Duckstation/src/core/dma.cpp
2023-12-20 22:44:50 +10:00

915 lines
28 KiB
C++

// SPDX-FileCopyrightText: 2019-2022 Connor McLaughlin <stenzek@gmail.com>
// SPDX-License-Identifier: (GPL-3.0 OR CC-BY-NC-ND-4.0)
#include "dma.h"
#include "bus.h"
#include "cdrom.h"
#include "cpu_code_cache.h"
#include "cpu_core.h"
#include "gpu.h"
#include "host.h"
#include "imgui.h"
#include "interrupt_controller.h"
#include "mdec.h"
#include "pad.h"
#include "spu.h"
#include "system.h"
#include "util/imgui_manager.h"
#include "util/state_wrapper.h"
#include "common/bitfield.h"
#include "common/log.h"
#include "common/string_util.h"
#include <array>
#include <memory>
#include <vector>
Log_SetChannel(DMA);
namespace DMA {
namespace {
enum class SyncMode : u32
{
Manual = 0,
Request = 1,
LinkedList = 2,
Reserved = 3
};
static constexpr PhysicalMemoryAddress BASE_ADDRESS_MASK = UINT32_C(0x00FFFFFF);
// static constexpr PhysicalMemoryAddress ADDRESS_MASK = UINT32_C(0x001FFFFC);
struct ChannelState
{
u32 base_address = 0;
union BlockControl
{
u32 bits;
union
{
BitField<u32, u32, 0, 16> word_count;
u32 GetWordCount() const { return (word_count == 0) ? 0x10000 : word_count; }
} manual;
union
{
BitField<u32, u32, 0, 16> block_size;
BitField<u32, u32, 16, 16> block_count;
u32 GetBlockSize() const { return (block_size == 0) ? 0x10000 : block_size; }
u32 GetBlockCount() const { return (block_count == 0) ? 0x10000 : block_count; }
} request;
} block_control = {};
union ChannelControl
{
u32 bits;
BitField<u32, bool, 0, 1> copy_to_device;
BitField<u32, bool, 1, 1> address_step_reverse;
BitField<u32, bool, 8, 1> chopping_enable;
BitField<u32, SyncMode, 9, 2> sync_mode;
BitField<u32, u32, 16, 3> chopping_dma_window_size;
BitField<u32, u32, 20, 3> chopping_cpu_window_size;
BitField<u32, bool, 24, 1> enable_busy;
BitField<u32, bool, 28, 1> start_trigger;
static constexpr u32 WRITE_MASK = 0b01110001'01110111'00000111'00000011;
} channel_control = {};
bool request = false;
};
union DPCR
{
u32 bits;
BitField<u32, u8, 0, 3> MDECin_priority;
BitField<u32, bool, 3, 1> MDECin_master_enable;
BitField<u32, u8, 4, 3> MDECout_priority;
BitField<u32, bool, 7, 1> MDECout_master_enable;
BitField<u32, u8, 8, 3> GPU_priority;
BitField<u32, bool, 10, 1> GPU_master_enable;
BitField<u32, u8, 12, 3> CDROM_priority;
BitField<u32, bool, 15, 1> CDROM_master_enable;
BitField<u32, u8, 16, 3> SPU_priority;
BitField<u32, bool, 19, 1> SPU_master_enable;
BitField<u32, u8, 20, 3> PIO_priority;
BitField<u32, bool, 23, 1> PIO_master_enable;
BitField<u32, u8, 24, 3> OTC_priority;
BitField<u32, bool, 27, 1> OTC_master_enable;
BitField<u32, u8, 28, 3> priority_offset;
BitField<u32, bool, 31, 1> unused;
ALWAYS_INLINE u8 GetPriority(Channel channel) const { return ((bits >> (static_cast<u8>(channel) * 4)) & u32(3)); }
ALWAYS_INLINE bool GetMasterEnable(Channel channel) const
{
return ConvertToBoolUnchecked((bits >> (static_cast<u8>(channel) * 4 + 3)) & u32(1));
}
};
static constexpr u32 DICR_WRITE_MASK = 0b00000000'11111111'10000000'00111111;
static constexpr u32 DICR_RESET_MASK = 0b01111111'00000000'00000000'00000000;
union DICR
{
u32 bits;
BitField<u32, bool, 15, 1> force_irq;
BitField<u32, bool, 16, 1> MDECin_irq_enable;
BitField<u32, bool, 17, 1> MDECout_irq_enable;
BitField<u32, bool, 18, 1> GPU_irq_enable;
BitField<u32, bool, 19, 1> CDROM_irq_enable;
BitField<u32, bool, 20, 1> SPU_irq_enable;
BitField<u32, bool, 21, 1> PIO_irq_enable;
BitField<u32, bool, 22, 1> OTC_irq_enable;
BitField<u32, bool, 23, 1> master_enable;
BitField<u32, bool, 24, 1> MDECin_irq_flag;
BitField<u32, bool, 25, 1> MDECout_irq_flag;
BitField<u32, bool, 26, 1> GPU_irq_flag;
BitField<u32, bool, 27, 1> CDROM_irq_flag;
BitField<u32, bool, 28, 1> SPU_irq_flag;
BitField<u32, bool, 29, 1> PIO_irq_flag;
BitField<u32, bool, 30, 1> OTC_irq_flag;
BitField<u32, bool, 31, 1> master_flag;
ALWAYS_INLINE bool IsIRQEnabled(Channel channel) const
{
return ConvertToBoolUnchecked((bits >> (static_cast<u8>(channel) + 16)) & u32(1));
}
ALWAYS_INLINE bool GetIRQFlag(Channel channel) const
{
return ConvertToBoolUnchecked((bits >> (static_cast<u8>(channel) + 24)) & u32(1));
}
ALWAYS_INLINE void SetIRQFlag(Channel channel) { bits |= (u32(1) << (static_cast<u8>(channel) + 24)); }
ALWAYS_INLINE void ClearIRQFlag(Channel channel) { bits &= ~(u32(1) << (static_cast<u8>(channel) + 24)); }
ALWAYS_INLINE void UpdateMasterFlag()
{
master_flag = master_enable && ((((bits >> 16) & u32(0b1111111)) & ((bits >> 24) & u32(0b1111111))) != 0);
}
};
} // namespace
static u32 GetAddressMask();
static void ClearState();
// is everything enabled for a channel to operate?
static bool CanTransferChannel(Channel channel, bool ignore_halt);
static bool IsTransferHalted();
static void UpdateIRQ();
// returns false if the DMA should now be halted
static TickCount GetTransferSliceTicks();
static TickCount GetTransferHaltTicks();
static void HaltTransfer(TickCount duration);
static void UnhaltTransfer(void*, TickCount ticks, TickCount ticks_late);
template<Channel channel>
static bool TransferChannel();
// from device -> memory
template<Channel channel>
static TickCount TransferDeviceToMemory(u32 address, u32 increment, u32 word_count);
// from memory -> device
template<Channel channel>
static TickCount TransferMemoryToDevice(u32 address, u32 increment, u32 word_count);
// configuration
static TickCount s_max_slice_ticks = 1000;
static TickCount s_halt_ticks = 100;
static std::vector<u32> s_transfer_buffer;
static std::unique_ptr<TimingEvent> s_unhalt_event;
static TickCount s_halt_ticks_remaining = 0;
static std::array<ChannelState, NUM_CHANNELS> s_state;
static DPCR s_DPCR = {};
static DICR s_DICR = {};
static constexpr std::array<bool (*)(), NUM_CHANNELS> s_channel_transfer_functions = {{
&TransferChannel<Channel::MDECin>,
&TransferChannel<Channel::MDECout>,
&TransferChannel<Channel::GPU>,
&TransferChannel<Channel::CDROM>,
&TransferChannel<Channel::SPU>,
&TransferChannel<Channel::PIO>,
&TransferChannel<Channel::OTC>,
}};
}; // namespace DMA
u32 DMA::GetAddressMask()
{
return Bus::g_ram_mask & 0xFFFFFFFCu;
}
void DMA::Initialize()
{
s_max_slice_ticks = g_settings.dma_max_slice_ticks;
s_halt_ticks = g_settings.dma_halt_ticks;
s_transfer_buffer.resize(32);
s_unhalt_event =
TimingEvents::CreateTimingEvent("DMA Transfer Unhalt", 1, s_max_slice_ticks, &DMA::UnhaltTransfer, nullptr, false);
Reset();
}
void DMA::Shutdown()
{
ClearState();
s_unhalt_event.reset();
}
void DMA::Reset()
{
ClearState();
s_unhalt_event->Deactivate();
}
void DMA::ClearState()
{
for (u32 i = 0; i < NUM_CHANNELS; i++)
{
ChannelState& cs = s_state[i];
cs.base_address = 0;
cs.block_control.bits = 0;
cs.channel_control.bits = 0;
cs.request = false;
}
s_DPCR.bits = 0x07654321;
s_DICR.bits = 0;
s_halt_ticks_remaining = 0;
}
bool DMA::DoState(StateWrapper& sw)
{
sw.Do(&s_halt_ticks_remaining);
for (u32 i = 0; i < NUM_CHANNELS; i++)
{
ChannelState& cs = s_state[i];
sw.Do(&cs.base_address);
sw.Do(&cs.block_control.bits);
sw.Do(&cs.channel_control.bits);
sw.Do(&cs.request);
}
sw.Do(&s_DPCR.bits);
sw.Do(&s_DICR.bits);
if (sw.IsReading())
{
if (s_halt_ticks_remaining > 0)
s_unhalt_event->SetIntervalAndSchedule(s_halt_ticks_remaining);
else
s_unhalt_event->Deactivate();
}
return !sw.HasError();
}
u32 DMA::ReadRegister(u32 offset)
{
const u32 channel_index = offset >> 4;
if (channel_index < 7)
{
switch (offset & UINT32_C(0x0F))
{
case 0x00:
{
Log_TracePrintf("DMA%u base address -> 0x%08X", channel_index, s_state[channel_index].base_address);
return s_state[channel_index].base_address;
}
case 0x04:
{
Log_TracePrintf("DMA%u block control -> 0x%08X", channel_index, s_state[channel_index].block_control.bits);
return s_state[channel_index].block_control.bits;
}
case 0x08:
{
Log_TracePrintf("DMA%u channel control -> 0x%08X", channel_index, s_state[channel_index].channel_control.bits);
return s_state[channel_index].channel_control.bits;
}
default:
break;
}
}
else
{
if (offset == 0x70)
{
Log_TracePrintf("DPCR -> 0x%08X", s_DPCR.bits);
return s_DPCR.bits;
}
else if (offset == 0x74)
{
Log_TracePrintf("DPCR -> 0x%08X", s_DPCR.bits);
return s_DICR.bits;
}
}
Log_ErrorPrintf("Unhandled register read: %02X", offset);
return UINT32_C(0xFFFFFFFF);
}
void DMA::WriteRegister(u32 offset, u32 value)
{
const u32 channel_index = offset >> 4;
if (channel_index < 7)
{
ChannelState& state = s_state[channel_index];
switch (offset & UINT32_C(0x0F))
{
case 0x00:
{
state.base_address = value & BASE_ADDRESS_MASK;
Log_TracePrintf("DMA channel %u base address <- 0x%08X", channel_index, state.base_address);
return;
}
case 0x04:
{
Log_TracePrintf("DMA channel %u block control <- 0x%08X", channel_index, value);
state.block_control.bits = value;
return;
}
case 0x08:
{
// HACK: Due to running DMA in slices, we can't wait for the current halt time to finish before running the
// first block of a new channel. This affects games like FF8, where they kick a SPU transfer while a GPU
// transfer is happening, and the SPU transfer gets delayed until the GPU transfer unhalts and finishes, and
// breaks the interrupt.
const bool ignore_halt = !state.channel_control.enable_busy && (value & (1u << 24));
state.channel_control.bits = (state.channel_control.bits & ~ChannelState::ChannelControl::WRITE_MASK) |
(value & ChannelState::ChannelControl::WRITE_MASK);
Log_TracePrintf("DMA channel %u channel control <- 0x%08X", channel_index, state.channel_control.bits);
// start/trigger bit must be enabled for OTC
if (static_cast<Channel>(channel_index) == Channel::OTC)
SetRequest(static_cast<Channel>(channel_index), state.channel_control.start_trigger);
if (CanTransferChannel(static_cast<Channel>(channel_index), ignore_halt))
s_channel_transfer_functions[channel_index]();
return;
}
default:
break;
}
}
else
{
switch (offset)
{
case 0x70:
{
Log_TracePrintf("DPCR <- 0x%08X", value);
s_DPCR.bits = value;
for (u32 i = 0; i < NUM_CHANNELS; i++)
{
if (CanTransferChannel(static_cast<Channel>(i), false))
{
if (!s_channel_transfer_functions[i]())
break;
}
}
return;
}
case 0x74:
{
Log_TracePrintf("DCIR <- 0x%08X", value);
s_DICR.bits = (s_DICR.bits & ~DICR_WRITE_MASK) | (value & DICR_WRITE_MASK);
s_DICR.bits = s_DICR.bits & ~(value & DICR_RESET_MASK);
s_DICR.UpdateMasterFlag();
return;
}
default:
break;
}
}
Log_ErrorPrintf("Unhandled register write: %02X <- %08X", offset, value);
}
void DMA::SetRequest(Channel channel, bool request)
{
ChannelState& cs = s_state[static_cast<u32>(channel)];
if (cs.request == request)
return;
cs.request = request;
if (CanTransferChannel(channel, false))
s_channel_transfer_functions[static_cast<u32>(channel)]();
}
void DMA::SetMaxSliceTicks(TickCount ticks)
{
s_max_slice_ticks = ticks;
}
void DMA::SetHaltTicks(TickCount ticks)
{
s_halt_ticks = ticks;
}
ALWAYS_INLINE_RELEASE bool DMA::CanTransferChannel(Channel channel, bool ignore_halt)
{
if (!s_DPCR.GetMasterEnable(channel))
return false;
const ChannelState& cs = s_state[static_cast<u32>(channel)];
if (!cs.channel_control.enable_busy)
return false;
if (cs.channel_control.sync_mode != SyncMode::Manual && (IsTransferHalted() && !ignore_halt))
return false;
return cs.request;
}
bool DMA::IsTransferHalted()
{
return s_unhalt_event->IsActive();
}
void DMA::UpdateIRQ()
{
s_DICR.UpdateMasterFlag();
if (s_DICR.master_flag)
{
Log_TracePrintf("Firing DMA master interrupt");
InterruptController::InterruptRequest(InterruptController::IRQ::DMA);
}
}
// Plenty of games seem to suffer from this issue where they have a linked list DMA going while polling the
// controller. Using a too-large slice size will result in the serial timing being off, and the game thinking
// the controller is disconnected. So we don't hurt performance too much for the general case, we reduce this
// to equal CPU and DMA time when the controller is transferring, but otherwise leave it at the higher size.
enum : u32
{
SLICE_SIZE_WHEN_TRANSMITTING_PAD = 100,
HALT_TICKS_WHEN_TRANSMITTING_PAD = 100
};
TickCount DMA::GetTransferSliceTicks()
{
#ifdef _DEBUG
if (Pad::IsTransmitting())
{
Log_DebugPrintf("DMA transfer while transmitting pad - using lower slice size of %u vs %u",
SLICE_SIZE_WHEN_TRANSMITTING_PAD, s_max_slice_ticks);
}
#endif
return Pad::IsTransmitting() ? SLICE_SIZE_WHEN_TRANSMITTING_PAD : s_max_slice_ticks;
}
TickCount DMA::GetTransferHaltTicks()
{
return Pad::IsTransmitting() ? HALT_TICKS_WHEN_TRANSMITTING_PAD : s_halt_ticks;
}
template<DMA::Channel channel>
bool DMA::TransferChannel()
{
ChannelState& cs = s_state[static_cast<u32>(channel)];
const u32 mask = GetAddressMask();
const bool copy_to_device = cs.channel_control.copy_to_device;
// start/trigger bit is cleared on beginning of transfer
cs.channel_control.start_trigger = false;
PhysicalMemoryAddress current_address = cs.base_address;
const PhysicalMemoryAddress increment = cs.channel_control.address_step_reverse ? static_cast<u32>(-4) : UINT32_C(4);
switch (cs.channel_control.sync_mode)
{
case SyncMode::Manual:
{
const u32 word_count = cs.block_control.manual.GetWordCount();
Log_DebugPrintf("DMA%u: Copying %u words %s 0x%08X", static_cast<u32>(channel), word_count,
copy_to_device ? "from" : "to", current_address & mask);
TickCount used_ticks;
if (copy_to_device)
used_ticks = TransferMemoryToDevice<channel>(current_address & mask, increment, word_count);
else
used_ticks = TransferDeviceToMemory<channel>(current_address & mask, increment, word_count);
CPU::AddPendingTicks(used_ticks);
}
break;
case SyncMode::LinkedList:
{
if (!copy_to_device)
{
Panic("Linked list not implemented for DMA reads");
return true;
}
Log_DebugPrintf("DMA%u: Copying linked list starting at 0x%08X to device", static_cast<u32>(channel),
current_address & mask);
u8* ram_pointer = Bus::g_ram;
TickCount remaining_ticks = GetTransferSliceTicks();
while (cs.request && remaining_ticks > 0)
{
u32 header;
std::memcpy(&header, &ram_pointer[current_address & mask], sizeof(header));
CPU::AddPendingTicks(10);
remaining_ticks -= 10;
const u32 word_count = header >> 24;
const u32 next_address = header & UINT32_C(0x00FFFFFF);
Log_TracePrintf(" .. linked list entry at 0x%08X size=%u(%u words) next=0x%08X", current_address & mask,
word_count * UINT32_C(4), word_count, next_address);
if (word_count > 0)
{
CPU::AddPendingTicks(5);
remaining_ticks -= 5;
const TickCount block_ticks =
TransferMemoryToDevice<channel>((current_address + sizeof(header)) & mask, 4, word_count);
CPU::AddPendingTicks(block_ticks);
remaining_ticks -= block_ticks;
}
current_address = next_address;
if (current_address & UINT32_C(0x800000))
break;
}
cs.base_address = current_address;
if (current_address & UINT32_C(0x800000))
break;
if (cs.request)
{
// stall the transfer for a bit if we ran for too long
HaltTransfer(GetTransferHaltTicks());
return false;
}
else
{
// linked list not yet complete
return true;
}
}
break;
case SyncMode::Request:
{
Log_DebugPrintf("DMA%u: Copying %u blocks of size %u (%u total words) %s 0x%08X", static_cast<u32>(channel),
cs.block_control.request.GetBlockCount(), cs.block_control.request.GetBlockSize(),
cs.block_control.request.GetBlockCount() * cs.block_control.request.GetBlockSize(),
copy_to_device ? "from" : "to", current_address & mask);
const u32 block_size = cs.block_control.request.GetBlockSize();
u32 blocks_remaining = cs.block_control.request.GetBlockCount();
TickCount ticks_remaining = GetTransferSliceTicks();
if (copy_to_device)
{
do
{
blocks_remaining--;
const TickCount ticks = TransferMemoryToDevice<channel>(current_address & mask, increment, block_size);
CPU::AddPendingTicks(ticks);
ticks_remaining -= ticks;
current_address = (current_address + (increment * block_size));
} while (cs.request && blocks_remaining > 0 && ticks_remaining > 0);
}
else
{
do
{
blocks_remaining--;
const TickCount ticks = TransferDeviceToMemory<channel>(current_address & mask, increment, block_size);
CPU::AddPendingTicks(ticks);
ticks_remaining -= ticks;
current_address = (current_address + (increment * block_size));
} while (cs.request && blocks_remaining > 0 && ticks_remaining > 0);
}
cs.base_address = current_address & BASE_ADDRESS_MASK;
cs.block_control.request.block_count = blocks_remaining;
// finish transfer later if the request was cleared
if (blocks_remaining > 0)
{
if (cs.request)
{
// we got halted
if (!s_unhalt_event->IsActive())
HaltTransfer(GetTransferHaltTicks());
return false;
}
return true;
}
}
break;
default:
Panic("Unimplemented sync mode");
break;
}
// start/busy bit is cleared on end of transfer
cs.channel_control.enable_busy = false;
if (s_DICR.IsIRQEnabled(channel))
{
Log_DebugPrintf("Set DMA interrupt for channel %u", static_cast<u32>(channel));
s_DICR.SetIRQFlag(channel);
UpdateIRQ();
}
return true;
}
void DMA::HaltTransfer(TickCount duration)
{
s_halt_ticks_remaining += duration;
Log_DebugPrintf("Halting DMA for %d ticks", s_halt_ticks_remaining);
if (s_unhalt_event->IsActive())
return;
DebugAssert(!s_unhalt_event->IsActive());
s_unhalt_event->SetIntervalAndSchedule(s_halt_ticks_remaining);
}
void DMA::UnhaltTransfer(void*, TickCount ticks, TickCount ticks_late)
{
Log_DebugPrintf("Resuming DMA after %d ticks, %d ticks late", ticks, -(s_halt_ticks_remaining - ticks));
s_halt_ticks_remaining -= ticks;
s_unhalt_event->Deactivate();
// TODO: Use channel priority. But doing it in ascending order is probably good enough.
// Main thing is that OTC happens after GPU, because otherwise it'll wipe out the LL.
for (u32 i = 0; i < NUM_CHANNELS; i++)
{
if (CanTransferChannel(static_cast<Channel>(i), false))
{
if (!s_channel_transfer_functions[i]())
return;
}
}
// We didn't run too long, so reset timer.
s_halt_ticks_remaining = 0;
}
template<DMA::Channel channel>
TickCount DMA::TransferMemoryToDevice(u32 address, u32 increment, u32 word_count)
{
const u32* src_pointer = reinterpret_cast<u32*>(Bus::g_ram + address);
const u32 mask = GetAddressMask();
if constexpr (channel != Channel::GPU)
{
if (static_cast<s32>(increment) < 0 || ((address + (increment * word_count)) & mask) <= address) [[unlikely]]
{
// Use temp buffer if it's wrapping around
if (s_transfer_buffer.size() < word_count)
s_transfer_buffer.resize(word_count);
src_pointer = s_transfer_buffer.data();
u8* ram_pointer = Bus::g_ram;
for (u32 i = 0; i < word_count; i++)
{
std::memcpy(&s_transfer_buffer[i], &ram_pointer[address], sizeof(u32));
address = (address + increment) & mask;
}
}
}
switch (channel)
{
case Channel::GPU:
{
if (g_gpu->BeginDMAWrite()) [[likely]]
{
u8* ram_pointer = Bus::g_ram;
for (u32 i = 0; i < word_count; i++)
{
u32 value;
std::memcpy(&value, &ram_pointer[address], sizeof(u32));
g_gpu->DMAWrite(address, value);
address = (address + increment) & mask;
}
g_gpu->EndDMAWrite();
}
}
break;
case Channel::SPU:
SPU::DMAWrite(src_pointer, word_count);
break;
case Channel::MDECin:
MDEC::DMAWrite(src_pointer, word_count);
break;
case Channel::CDROM:
case Channel::MDECout:
case Channel::PIO:
default:
Log_ErrorPrintf("Unhandled DMA channel %u for device write", static_cast<u32>(channel));
break;
}
return Bus::GetDMARAMTickCount(word_count);
}
template<DMA::Channel channel>
TickCount DMA::TransferDeviceToMemory(u32 address, u32 increment, u32 word_count)
{
const u32 mask = GetAddressMask();
if constexpr (channel == Channel::OTC)
{
// clear ordering table
u8* ram_pointer = Bus::g_ram;
const u32 word_count_less_1 = word_count - 1;
for (u32 i = 0; i < word_count_less_1; i++)
{
u32 value = ((address - 4) & mask);
std::memcpy(&ram_pointer[address], &value, sizeof(value));
address = (address - 4) & mask;
}
const u32 terminator = UINT32_C(0xFFFFFF);
std::memcpy(&ram_pointer[address], &terminator, sizeof(terminator));
return Bus::GetDMARAMTickCount(word_count);
}
u32* dest_pointer = reinterpret_cast<u32*>(&Bus::g_ram[address]);
if (static_cast<s32>(increment) < 0 || ((address + (increment * word_count)) & mask) <= address) [[unlikely]]
{
// Use temp buffer if it's wrapping around
if (s_transfer_buffer.size() < word_count)
s_transfer_buffer.resize(word_count);
dest_pointer = s_transfer_buffer.data();
}
// Read from device.
switch (channel)
{
case Channel::GPU:
g_gpu->DMARead(dest_pointer, word_count);
break;
case Channel::CDROM:
CDROM::DMARead(dest_pointer, word_count);
break;
case Channel::SPU:
SPU::DMARead(dest_pointer, word_count);
break;
case Channel::MDECout:
MDEC::DMARead(dest_pointer, word_count);
break;
default:
Log_ErrorPrintf("Unhandled DMA channel %u for device read", static_cast<u32>(channel));
std::fill_n(dest_pointer, word_count, UINT32_C(0xFFFFFFFF));
break;
}
if (dest_pointer == s_transfer_buffer.data()) [[unlikely]]
{
u8* ram_pointer = Bus::g_ram;
for (u32 i = 0; i < word_count; i++)
{
std::memcpy(&ram_pointer[address], &s_transfer_buffer[i], sizeof(u32));
address = (address + increment) & mask;
}
}
return Bus::GetDMARAMTickCount(word_count);
}
void DMA::DrawDebugStateWindow()
{
static constexpr u32 NUM_COLUMNS = 10;
static constexpr std::array<const char*, NUM_COLUMNS> column_names = {
{"#", "Req", "Direction", "Chopping", "Mode", "Busy", "Enable", "Priority", "IRQ", "Flag"}};
static constexpr std::array<const char*, NUM_CHANNELS> channel_names = {
{"MDECin", "MDECout", "GPU", "CDROM", "SPU", "PIO", "OTC"}};
static constexpr std::array<const char*, 4> sync_mode_names = {{"Manual", "Request", "LinkedList", "Reserved"}};
const float framebuffer_scale = Host::GetOSDScale();
ImGui::SetNextWindowSize(ImVec2(850.0f * framebuffer_scale, 250.0f * framebuffer_scale), ImGuiCond_FirstUseEver);
if (!ImGui::Begin("DMA State", nullptr))
{
ImGui::End();
return;
}
ImGui::Columns(NUM_COLUMNS);
ImGui::SetColumnWidth(0, 100.0f * framebuffer_scale);
ImGui::SetColumnWidth(1, 50.0f * framebuffer_scale);
ImGui::SetColumnWidth(2, 100.0f * framebuffer_scale);
ImGui::SetColumnWidth(3, 150.0f * framebuffer_scale);
ImGui::SetColumnWidth(4, 80.0f * framebuffer_scale);
ImGui::SetColumnWidth(5, 80.0f * framebuffer_scale);
ImGui::SetColumnWidth(6, 80.0f * framebuffer_scale);
ImGui::SetColumnWidth(7, 80.0f * framebuffer_scale);
ImGui::SetColumnWidth(8, 80.0f * framebuffer_scale);
ImGui::SetColumnWidth(9, 80.0f * framebuffer_scale);
for (const char* title : column_names)
{
ImGui::TextUnformatted(title);
ImGui::NextColumn();
}
const ImVec4 active(1.0f, 1.0f, 1.0f, 1.0f);
const ImVec4 inactive(0.5f, 0.5f, 0.5f, 1.0f);
for (u32 i = 0; i < NUM_CHANNELS; i++)
{
const ChannelState& cs = s_state[i];
ImGui::TextColored(cs.channel_control.enable_busy ? active : inactive, "%u[%s]", i, channel_names[i]);
ImGui::NextColumn();
ImGui::TextColored(cs.request ? active : inactive, cs.request ? "Yes" : "No");
ImGui::NextColumn();
ImGui::Text("%s%s", cs.channel_control.copy_to_device ? "FromRAM" : "ToRAM",
cs.channel_control.address_step_reverse ? " Addr+" : " Addr-");
ImGui::NextColumn();
ImGui::TextColored(cs.channel_control.chopping_enable ? active : inactive, "%s/%u/%u",
cs.channel_control.chopping_enable ? "Yes" : "No",
cs.channel_control.chopping_cpu_window_size.GetValue(),
cs.channel_control.chopping_dma_window_size.GetValue());
ImGui::NextColumn();
ImGui::Text("%s", sync_mode_names[static_cast<u8>(cs.channel_control.sync_mode.GetValue())]);
ImGui::NextColumn();
ImGui::TextColored(cs.channel_control.enable_busy ? active : inactive, "%s%s",
cs.channel_control.enable_busy ? "Busy" : "Idle",
cs.channel_control.start_trigger ? " (Trigger)" : "");
ImGui::NextColumn();
ImGui::TextColored(s_DPCR.GetMasterEnable(static_cast<Channel>(i)) ? active : inactive,
s_DPCR.GetMasterEnable(static_cast<Channel>(i)) ? "Enabled" : "Disabled");
ImGui::NextColumn();
ImGui::TextColored(s_DPCR.GetMasterEnable(static_cast<Channel>(i)) ? active : inactive, "%u",
s_DPCR.GetPriority(static_cast<Channel>(i)));
ImGui::NextColumn();
ImGui::TextColored(s_DICR.IsIRQEnabled(static_cast<Channel>(i)) ? active : inactive,
s_DICR.IsIRQEnabled(static_cast<Channel>(i)) ? "Enabled" : "Disabled");
ImGui::NextColumn();
ImGui::TextColored(s_DICR.GetIRQFlag(static_cast<Channel>(i)) ? active : inactive,
s_DICR.GetIRQFlag(static_cast<Channel>(i)) ? "IRQ" : "");
ImGui::NextColumn();
}
ImGui::Columns(1);
ImGui::End();
}
// Instantiate channel functions.
template TickCount DMA::TransferDeviceToMemory<DMA::Channel::MDECin>(u32 address, u32 increment, u32 word_count);
template TickCount DMA::TransferMemoryToDevice<DMA::Channel::MDECin>(u32 address, u32 increment, u32 word_count);
template bool DMA::TransferChannel<DMA::Channel::MDECin>();
template TickCount DMA::TransferDeviceToMemory<DMA::Channel::MDECout>(u32 address, u32 increment, u32 word_count);
template TickCount DMA::TransferMemoryToDevice<DMA::Channel::MDECout>(u32 address, u32 increment, u32 word_count);
template bool DMA::TransferChannel<DMA::Channel::MDECout>();
template TickCount DMA::TransferDeviceToMemory<DMA::Channel::GPU>(u32 address, u32 increment, u32 word_count);
template TickCount DMA::TransferMemoryToDevice<DMA::Channel::GPU>(u32 address, u32 increment, u32 word_count);
template bool DMA::TransferChannel<DMA::Channel::GPU>();
template TickCount DMA::TransferDeviceToMemory<DMA::Channel::CDROM>(u32 address, u32 increment, u32 word_count);
template TickCount DMA::TransferMemoryToDevice<DMA::Channel::CDROM>(u32 address, u32 increment, u32 word_count);
template bool DMA::TransferChannel<DMA::Channel::CDROM>();
template TickCount DMA::TransferDeviceToMemory<DMA::Channel::SPU>(u32 address, u32 increment, u32 word_count);
template TickCount DMA::TransferMemoryToDevice<DMA::Channel::SPU>(u32 address, u32 increment, u32 word_count);
template bool DMA::TransferChannel<DMA::Channel::SPU>();
template TickCount DMA::TransferDeviceToMemory<DMA::Channel::PIO>(u32 address, u32 increment, u32 word_count);
template TickCount DMA::TransferMemoryToDevice<DMA::Channel::PIO>(u32 address, u32 increment, u32 word_count);
template bool DMA::TransferChannel<DMA::Channel::PIO>();
template TickCount DMA::TransferDeviceToMemory<DMA::Channel::OTC>(u32 address, u32 increment, u32 word_count);
template TickCount DMA::TransferMemoryToDevice<DMA::Channel::OTC>(u32 address, u32 increment, u32 word_count);
template bool DMA::TransferChannel<DMA::Channel::OTC>();