.back());
Pass pass;
pass.num_vertices = pi.num_vertices;
if (is_final)
{
pass.render_target = OUTPUT_COLOR_TEXTURE;
}
else if (!pi.render_target_names[0].empty())
{
pass.render_target = static_cast<TextureID>(m_textures.size());
for (u32 i = 0; i < static_cast<u32>(m_textures.size()); i++)
{
if (m_textures[i].reshade_name == pi.render_target_names[0])
{
pass.render_target = static_cast<TextureID>(i);
break;
}
}
if (pass.render_target == static_cast<TextureID>(m_textures.size()))
{
Error::SetString(error, fmt::format("Unknown texture '{}' used as render target in pass '{}'",
pi.render_target_names[0], pi.name));
return false;
}
}
else
{
Texture new_rt;
new_rt.rt_scale = 1.0f;
new_rt.format = backbuffer_format;
pass.render_target = static_cast<TextureID>(m_textures.size());
m_textures.push_back(std::move(new_rt));
}
u32 texture_slot = 0;
for (const reshadefx::sampler_info& si : pi.samplers)
{
Sampler sampler;
sampler.slot = texture_slot++;
sampler.reshade_name = si.unique_name;
sampler.texture_id = static_cast<TextureID>(m_textures.size());
for (const reshadefx::texture_info& ti : mod.textures)
{
if (ti.unique_name == si.texture_name)
{
// found the texture, now look for our side of it
if (ti.semantic == "COLOR")
{
sampler.texture_id = INPUT_COLOR_TEXTURE;
break;
}
else if (ti.semantic == "DEPTH")
{
Log_WarningFmt("Shader '{}' uses input depth as '{}' which is not supported.", m_name, si.texture_name);
sampler.texture_id = INPUT_DEPTH_TEXTURE;
break;
}
else if (!ti.semantic.empty())
{
Error::SetString(error, fmt::format("Unknown semantic {} in texture {}", ti.semantic, ti.name));
return false;
}
// must be a render target, or another texture
for (u32 i = 0; i < static_cast<u32>(m_textures.size()); i++)
{
if (m_textures[i].reshade_name == si.texture_name)
{
// hook it up
sampler.texture_id = static_cast<TextureID>(i);
break;
}
}
break;
}
}
if (sampler.texture_id == static_cast<TextureID>(m_textures.size()))
{
Error::SetString(
error, fmt::format("Unknown texture {} (sampler {}) in pass {}", si.texture_name, si.name, pi.name));
return false;
}
Log_DevFmt("Pass {} Texture {} => {}", pi.name, si.texture_name, sampler.texture_id);
sampler.sampler = GetSampler(MapSampler(si));
if (!sampler.sampler)
{
Error::SetString(error, "Failed to create sampler.");
return false;
}
pass.samplers.push_back(std::move(sampler));
}
#ifdef _DEBUG
pass.name = std::move(pi.name);
#endif
m_passes.push_back(std::move(pass));
}
}
return true;
}
const char* PostProcessing::ReShadeFXShader::GetTextureNameForID(TextureID id) const
{
if (id == INPUT_COLOR_TEXTURE)
return "Input Color Texture / Backbuffer";
else if (id == INPUT_DEPTH_TEXTURE)
return "Input Depth Texture";
else if (id == OUTPUT_COLOR_TEXTURE)
return "Output Color Texture";
else if (id < 0 || static_cast<size_t>(id) >= m_textures.size())
return "UNKNOWN";
else
return m_textures[static_cast<size_t>(id)].reshade_name.c_str();
}
GPUTexture* PostProcessing::ReShadeFXShader::GetTextureByID(TextureID id, GPUTexture* input,
GPUFramebuffer* final_target) const
{
if (id < 0)
{
if (id == INPUT_COLOR_TEXTURE)
{
return input;
}
else if (id == INPUT_DEPTH_TEXTURE)
{
return PostProcessing::GetDummyTexture();
}
else if (id == OUTPUT_COLOR_TEXTURE)
{
Panic("Wrong state for final target");
return nullptr;
}
else
{
Panic("Unexpected reserved texture ID");
return nullptr;
}
}
if (static_cast<size_t>(id) >= m_textures.size())
Panic("Unexpected texture ID");
return m_textures[static_cast<size_t>(id)].texture.get();
}
GPUFramebuffer* PostProcessing::ReShadeFXShader::GetFramebufferByID(TextureID id, GPUTexture* input,
GPUFramebuffer* final_target) const
{
if (id < 0)
{
if (id == OUTPUT_COLOR_TEXTURE)
{
return final_target;
}
else
{
Panic("Unexpected reserved texture ID");
return nullptr;
}
}
if (static_cast<size_t>(id) >= m_textures.size())
Panic("Unexpected texture ID");
const Texture& tex = m_textures[static_cast<size_t>(id)];
Assert(tex.framebuffer);
return tex.framebuffer.get();
}
bool PostProcessing::ReShadeFXShader::CompilePipeline(GPUTexture::Format format, u32 width, u32 height)
{
const RenderAPI api = g_gpu_device->GetRenderAPI();
const bool needs_main_defn = (api != RenderAPI::D3D11 && api != RenderAPI::D3D12);
m_valid = false;
m_textures.clear();
m_passes.clear();
Error error;
reshadefx::module mod;
if (!CreateModule(width, height, &mod, &error))
{
Log_ErrorPrintf("Failed to create module for '%s': %s", m_name.c_str(), error.GetDescription().c_str());
return false;
}
DebugAssert(!mod.techniques.empty());
if (!CreatePasses(format, mod, &error))
{
Log_ErrorPrintf("Failed to create passes for '%s': %s", m_name.c_str(), error.GetDescription().c_str());
return false;
}
const std::string_view code(mod.code.data(), mod.code.size());
auto get_shader = [needs_main_defn, &code](const std::string& name, const std::vector<Sampler>& samplers,
GPUShaderStage stage) {
std::string real_code;
if (needs_main_defn)
{
// dFdx/dFdy are not defined in the vertex shader.
const char* defns = (stage == GPUShaderStage::Vertex) ? "#define dFdx(x) x\n#define dFdy(x) x\n" : "";
real_code = fmt::format("#version 460 core\n#define ENTRY_POINT_{}\n{}\n{}", name, defns, code);
for (const Sampler& sampler : samplers)
{
std::string decl = fmt::format("binding = /*SAMPLER:{}*/0", sampler.reshade_name);
std::string replacement = fmt::format("binding = {}", sampler.slot);
StringUtil::ReplaceAll(&real_code, decl, replacement);
}
}
else
{
real_code = std::string(code);
for (const Sampler& sampler : samplers)
{
std::string decl = fmt::format("__{}_t : register( t0);", sampler.reshade_name);
std::string replacement =
fmt::format("__{}_t : register({}t{});", sampler.reshade_name, (sampler.slot < 10) ? " " : "", sampler.slot);
StringUtil::ReplaceAll(&real_code, decl, replacement);
decl = fmt::format("__{}_s : register( s0);", sampler.reshade_name);
replacement =
fmt::format("__{}_s : register({}s{});", sampler.reshade_name, (sampler.slot < 10) ? " " : "", sampler.slot);
StringUtil::ReplaceAll(&real_code, decl, replacement);
}
}
// FileSystem::WriteStringToFile("D:\\foo.txt", real_code);
std::unique_ptr<GPUShader> sshader =
g_gpu_device->CreateShader(stage, real_code, needs_main_defn ? "main" : name.c_str());
if (!sshader)
Log_ErrorPrintf("Failed to compile function '%s'", name.c_str());
return sshader;
};
GPUPipeline::GraphicsConfig plconfig;
plconfig.layout = GPUPipeline::Layout::MultiTextureAndUBO;
plconfig.primitive = GPUPipeline::Primitive::Triangles;
plconfig.depth_format = GPUTexture::Format::Unknown;
plconfig.rasterization = GPUPipeline::RasterizationState::GetNoCullState();
plconfig.depth = GPUPipeline::DepthState::GetNoTestsState();
plconfig.blend = GPUPipeline::BlendState::GetNoBlendingState();
plconfig.samples = 1;
plconfig.per_sample_shading = false;
u32 passnum = 0;
for (const reshadefx::technique_info& tech : mod.techniques)
{
for (const reshadefx::pass_info& info : tech.passes)
{
DebugAssert(passnum < m_passes.size());
Pass& pass = m_passes[passnum++];
auto vs = get_shader(info.vs_entry_point, pass.samplers, GPUShaderStage::Vertex);
auto fs = get_shader(info.ps_entry_point, pass.samplers, GPUShaderStage::Fragment);
if (!vs || !fs)
return false;
plconfig.color_format = (pass.render_target >= 0) ? m_textures[pass.render_target].format : format;
plconfig.blend = MapBlendState(info);
plconfig.primitive = MapPrimitive(info.topology);
plconfig.vertex_shader = vs.get();
plconfig.fragment_shader = fs.get();
plconfig.geometry_shader = nullptr;
if (!plconfig.vertex_shader || !plconfig.fragment_shader)
return false;
pass.pipeline = g_gpu_device->CreatePipeline(plconfig);
if (!pass.pipeline)
{
Log_ErrorPrintf("Failed to create pipeline for pass '%s'", info.name.c_str());
return false;
}
}
}
m_valid = true;
return true;
}
bool PostProcessing::ReShadeFXShader::ResizeOutput(GPUTexture::Format format, u32 width, u32 height)
{
m_valid = false;
for (Texture& tex : m_textures)
{
if (tex.rt_scale == 0.0f)
continue;
tex.framebuffer.reset();
tex.texture.reset();
const u32 t_width = std::max(static_cast<u32>(static_cast<float>(width) * tex.rt_scale), 1u);
const u32 t_height = std::max(static_cast<u32>(static_cast<float>(height) * tex.rt_scale), 1u);
tex.texture = g_gpu_device->CreateTexture(t_width, t_height, 1, 1, 1, GPUTexture::Type::RenderTarget, tex.format);
if (!tex.texture)
{
Log_ErrorPrintf("Failed to create %ux%u texture", t_width, t_height);
return {};
}
tex.framebuffer = g_gpu_device->CreateFramebuffer(tex.texture.get());
if (!tex.framebuffer)
{
Log_ErrorPrintf("Failed to create %ux%u texture framebuffer", t_width, t_height);
return {};
}
}
m_valid = true;
return true;
}
bool PostProcessing::ReShadeFXShader::Apply(GPUTexture* input, GPUFramebuffer* final_target, s32 final_left,
s32 final_top, s32 final_width, s32 final_height, s32 orig_width,
s32 orig_height, u32 target_width, u32 target_height)
{
GL_PUSH_FMT("PostProcessingShaderFX {}", m_name);
m_frame_count++;
// Reshade always draws at full size.
g_gpu_device->SetViewportAndScissor(0, 0, target_width, target_height);
if (m_uniforms_size > 0)
{
GL_SCOPE_FMT("Uniforms: {} bytes", m_uniforms_size);
u8* uniforms = static_cast<u8*>(g_gpu_device->MapUniformBuffer(m_uniforms_size));
for (const ShaderOption& opt : m_options)
{
DebugAssert((opt.buffer_offset + opt.buffer_size) <= m_uniforms_size);
std::memcpy(uniforms + opt.buffer_offset, &opt.value[0].float_value, opt.buffer_size);
}
for (const SourceOption& so : m_source_options)
{
u8* dst = uniforms + so.offset;
switch (so.source)
{
case SourceOptionType::Zero:
{
const u32 value = 0;
std::memcpy(dst, &value, sizeof(value));
}
break;
case SourceOptionType::Timer:
{
const float value = static_cast<float>(PostProcessing::GetTimer().GetTimeMilliseconds());
std::memcpy(dst, &value, sizeof(value));
}
break;
case SourceOptionType::FrameTime:
{
const float value = static_cast<float>(m_frame_timer.GetTimeMilliseconds());
std::memcpy(dst, &value, sizeof(value));
}
break;
case SourceOptionType::FrameCount:
{
std::memcpy(dst, &m_frame_count, sizeof(m_frame_count));
}
break;
case SourceOptionType::FrameCountF:
{
const float value = static_cast<float>(m_frame_count);
std::memcpy(dst, &value, sizeof(value));
}
break;
case SourceOptionType::PingPong:
{
float increment = so.step[1] == 0 ?
so.step[0] :
(so.step[0] + std::fmod(static_cast<float>(std::rand()), so.step[1] - so.step[0] + 1));
std::array<float, 2> value = {so.value[0].float_value, so.value[1].float_value};
if (value[1] >= 0)
{
increment = std::max(increment - std::max(0.0f, so.smoothing - (so.max - value[0])), 0.05f);
increment *= static_cast<float>(m_frame_timer.GetTimeMilliseconds() * 1e-9);
if ((value[0] += increment) >= so.max)
{
value[0] = so.max;
value[1] = -1;
}
}
else
{
increment = std::max(increment - std::max(0.0f, so.smoothing - (value[0] - so.min)), 0.05f);
increment *= static_cast<float>(m_frame_timer.GetTimeMilliseconds() * 1e-9);
if ((value[0] -= increment) <= so.min)
{
value[0] = so.min;
value[1] = +1;
}
}
std::memcpy(dst, value.data(), sizeof(value));
}
break;
case SourceOptionType::MousePoint:
{
const std::pair<float, float> mpos = InputManager::GetPointerAbsolutePosition(0);
std::memcpy(dst, &mpos.first, sizeof(float));
std::memcpy(dst + sizeof(float), &mpos.second, sizeof(float));
}
break;
case SourceOptionType::Random:
{
const s32 rv = m_random() % 32767; // reshade uses rand(), which on some platforms has a 0x7fff maximum.
std::memcpy(dst, &rv, sizeof(rv));
}
break;
case SourceOptionType::RandomF:
{
const float rv = (m_random() - m_random.min()) / static_cast<float>(m_random.max() - m_random.min());
std::memcpy(dst, &rv, sizeof(rv));
}
break;
case SourceOptionType::BufferWidth:
case SourceOptionType::BufferHeight:
{
const s32 value = (so.source == SourceOptionType::BufferWidth) ? static_cast<s32>(target_width) :
static_cast<s32>(target_height);
std::memcpy(dst, &value, sizeof(value));
}
break;
case SourceOptionType::BufferWidthF:
case SourceOptionType::BufferHeightF:
{
const float value = (so.source == SourceOptionType::BufferWidthF) ? static_cast<float>(target_width) :
static_cast<float>(target_height);
std::memcpy(dst, &value, sizeof(value));
}
break;
case SourceOptionType::InternalWidth:
case SourceOptionType::InternalHeight:
{
const s32 value =
(so.source == SourceOptionType::BufferWidth) ? static_cast<s32>(orig_width) : static_cast<s32>(orig_height);
std::memcpy(dst, &value, sizeof(value));
}
break;
case SourceOptionType::InternalWidthF:
case SourceOptionType::InternalHeightF:
{
const float value = (so.source == SourceOptionType::BufferWidthF) ? static_cast<float>(orig_width) :
static_cast<float>(orig_height);
std::memcpy(dst, &value, sizeof(value));
}
break;
default:
UnreachableCode();
break;
}
}
g_gpu_device->UnmapUniformBuffer(m_uniforms_size);
}
for (const Pass& pass : m_passes)
{
GL_SCOPE_FMT("Draw pass {}", pass.name.c_str());
GL_INS_FMT("Render Target: ID {} [{}]", pass.render_target, GetTextureNameForID(pass.render_target));
GPUFramebuffer* output_fb = GetFramebufferByID(pass.render_target, input, final_target);
if (!output_fb)
{
// Drawing to final buffer.
if (!g_gpu_device->BeginPresent(false))
{
GL_POP();
return false;
}
}
else
{
g_gpu_device->SetFramebuffer(output_fb);
}
g_gpu_device->SetPipeline(pass.pipeline.get());
// Set all inputs first, before the render pass starts.
std::bitset<GPUDevice::MAX_TEXTURE_SAMPLERS> bound_textures = {};
for (const Sampler& sampler : pass.samplers)
{
GL_INS_FMT("Texture Sampler {}: ID {} [{}]", sampler.slot, sampler.texture_id,
GetTextureNameForID(sampler.texture_id));
g_gpu_device->SetTextureSampler(sampler.slot, GetTextureByID(sampler.texture_id, input, final_target),
sampler.sampler);
bound_textures[sampler.slot] = true;
}
// Ensure RT wasn't left bound as a previous output, it breaks VK/DX12.
// TODO: Maybe move this into the backend? Not sure...
for (u32 i = 0; i < GPUDevice::MAX_TEXTURE_SAMPLERS; i++)
{
if (!bound_textures[i])
g_gpu_device->SetTextureSampler(i, nullptr, nullptr);
}
g_gpu_device->Draw(pass.num_vertices, 0);
}
GL_POP();
m_frame_timer.Reset();
return true;
}