Duckstation/src/common/audio_stream.cpp
2021-02-22 12:21:44 +10:00

387 lines
11 KiB
C++

#include "audio_stream.h"
#include "assert.h"
#include "log.h"
#include "samplerate.h"
#include <algorithm>
#include <cstring>
Log_SetChannel(AudioStream);
AudioStream::AudioStream() = default;
AudioStream::~AudioStream()
{
DestroyResampler();
}
bool AudioStream::Reconfigure(u32 input_sample_rate /* = DefaultInputSampleRate */,
u32 output_sample_rate /* = DefaultOutputSampleRate */, u32 channels /* = 1 */,
u32 buffer_size /* = DefaultBufferSize */)
{
std::unique_lock<std::mutex> buffer_lock(m_buffer_mutex);
std::unique_lock<std::mutex> resampler_Lock(m_resampler_mutex);
DestroyResampler();
if (IsDeviceOpen())
CloseDevice();
m_output_sample_rate = output_sample_rate;
m_channels = channels;
m_buffer_size = buffer_size;
m_buffer_filling.store(m_wait_for_buffer_fill);
m_output_paused = true;
if (!SetBufferSize(buffer_size))
return false;
if (!OpenDevice())
{
LockedEmptyBuffers();
m_buffer_size = 0;
m_output_sample_rate = 0;
m_channels = 0;
return false;
}
CreateResampler();
InternalSetInputSampleRate(input_sample_rate);
return true;
}
void AudioStream::SetInputSampleRate(u32 sample_rate)
{
std::unique_lock<std::mutex> buffer_lock(m_buffer_mutex);
std::unique_lock<std::mutex> resampler_lock(m_resampler_mutex);
InternalSetInputSampleRate(sample_rate);
}
void AudioStream::SetWaitForBufferFill(bool enabled)
{
std::unique_lock<std::mutex> buffer_lock(m_buffer_mutex);
m_wait_for_buffer_fill = enabled;
if (enabled && m_buffer.IsEmpty())
m_buffer_filling.store(true);
}
void AudioStream::InternalSetInputSampleRate(u32 sample_rate)
{
if (m_input_sample_rate == sample_rate)
return;
m_input_sample_rate = sample_rate;
m_resampler_ratio = static_cast<double>(m_output_sample_rate) / static_cast<double>(sample_rate);
src_set_ratio(static_cast<SRC_STATE*>(m_resampler_state), m_resampler_ratio);
ResetResampler();
}
void AudioStream::SetOutputVolume(u32 volume)
{
std::unique_lock<std::mutex> lock(m_buffer_mutex);
m_output_volume = volume;
}
void AudioStream::PauseOutput(bool paused)
{
if (m_output_paused == paused)
return;
PauseDevice(paused);
m_output_paused = paused;
// Empty buffers on pause.
if (paused)
EmptyBuffers();
}
void AudioStream::Shutdown()
{
if (!IsDeviceOpen())
return;
CloseDevice();
EmptyBuffers();
m_buffer_size = 0;
m_output_sample_rate = 0;
m_channels = 0;
m_output_paused = true;
}
void AudioStream::BeginWrite(SampleType** buffer_ptr, u32* num_frames)
{
m_buffer_mutex.lock();
const u32 requested_frames = std::min(*num_frames, m_buffer_size);
EnsureBuffer(requested_frames * m_channels);
*buffer_ptr = m_buffer.GetWritePointer();
*num_frames = m_buffer.GetContiguousSpace() / m_channels;
}
void AudioStream::WriteFrames(const SampleType* frames, u32 num_frames)
{
Assert(num_frames <= m_buffer_size);
const u32 num_samples = num_frames * m_channels;
{
std::unique_lock<std::mutex> lock(m_buffer_mutex);
EnsureBuffer(num_samples);
m_buffer.PushRange(frames, num_samples);
}
FramesAvailable();
}
void AudioStream::EndWrite(u32 num_frames)
{
m_buffer.AdvanceTail(num_frames * m_channels);
if (m_buffer_filling.load())
{
if ((m_buffer.GetSize() / m_channels) >= m_buffer_size)
m_buffer_filling.store(false);
}
m_buffer_mutex.unlock();
FramesAvailable();
}
float AudioStream::GetMaxLatency(u32 sample_rate, u32 buffer_size)
{
return (static_cast<float>(buffer_size) / static_cast<float>(sample_rate));
}
bool AudioStream::SetBufferSize(u32 buffer_size)
{
const u32 buffer_size_in_samples = buffer_size * m_channels;
const u32 max_samples = buffer_size_in_samples * 2u;
if (max_samples > m_buffer.GetCapacity())
return false;
m_buffer_size = buffer_size;
m_max_samples = max_samples;
return true;
}
u32 AudioStream::GetSamplesAvailable() const
{
// TODO: Use atomic loads
u32 available_samples;
{
std::unique_lock<std::mutex> lock(m_buffer_mutex);
available_samples = m_buffer.GetSize();
}
return available_samples / m_channels;
}
u32 AudioStream::GetSamplesAvailableLocked() const
{
return m_buffer.GetSize() / m_channels;
}
void AudioStream::ReadFrames(SampleType* samples, u32 num_frames, bool apply_volume)
{
const u32 total_samples = num_frames * m_channels;
u32 samples_copied = 0;
std::unique_lock<std::mutex> buffer_lock(m_buffer_mutex);
if (!m_buffer_filling.load())
{
if (m_input_sample_rate == m_output_sample_rate)
{
samples_copied = std::min(m_buffer.GetSize(), total_samples);
if (samples_copied > 0)
m_buffer.PopRange(samples, samples_copied);
ReleaseBufferLock(std::move(buffer_lock));
}
else
{
if (m_resampled_buffer.GetSize() < total_samples)
ResampleInput(std::move(buffer_lock));
else
ReleaseBufferLock(std::move(buffer_lock));
samples_copied = std::min(m_resampled_buffer.GetSize(), total_samples);
if (samples_copied > 0)
m_resampled_buffer.PopRange(samples, samples_copied);
}
}
else
{
ReleaseBufferLock(std::move(buffer_lock));
}
if (samples_copied < total_samples)
{
if (samples_copied > 0)
{
m_resample_buffer.resize(samples_copied);
std::memcpy(m_resample_buffer.data(), samples, sizeof(SampleType) * samples_copied);
// super basic resampler - spread the input samples evenly across the output samples. will sound like ass and have
// aliasing, but better than popping by inserting silence.
const u32 increment =
static_cast<u32>(65536.0f * (static_cast<float>(samples_copied / m_channels) / static_cast<float>(num_frames)));
SampleType* out_ptr = samples;
const SampleType* resample_ptr = m_resample_buffer.data();
const u32 copy_stride = sizeof(SampleType) * m_channels;
u32 resample_subpos = 0;
for (u32 i = 0; i < num_frames; i++)
{
std::memcpy(out_ptr, resample_ptr, copy_stride);
out_ptr += m_channels;
resample_subpos += increment;
resample_ptr += (resample_subpos >> 16) * m_channels;
resample_subpos %= 65536u;
}
Log_VerbosePrintf("Audio buffer underflow, resampled %u frames to %u", samples_copied / m_channels, num_frames);
m_underflow_flag.store(true);
}
else
{
// read nothing, so zero-fill
std::memset(samples, 0, sizeof(SampleType) * total_samples);
Log_VerbosePrintf("Audio buffer underflow with no samples, added %u frames silence", num_frames);
m_underflow_flag.store(true);
}
m_buffer_filling.store(m_wait_for_buffer_fill);
}
if (apply_volume && m_output_volume != FullVolume)
{
SampleType* current_ptr = samples;
const SampleType* end_ptr = samples + (num_frames * m_channels);
while (current_ptr != end_ptr)
{
*current_ptr = ApplyVolume(*current_ptr, m_output_volume);
current_ptr++;
}
}
}
void AudioStream::EnsureBuffer(u32 size)
{
DebugAssert(size <= (m_buffer_size * m_channels));
if (GetBufferSpace() >= size)
return;
if (m_sync)
{
std::unique_lock<std::mutex> lock(m_buffer_mutex, std::adopt_lock);
m_buffer_draining_cv.wait(lock, [this, size]() { return GetBufferSpace() >= size; });
lock.release();
}
else
{
m_buffer.Remove(size);
}
}
void AudioStream::DropFrames(u32 count)
{
std::unique_lock<std::mutex> lock(m_buffer_mutex);
m_buffer.Remove(count);
}
void AudioStream::EmptyBuffers()
{
std::unique_lock<std::mutex> lock(m_buffer_mutex);
std::unique_lock<std::mutex> resampler_lock(m_resampler_mutex);
LockedEmptyBuffers();
}
void AudioStream::LockedEmptyBuffers()
{
m_buffer.Clear();
m_underflow_flag.store(false);
m_buffer_filling.store(m_wait_for_buffer_fill);
ResetResampler();
}
void AudioStream::CreateResampler()
{
m_resampler_state = src_new(SRC_SINC_MEDIUM_QUALITY, static_cast<int>(m_channels), nullptr);
if (!m_resampler_state)
Panic("Failed to allocate resampler");
}
void AudioStream::DestroyResampler()
{
if (m_resampler_state)
{
src_delete(static_cast<SRC_STATE*>(m_resampler_state));
m_resampler_state = nullptr;
}
}
void AudioStream::ResetResampler()
{
m_resampled_buffer.Clear();
m_resample_in_buffer.clear();
m_resample_out_buffer.clear();
src_reset(static_cast<SRC_STATE*>(m_resampler_state));
}
void AudioStream::ResampleInput(std::unique_lock<std::mutex> buffer_lock)
{
std::unique_lock<std::mutex> resampler_lock(m_resampler_mutex);
const u32 input_space_from_output = (m_resampled_buffer.GetSpace() * m_output_sample_rate) / m_input_sample_rate;
u32 remaining = std::min(m_buffer.GetSize(), input_space_from_output);
if (m_resample_in_buffer.size() < remaining)
{
remaining -= static_cast<u32>(m_resample_in_buffer.size());
m_resample_in_buffer.reserve(m_resample_in_buffer.size() + remaining);
while (remaining > 0)
{
const u32 read_len = std::min(m_buffer.GetContiguousSize(), remaining);
const size_t old_pos = m_resample_in_buffer.size();
m_resample_in_buffer.resize(m_resample_in_buffer.size() + read_len);
src_short_to_float_array(m_buffer.GetReadPointer(), m_resample_in_buffer.data() + old_pos,
static_cast<int>(read_len));
m_buffer.Remove(read_len);
remaining -= read_len;
}
}
ReleaseBufferLock(std::move(buffer_lock));
const u32 potential_output_size =
(static_cast<u32>(m_resample_in_buffer.size()) * m_input_sample_rate) / m_output_sample_rate;
const u32 output_size = std::min(potential_output_size, m_resampled_buffer.GetSpace());
m_resample_out_buffer.resize(output_size);
SRC_DATA sd = {};
sd.data_in = m_resample_in_buffer.data();
sd.data_out = m_resample_out_buffer.data();
sd.input_frames = static_cast<u32>(m_resample_in_buffer.size()) / m_channels;
sd.output_frames = output_size / m_channels;
sd.src_ratio = m_resampler_ratio;
const int error = src_process(static_cast<SRC_STATE*>(m_resampler_state), &sd);
if (error)
{
Log_ErrorPrintf("Resampler error %d", error);
m_resample_in_buffer.clear();
m_resample_out_buffer.clear();
return;
}
m_resample_in_buffer.erase(m_resample_in_buffer.begin(),
m_resample_in_buffer.begin() + (static_cast<u32>(sd.input_frames_used) * m_channels));
const float* write_ptr = m_resample_out_buffer.data();
remaining = static_cast<u32>(sd.output_frames_gen) * m_channels;
while (remaining > 0)
{
const u32 samples_to_write = std::min(m_resampled_buffer.GetContiguousSpace(), remaining);
src_float_to_short_array(write_ptr, m_resampled_buffer.GetWritePointer(), static_cast<int>(samples_to_write));
m_resampled_buffer.AdvanceTail(samples_to_write);
write_ptr += samples_to_write;
remaining -= samples_to_write;
}
m_resample_out_buffer.erase(m_resample_out_buffer.begin(),
m_resample_out_buffer.begin() + (static_cast<u32>(sd.output_frames_gen) * m_channels));
}