Duckstation/src/core/cheats.cpp
2021-02-06 19:19:55 +10:00

2119 lines
56 KiB
C++

#include "cheats.h"
#include "bus.h"
#include "common/assert.h"
#include "common/byte_stream.h"
#include "common/file_system.h"
#include "common/log.h"
#include "common/string.h"
#include "common/string_util.h"
#include "controller.h"
#include "cpu_code_cache.h"
#include "cpu_core.h"
#include "host_interface.h"
#include "system.h"
#include <cctype>
#include <iomanip>
#include <sstream>
Log_SetChannel(Cheats);
using KeyValuePairVector = std::vector<std::pair<std::string, std::string>>;
static bool IsValidScanAddress(PhysicalMemoryAddress address)
{
if ((address & CPU::DCACHE_LOCATION_MASK) == CPU::DCACHE_LOCATION &&
(address & CPU::DCACHE_OFFSET_MASK) < CPU::DCACHE_SIZE)
{
return true;
}
address &= CPU::PHYSICAL_MEMORY_ADDRESS_MASK;
if (address < Bus::RAM_MIRROR_END)
return true;
if (address >= Bus::BIOS_BASE && address < (Bus::BIOS_BASE + Bus::BIOS_SIZE))
return true;
return false;
}
template<typename T>
static T DoMemoryRead(PhysicalMemoryAddress address)
{
T result;
if ((address & CPU::DCACHE_LOCATION_MASK) == CPU::DCACHE_LOCATION &&
(address & CPU::DCACHE_OFFSET_MASK) < CPU::DCACHE_SIZE)
{
std::memcpy(&result, &CPU::g_state.dcache[address & CPU::DCACHE_OFFSET_MASK], sizeof(result));
return result;
}
address &= CPU::PHYSICAL_MEMORY_ADDRESS_MASK;
if (address < Bus::RAM_MIRROR_END)
{
std::memcpy(&result, &Bus::g_ram[address & Bus::RAM_MASK], sizeof(result));
return result;
}
if (address >= Bus::BIOS_BASE && address < (Bus::BIOS_BASE + Bus::BIOS_SIZE))
{
std::memcpy(&result, &Bus::g_bios[address & Bus::BIOS_MASK], sizeof(result));
return result;
}
result = static_cast<T>(0);
return result;
}
template<typename T>
static void DoMemoryWrite(PhysicalMemoryAddress address, T value)
{
if ((address & CPU::DCACHE_LOCATION_MASK) == CPU::DCACHE_LOCATION &&
(address & CPU::DCACHE_OFFSET_MASK) < CPU::DCACHE_SIZE)
{
std::memcpy(&CPU::g_state.dcache[address & CPU::DCACHE_OFFSET_MASK], &value, sizeof(value));
return;
}
address &= CPU::PHYSICAL_MEMORY_ADDRESS_MASK;
if (address < Bus::RAM_MIRROR_END)
{
// Only invalidate code when it changes.
T old_value;
std::memcpy(&old_value, &Bus::g_ram[address & Bus::RAM_MASK], sizeof(old_value));
if (old_value != value)
{
std::memcpy(&Bus::g_ram[address & Bus::RAM_MASK], &value, sizeof(value));
const u32 code_page_index = Bus::GetRAMCodePageIndex(address & Bus::RAM_MASK);
if (Bus::IsRAMCodePage(code_page_index))
CPU::CodeCache::InvalidateBlocksWithPageIndex(code_page_index);
}
return;
}
}
static u32 GetControllerButtonBits()
{
static constexpr std::array<u16, 16> button_mapping = {{
0x0100, // Select
0x0200, // L3
0x0400, // R3
0x0800, // Start
0x1000, // Up
0x2000, // Right
0x4000, // Down
0x8000, // Left
0x0001, // L2
0x0002, // R2
0x0004, // L1
0x0008, // R1
0x0010, // Triangle
0x0020, // Circle
0x0040, // Cross
0x0080, // Square
}};
u32 bits = 0;
for (u32 i = 0; i < NUM_CONTROLLER_AND_CARD_PORTS; i++)
{
Controller* controller = System::GetController(i);
if (!controller)
continue;
bits |= controller->GetButtonStateBits();
}
u32 translated_bits = 0;
for (u32 i = 0, bit = 1; i < static_cast<u32>(button_mapping.size()); i++, bit <<= 1)
{
if (bits & bit)
translated_bits |= button_mapping[i];
}
return translated_bits;
}
CheatList::CheatList() = default;
CheatList::~CheatList() = default;
static bool IsHexCharacter(char c)
{
return (c >= 'A' && c <= 'F') || (c >= 'a' && c <= 'f') || (c >= '0' && c <= '9');
}
static int SignedCharToInt(char ch)
{
return static_cast<int>(static_cast<unsigned char>(ch));
}
static const std::string* FindKey(const KeyValuePairVector& kvp, const char* search)
{
for (const auto& it : kvp)
{
if (StringUtil::Strcasecmp(it.first.c_str(), search) == 0)
return &it.second;
}
return nullptr;
}
bool CheatList::LoadFromPCSXRFile(const char* filename)
{
std::optional<std::string> str = FileSystem::ReadFileToString(filename);
if (!str.has_value() || str->empty())
return false;
return LoadFromPCSXRString(str.value());
}
bool CheatList::LoadFromPCSXRString(const std::string& str)
{
std::istringstream iss(str);
std::string line;
std::string comments;
std::string group;
CheatCode::Type type = CheatCode::Type::Gameshark;
CheatCode::Activation activation = CheatCode::Activation::EndFrame;
CheatCode current_code;
while (std::getline(iss, line))
{
char* start = line.data();
while (*start != '\0' && std::isspace(SignedCharToInt(*start)))
start++;
// skip empty lines
if (*start == '\0')
continue;
char* end = start + std::strlen(start) - 1;
while (end > start && std::isspace(SignedCharToInt(*end)))
{
*end = '\0';
end--;
}
// DuckStation metadata
if (StringUtil::Strncasecmp(start, "#group=", 7) == 0)
{
group = start + 7;
continue;
}
if (StringUtil::Strncasecmp(start, "#type=", 6) == 0)
{
type = CheatCode::ParseTypeName(start + 6).value_or(CheatCode::Type::Gameshark);
continue;
}
if (StringUtil::Strncasecmp(start, "#activation=", 12) == 0)
{
activation = CheatCode::ParseActivationName(start + 12).value_or(CheatCode::Activation::EndFrame);
continue;
}
// skip comments and empty line
if (*start == '#' || *start == ';' || *start == '/' || *start == '\"')
{
comments.append(start);
comments += '\n';
continue;
}
if (*start == '[' && *end == ']')
{
start++;
*end = '\0';
// new cheat
if (current_code.Valid())
m_codes.push_back(std::move(current_code));
current_code = CheatCode();
if (group.empty())
group = "Ungrouped";
current_code.group = std::move(group);
group = std::string();
current_code.comments = std::move(comments);
comments = std::string();
current_code.type = type;
type = CheatCode::Type::Gameshark;
current_code.activation = activation;
activation = CheatCode::Activation::EndFrame;
if (*start == '*')
{
current_code.enabled = true;
start++;
}
current_code.description.append(start);
continue;
}
while (!IsHexCharacter(*start) && start != end)
start++;
if (start == end)
continue;
char* end_ptr;
CheatCode::Instruction inst;
inst.first = static_cast<u32>(std::strtoul(start, &end_ptr, 16));
inst.second = 0;
if (end_ptr)
{
while (!IsHexCharacter(*end_ptr) && end_ptr != end)
end_ptr++;
if (end_ptr != end)
inst.second = static_cast<u32>(std::strtoul(end_ptr, nullptr, 16));
}
current_code.instructions.push_back(inst);
}
if (current_code.Valid())
{
// technically this isn't the place for end of file
if (!comments.empty())
current_code.comments += comments;
m_codes.push_back(std::move(current_code));
}
Log_InfoPrintf("Loaded %zu cheats (PCSXR format)", m_codes.size());
return !m_codes.empty();
}
bool CheatList::LoadFromLibretroFile(const char* filename)
{
std::optional<std::string> str = FileSystem::ReadFileToString(filename);
if (!str.has_value() || str->empty())
return false;
return LoadFromLibretroString(str.value());
}
bool CheatList::LoadFromLibretroString(const std::string& str)
{
std::istringstream iss(str);
std::string line;
KeyValuePairVector kvp;
while (std::getline(iss, line))
{
char* start = line.data();
while (*start != '\0' && std::isspace(SignedCharToInt(*start)))
start++;
// skip empty lines
if (*start == '\0' || *start == '=')
continue;
char* end = start + std::strlen(start) - 1;
while (end > start && std::isspace(SignedCharToInt(*end)))
{
*end = '\0';
end--;
}
char* equals = start;
while (*equals != '=' && equals != end)
equals++;
if (equals == end)
continue;
*equals = '\0';
char* key_end = equals - 1;
while (key_end > start && std::isspace(SignedCharToInt(*key_end)))
{
*key_end = '\0';
key_end--;
}
char* value_start = equals + 1;
while (*value_start != '\0' && std::isspace(SignedCharToInt(*value_start)))
value_start++;
if (*value_start == '\0')
continue;
char* value_end = value_start + std::strlen(value_start) - 1;
while (value_end > value_start && std::isspace(SignedCharToInt(*value_end)))
{
*value_end = '\0';
value_end--;
}
if (*value_start == '\"')
{
if (*value_end != '\"')
continue;
value_start++;
*value_end = '\0';
}
kvp.emplace_back(start, value_start);
}
if (kvp.empty())
return false;
const std::string* num_cheats_value = FindKey(kvp, "cheats");
const u32 num_cheats = num_cheats_value ? StringUtil::FromChars<u32>(*num_cheats_value).value_or(0) : 0;
if (num_cheats == 0)
return false;
for (u32 i = 0; i < num_cheats; i++)
{
const std::string* desc = FindKey(kvp, TinyString::FromFormat("cheat%u_desc", i));
const std::string* code = FindKey(kvp, TinyString::FromFormat("cheat%u_code", i));
const std::string* enable = FindKey(kvp, TinyString::FromFormat("cheat%u_enable", i));
if (!desc || !code || !enable)
{
Log_WarningPrintf("Missing desc/code/enable for cheat %u", i);
continue;
}
CheatCode cc;
cc.group = "Ungrouped";
cc.description = *desc;
cc.enabled = StringUtil::FromChars<bool>(*enable).value_or(false);
if (ParseLibretroCheat(&cc, code->c_str()))
m_codes.push_back(std::move(cc));
}
Log_InfoPrintf("Loaded %zu cheats (libretro format)", m_codes.size());
return !m_codes.empty();
}
bool CheatList::LoadFromEPSXeString(const std::string& str)
{
std::istringstream iss(str);
std::string line;
std::string group;
CheatCode::Type type = CheatCode::Type::Gameshark;
CheatCode::Activation activation = CheatCode::Activation::EndFrame;
CheatCode current_code;
while (std::getline(iss, line))
{
char* start = line.data();
while (*start != '\0' && std::isspace(SignedCharToInt(*start)))
start++;
// skip empty lines
if (*start == '\0')
continue;
char* end = start + std::strlen(start) - 1;
while (end > start && std::isspace(SignedCharToInt(*end)))
{
*end = '\0';
end--;
}
// skip comments and empty line
if (*start == ';' || *start == '\0')
continue;
if (*start == '#')
{
start++;
// new cheat
if (current_code.Valid())
m_codes.push_back(std::move(current_code));
current_code = CheatCode();
if (group.empty())
group = "Ungrouped";
current_code.group = std::move(group);
group = std::string();
current_code.type = type;
type = CheatCode::Type::Gameshark;
current_code.activation = activation;
activation = CheatCode::Activation::EndFrame;
char* separator = std::strchr(start, '\\');
if (separator)
{
*separator = 0;
current_code.group = start;
start = separator + 1;
}
current_code.description.append(start);
continue;
}
while (!IsHexCharacter(*start) && start != end)
start++;
if (start == end)
continue;
char* end_ptr;
CheatCode::Instruction inst;
inst.first = static_cast<u32>(std::strtoul(start, &end_ptr, 16));
inst.second = 0;
if (end_ptr)
{
while (!IsHexCharacter(*end_ptr) && end_ptr != end)
end_ptr++;
if (end_ptr != end)
inst.second = static_cast<u32>(std::strtoul(end_ptr, nullptr, 16));
}
current_code.instructions.push_back(inst);
}
if (current_code.Valid())
m_codes.push_back(std::move(current_code));
Log_InfoPrintf("Loaded %zu cheats (EPSXe format)", m_codes.size());
return !m_codes.empty();
}
static bool IsLibretroSeparator(char ch)
{
return (ch == ' ' || ch == '-' || ch == ':' || ch == '+');
}
bool CheatList::ParseLibretroCheat(CheatCode* cc, const char* line)
{
const char* current_ptr = line;
while (current_ptr)
{
char* end_ptr;
CheatCode::Instruction inst;
inst.first = static_cast<u32>(std::strtoul(current_ptr, &end_ptr, 16));
current_ptr = end_ptr;
if (end_ptr)
{
if (!IsLibretroSeparator(*end_ptr))
{
Log_WarningPrintf("Malformed code '%s'", line);
break;
}
end_ptr++;
inst.second = static_cast<u32>(std::strtoul(current_ptr, &end_ptr, 16));
if (end_ptr && *end_ptr == '\0')
end_ptr = nullptr;
if (end_ptr && *end_ptr != '\0')
{
if (!IsLibretroSeparator(*end_ptr))
{
Log_WarningPrintf("Malformed code '%s'", line);
break;
}
end_ptr++;
}
current_ptr = end_ptr;
cc->instructions.push_back(inst);
}
}
return !cc->instructions.empty();
}
void CheatList::Apply()
{
for (const CheatCode& code : m_codes)
{
if (code.enabled)
code.Apply();
}
}
void CheatList::AddCode(CheatCode cc)
{
m_codes.push_back(std::move(cc));
}
void CheatList::SetCode(u32 index, CheatCode cc)
{
if (index > m_codes.size())
return;
if (index == m_codes.size())
{
m_codes.push_back(std::move(cc));
return;
}
m_codes[index] = std::move(cc);
}
void CheatList::RemoveCode(u32 i)
{
m_codes.erase(m_codes.begin() + i);
}
std::optional<CheatList::Format> CheatList::DetectFileFormat(const char* filename)
{
std::optional<std::string> str = FileSystem::ReadFileToString(filename);
if (!str.has_value() || str->empty())
return std::nullopt;
return DetectFileFormat(str.value());
}
CheatList::Format CheatList::DetectFileFormat(const std::string& str)
{
std::istringstream iss(str);
std::string line;
while (std::getline(iss, line))
{
char* start = line.data();
while (*start != '\0' && std::isspace(SignedCharToInt(*start)))
start++;
// skip empty lines
if (*start == '\0')
continue;
char* end = start + std::strlen(start) - 1;
while (end > start && std::isspace(SignedCharToInt(*end)))
{
*end = '\0';
end--;
}
// eat comments
if (start[0] == '#' || start[0] == ';')
continue;
if (std::strncmp(line.data(), "cheats", 6) == 0)
return Format::Libretro;
// pcsxr if we see brackets
if (start[0] == '[')
return Format::PCSXR;
// otherwise if it's a code, it's probably epsxe
if (std::isdigit(start[0]))
return Format::EPSXe;
}
return Format::Count;
}
bool CheatList::LoadFromFile(const char* filename, Format format)
{
std::optional<std::string> str = FileSystem::ReadFileToString(filename);
if (!str.has_value() || str->empty())
return false;
return LoadFromString(str.value(), format);
}
bool CheatList::LoadFromString(const std::string& str, Format format)
{
if (format == Format::Autodetect)
format = DetectFileFormat(str);
if (format == Format::PCSXR)
return LoadFromPCSXRString(str);
else if (format == Format::Libretro)
return LoadFromLibretroString(str);
else if (format == Format::EPSXe)
return LoadFromEPSXeString(str);
Log_ErrorPrintf("Invalid or unknown cheat format");
return false;
}
bool CheatList::SaveToPCSXRFile(const char* filename)
{
auto fp = FileSystem::OpenManagedCFile(filename, "wb");
if (!fp)
return false;
for (const CheatCode& cc : m_codes)
{
if (!cc.comments.empty())
std::fputs(cc.comments.c_str(), fp.get());
std::fprintf(fp.get(), "#group=%s\n", cc.group.c_str());
std::fprintf(fp.get(), "#type=%s\n", CheatCode::GetTypeName(cc.type));
std::fprintf(fp.get(), "#activation=%s\n", CheatCode::GetActivationName(cc.activation));
std::fprintf(fp.get(), "[%s%s]\n", cc.enabled ? "*" : "", cc.description.c_str());
for (const CheatCode::Instruction& i : cc.instructions)
std::fprintf(fp.get(), "%08X %04X\n", i.first, i.second);
std::fprintf(fp.get(), "\n");
}
std::fflush(fp.get());
return (std::ferror(fp.get()) == 0);
}
bool CheatList::LoadFromPackage(const std::string& game_code)
{
std::unique_ptr<ByteStream> stream =
g_host_interface->OpenPackageFile("database/chtdb.txt", BYTESTREAM_OPEN_READ | BYTESTREAM_OPEN_STREAMED);
if (!stream)
return false;
std::string db_string = FileSystem::ReadStreamToString(stream.get());
stream.reset();
if (db_string.empty())
return false;
std::istringstream iss(db_string);
std::string line;
while (std::getline(iss, line))
{
char* start = line.data();
while (*start != '\0' && std::isspace(SignedCharToInt(*start)))
start++;
// skip empty lines
if (*start == '\0' || *start == ';')
continue;
char* end = start + std::strlen(start) - 1;
while (end > start && std::isspace(SignedCharToInt(*end)))
{
*end = '\0';
end--;
}
if (start == end)
continue;
if (start[0] != ':' || std::strcmp(&start[1], game_code.c_str()) != 0)
continue;
// game code match
CheatCode current_code;
while (std::getline(iss, line))
{
start = line.data();
while (*start != '\0' && std::isspace(SignedCharToInt(*start)))
start++;
// skip empty lines
if (*start == '\0' || *start == ';')
continue;
end = start + std::strlen(start) - 1;
while (end > start && std::isspace(SignedCharToInt(*end)))
{
*end = '\0';
end--;
}
if (start == end)
continue;
if (start[0] == ':' && !m_codes.empty())
break;
if (start[0] == '#')
{
start++;
if (current_code.Valid())
{
m_codes.push_back(std::move(current_code));
current_code = CheatCode();
}
// new code
char* slash = std::strrchr(start, '\\');
if (slash)
{
*slash = '\0';
current_code.group = start;
start = slash + 1;
}
if (current_code.group.empty())
current_code.group = "Ungrouped";
current_code.description = start;
continue;
}
while (!IsHexCharacter(*start) && start != end)
start++;
if (start == end)
continue;
char* end_ptr;
CheatCode::Instruction inst;
inst.first = static_cast<u32>(std::strtoul(start, &end_ptr, 16));
inst.second = 0;
if (end_ptr)
{
while (!IsHexCharacter(*end_ptr) && end_ptr != end)
end_ptr++;
if (end_ptr != end)
inst.second = static_cast<u32>(std::strtoul(end_ptr, nullptr, 16));
}
current_code.instructions.push_back(inst);
}
if (current_code.Valid())
m_codes.push_back(std::move(current_code));
Log_InfoPrintf("Loaded %zu codes from package for %s", m_codes.size(), game_code.c_str());
return !m_codes.empty();
}
Log_WarningPrintf("No codes found in package for %s", game_code.c_str());
return false;
}
u32 CheatList::GetEnabledCodeCount() const
{
u32 count = 0;
for (const CheatCode& cc : m_codes)
{
if (cc.enabled)
count++;
}
return count;
}
std::vector<std::string> CheatList::GetCodeGroups() const
{
std::vector<std::string> groups;
for (const CheatCode& cc : m_codes)
{
if (std::any_of(groups.begin(), groups.end(), [cc](const std::string& group) { return (group == cc.group); }))
continue;
groups.emplace_back(cc.group);
}
return groups;
}
void CheatList::SetCodeEnabled(u32 index, bool state)
{
if (index >= m_codes.size() || m_codes[index].enabled == state)
return;
m_codes[index].enabled = state;
if (!state)
m_codes[index].ApplyOnDisable();
}
void CheatList::EnableCode(u32 index)
{
SetCodeEnabled(index, true);
}
void CheatList::DisableCode(u32 index)
{
SetCodeEnabled(index, false);
}
void CheatList::ApplyCode(u32 index)
{
if (index >= m_codes.size())
return;
m_codes[index].Apply();
}
const CheatCode* CheatList::FindCode(const char* name) const
{
for (const CheatCode& cc : m_codes)
{
if (cc.description == name)
return &cc;
}
return nullptr;
}
const CheatCode* CheatList::FindCode(const char* group, const char* name) const
{
for (const CheatCode& cc : m_codes)
{
if (cc.group == group && cc.description == name)
return &cc;
}
return nullptr;
}
void CheatList::MergeList(const CheatList& cl)
{
for (const CheatCode& cc : cl.m_codes)
{
if (!FindCode(cc.group.c_str(), cc.description.c_str()))
AddCode(cc);
}
}
std::string CheatCode::GetInstructionsAsString() const
{
std::stringstream ss;
for (const Instruction& inst : instructions)
{
ss << std::hex << std::uppercase << std::setw(8) << std::setfill('0') << inst.first;
ss << " ";
ss << std::hex << std::uppercase << std::setw(8) << std::setfill('0') << inst.second;
ss << '\n';
}
return ss.str();
}
bool CheatCode::SetInstructionsFromString(const std::string& str)
{
std::vector<Instruction> new_instructions;
std::istringstream ss(str);
for (std::string line; std::getline(ss, line);)
{
char* start = line.data();
while (*start != '\0' && std::isspace(SignedCharToInt(*start)))
start++;
// skip empty lines
if (*start == '\0')
continue;
char* end = start + std::strlen(start) - 1;
while (end > start && std::isspace(SignedCharToInt(*end)))
{
*end = '\0';
end--;
}
// skip comments and empty line
if (*start == '#' || *start == ';' || *start == '/' || *start == '\"')
continue;
while (!IsHexCharacter(*start) && start != end)
start++;
if (start == end)
continue;
char* end_ptr;
CheatCode::Instruction inst;
inst.first = static_cast<u32>(std::strtoul(start, &end_ptr, 16));
inst.second = 0;
if (end_ptr)
{
while (!IsHexCharacter(*end_ptr) && end_ptr != end)
end_ptr++;
if (end_ptr != end)
inst.second = static_cast<u32>(std::strtoul(end_ptr, nullptr, 16));
}
new_instructions.push_back(inst);
}
if (new_instructions.empty())
return false;
instructions = std::move(new_instructions);
return true;
}
static bool IsConditionalInstruction(CheatCode::InstructionCode code)
{
switch (code)
{
case CheatCode::InstructionCode::CompareEqual16: // D0
case CheatCode::InstructionCode::CompareNotEqual16: // D1
case CheatCode::InstructionCode::CompareLess16: // D2
case CheatCode::InstructionCode::CompareGreater16: // D3
case CheatCode::InstructionCode::CompareEqual8: // E0
case CheatCode::InstructionCode::CompareNotEqual8: // E1
case CheatCode::InstructionCode::CompareLess8: // E2
case CheatCode::InstructionCode::CompareGreater8: // E3
case CheatCode::InstructionCode::CompareButtons: // D4
return true;
default:
return false;
}
}
u32 CheatCode::GetNextNonConditionalInstruction(u32 index) const
{
const u32 count = static_cast<u32>(instructions.size());
for (; index < count; index++)
{
if (!IsConditionalInstruction(instructions[index].code))
{
// we've found the first non conditional instruction in the chain, so skip over the instruction following it
return index + 1;
}
}
return index;
}
void CheatCode::Apply() const
{
const u32 count = static_cast<u32>(instructions.size());
u32 index = 0;
for (; index < count;)
{
const Instruction& inst = instructions[index];
switch (inst.code)
{
case InstructionCode::Nop:
{
index++;
}
break;
case InstructionCode::ConstantWrite8:
{
DoMemoryWrite<u8>(inst.address, inst.value8);
index++;
}
break;
case InstructionCode::ConstantWrite16:
{
DoMemoryWrite<u16>(inst.address, inst.value16);
index++;
}
break;
case InstructionCode::ExtConstantWrite32:
{
DoMemoryWrite<u32>(inst.address, inst.value32);
index++;
}
break;
case InstructionCode::ExtConstantBitSet8:
{
const u8 value = DoMemoryRead<u8>(inst.address) | inst.value8;
DoMemoryWrite<u8>(inst.address, value);
index++;
}
break;
case InstructionCode::ExtConstantBitSet16:
{
const u16 value = DoMemoryRead<u16>(inst.address) | inst.value16;
DoMemoryWrite<u16>(inst.address, value);
index++;
}
break;
case InstructionCode::ExtConstantBitSet32:
{
const u32 value = DoMemoryRead<u32>(inst.address) | inst.value32;
DoMemoryWrite<u32>(inst.address, value);
index++;
}
break;
case InstructionCode::ExtConstantBitClear8:
{
const u8 value = DoMemoryRead<u8>(inst.address) & ~inst.value8;
DoMemoryWrite<u8>(inst.address, value);
index++;
}
break;
case InstructionCode::ExtConstantBitClear16:
{
const u16 value = DoMemoryRead<u16>(inst.address) & ~inst.value16;
DoMemoryWrite<u16>(inst.address, value);
index++;
}
break;
case InstructionCode::ExtConstantBitClear32:
{
const u32 value = DoMemoryRead<u32>(inst.address) & ~inst.value32;
DoMemoryWrite<u32>(inst.address, value);
index++;
}
break;
case InstructionCode::ScratchpadWrite16:
{
DoMemoryWrite<u16>(CPU::DCACHE_LOCATION | (inst.address & CPU::DCACHE_OFFSET_MASK), inst.value16);
index++;
}
break;
case InstructionCode::ExtScratchpadWrite32:
{
DoMemoryWrite<u32>(CPU::DCACHE_LOCATION | (inst.address & CPU::DCACHE_OFFSET_MASK), inst.value32);
index++;
}
break;
case InstructionCode::ExtIncrement32:
{
const u32 value = DoMemoryRead<u32>(inst.address);
DoMemoryWrite<u32>(inst.address, value + inst.value32);
index++;
}
break;
case InstructionCode::ExtDecrement32:
{
const u32 value = DoMemoryRead<u32>(inst.address);
DoMemoryWrite<u32>(inst.address, value - inst.value32);
index++;
}
break;
case InstructionCode::Increment16:
{
const u16 value = DoMemoryRead<u16>(inst.address);
DoMemoryWrite<u16>(inst.address, value + inst.value16);
index++;
}
break;
case InstructionCode::Decrement16:
{
const u16 value = DoMemoryRead<u16>(inst.address);
DoMemoryWrite<u16>(inst.address, value - inst.value16);
index++;
}
break;
case InstructionCode::Increment8:
{
const u8 value = DoMemoryRead<u8>(inst.address);
DoMemoryWrite<u8>(inst.address, value + inst.value8);
index++;
}
break;
case InstructionCode::Decrement8:
{
const u8 value = DoMemoryRead<u8>(inst.address);
DoMemoryWrite<u8>(inst.address, value - inst.value8);
index++;
}
break;
case InstructionCode::ExtCompareEqual32:
{
const u32 value = DoMemoryRead<u32>(inst.address);
if (value == inst.value32)
index++;
else
index = GetNextNonConditionalInstruction(index);
}
break;
case InstructionCode::ExtCompareNotEqual32:
{
const u32 value = DoMemoryRead<u32>(inst.address);
if (value != inst.value32)
index++;
else
index = GetNextNonConditionalInstruction(index);
}
break;
case InstructionCode::ExtCompareLess32:
{
const u32 value = DoMemoryRead<u32>(inst.address);
if (value < inst.value32)
index++;
else
index = GetNextNonConditionalInstruction(index);
}
break;
case InstructionCode::ExtCompareGreater32:
{
const u32 value = DoMemoryRead<u32>(inst.address);
if (value > inst.value32)
index++;
else
index = GetNextNonConditionalInstruction(index);
}
break;
case InstructionCode::ExtConstantWriteIfMatch16:
case InstructionCode::ExtConstantWriteIfMatchWithRestore16:
{
const u16 value = DoMemoryRead<u16>(inst.address);
const u16 comparevalue = Truncate16(inst.value32 >> 16);
const u16 newvalue = Truncate16(inst.value32 & 0xFFFFu);
if (value == comparevalue)
DoMemoryWrite<u16>(inst.address, newvalue);
index++;
}
break;
case InstructionCode::ExtConstantForceRange8:
{
const u8 value = DoMemoryRead<u8>(inst.address);
const u8 min = Truncate8(inst.value32 & 0x000000FFu);
const u8 max = Truncate8((inst.value32 & 0x0000FF00u) >> 8);
const u8 overmin = Truncate8((inst.value32 & 0x00FF0000u) >> 16);
const u8 overmax = Truncate8((inst.value32 & 0xFF000000u) >> 24);
if ((value < min) || (value < min && min == 0x00u && max < 0xFEu))
DoMemoryWrite<u8>(inst.address, overmin); // also handles a min value of 0x00
else if (value > max)
DoMemoryWrite<u8>(inst.address, overmax);
index++;
}
break;
case InstructionCode::ExtConstantForceRangeLimits16:
{
const u16 value = DoMemoryRead<u16>(inst.address);
const u16 min = Truncate16(inst.value32 & 0x0000FFFFu);
const u16 max = Truncate16((inst.value32 & 0xFFFF0000u) >> 16);
if ((value < min) || (value < min && min == 0x0000u && max < 0xFFFEu))
DoMemoryWrite<u16>(inst.address, min); // also handles a min value of 0x0000
else if (value > max)
DoMemoryWrite<u16>(inst.address, max);
index++;
}
break;
case InstructionCode::ExtConstantForceRangeRollRound16:
{
const u16 value = DoMemoryRead<u16>(inst.address);
const u16 min = Truncate16(inst.value32 & 0x0000FFFFu);
const u16 max = Truncate16((inst.value32 & 0xFFFF0000u) >> 16);
if ((value < min) || (value < min && min == 0x0000u && max < 0xFFFEu))
DoMemoryWrite<u16>(inst.address, max); // also handles a min value of 0x0000
else if (value > max)
DoMemoryWrite<u16>(inst.address, min);
index++;
}
break;
case InstructionCode::ExtConstantForceRange16:
{
const u16 min = Truncate16(inst.value32 & 0x0000FFFFu);
const u16 max = Truncate16((inst.value32 & 0xFFFF0000u) >> 16);
const u16 value = DoMemoryRead<u16>(inst.address);
const Instruction& inst2 = instructions[index + 1];
const u16 overmin = Truncate16(inst2.value32 & 0x0000FFFFu);
const u16 overmax = Truncate16((inst2.value32 & 0xFFFF0000u) >> 16);
if ((value < min) || (value < min && min == 0x0000u && max < 0xFFFEu))
DoMemoryWrite<u16>(inst.address, overmin); // also handles a min value of 0x0000
else if (value > max)
DoMemoryWrite<u16>(inst.address, overmax);
index += 2;
}
break;
case InstructionCode::ExtFindAndReplace:
{
if ((index + 4) >= instructions.size())
{
Log_ErrorPrintf("Incomplete find/replace instruction");
return;
}
const Instruction& inst2 = instructions[index + 1];
const Instruction& inst3 = instructions[index + 2];
const Instruction& inst4 = instructions[index + 3];
const Instruction& inst5 = instructions[index + 4];
const u32 offset = Truncate16(inst.value32 & 0x0000FFFFu) << 1;
const u8 wildcard = Truncate8((inst.value32 & 0x00FF0000u) >> 16);
const u32 minaddress = inst.address - offset;
const u32 maxaddress = inst.address + offset;
const u8 f1 = Truncate8((inst2.first & 0xFF000000u) >> 24);
const u8 f2 = Truncate8((inst2.first & 0x00FF0000u) >> 16);
const u8 f3 = Truncate8((inst2.first & 0x0000FF00u) >> 8);
const u8 f4 = Truncate8(inst2.first & 0x000000FFu);
const u8 f5 = Truncate8((inst2.value32 & 0xFF000000u) >> 24);
const u8 f6 = Truncate8((inst2.value32 & 0x00FF0000u) >> 16);
const u8 f7 = Truncate8((inst2.value32 & 0x0000FF00u) >> 8);
const u8 f8 = Truncate8(inst2.value32 & 0x000000FFu);
const u8 f9 = Truncate8((inst3.first & 0xFF000000u) >> 24);
const u8 f10 = Truncate8((inst3.first & 0x00FF0000u) >> 16);
const u8 f11 = Truncate8((inst3.first & 0x0000FF00u) >> 8);
const u8 f12 = Truncate8(inst3.first & 0x000000FFu);
const u8 f13 = Truncate8((inst3.value32 & 0xFF000000u) >> 24);
const u8 f14 = Truncate8((inst3.value32 & 0x00FF0000u) >> 16);
const u8 f15 = Truncate8((inst3.value32 & 0x0000FF00u) >> 8);
const u8 f16 = Truncate8(inst3.value32 & 0x000000FFu);
const u8 r1 = Truncate8((inst4.first & 0xFF000000u) >> 24);
const u8 r2 = Truncate8((inst4.first & 0x00FF0000u) >> 16);
const u8 r3 = Truncate8((inst4.first & 0x0000FF00u) >> 8);
const u8 r4 = Truncate8(inst4.first & 0x000000FFu);
const u8 r5 = Truncate8((inst4.value32 & 0xFF000000u) >> 24);
const u8 r6 = Truncate8((inst4.value32 & 0x00FF0000u) >> 16);
const u8 r7 = Truncate8((inst4.value32 & 0x0000FF00u) >> 8);
const u8 r8 = Truncate8(inst4.value32 & 0x000000FFu);
const u8 r9 = Truncate8((inst5.first & 0xFF000000u) >> 24);
const u8 r10 = Truncate8((inst5.first & 0x00FF0000u) >> 16);
const u8 r11 = Truncate8((inst5.first & 0x0000FF00u) >> 8);
const u8 r12 = Truncate8(inst5.first & 0x000000FFu);
const u8 r13 = Truncate8((inst5.value32 & 0xFF000000u) >> 24);
const u8 r14 = Truncate8((inst5.value32 & 0x00FF0000u) >> 16);
const u8 r15 = Truncate8((inst5.value32 & 0x0000FF00u) >> 8);
const u8 r16 = Truncate8(inst5.value32 & 0x000000FFu);
for (u32 address = minaddress; address <= maxaddress; address += 2)
{
if ((DoMemoryRead<u8>(address) == f1 || f1 == wildcard) &&
(DoMemoryRead<u8>(address + 1) == f2 || f2 == wildcard) &&
(DoMemoryRead<u8>(address + 2) == f3 || f3 == wildcard) &&
(DoMemoryRead<u8>(address + 3) == f4 || f4 == wildcard) &&
(DoMemoryRead<u8>(address + 4) == f5 || f5 == wildcard) &&
(DoMemoryRead<u8>(address + 5) == f6 || f6 == wildcard) &&
(DoMemoryRead<u8>(address + 6) == f7 || f7 == wildcard) &&
(DoMemoryRead<u8>(address + 7) == f8 || f8 == wildcard) &&
(DoMemoryRead<u8>(address + 8) == f9 || f9 == wildcard) &&
(DoMemoryRead<u8>(address + 9) == f10 || f10 == wildcard) &&
(DoMemoryRead<u8>(address + 10) == f11 || f11 == wildcard) &&
(DoMemoryRead<u8>(address + 11) == f12 || f12 == wildcard) &&
(DoMemoryRead<u8>(address + 12) == f13 || f13 == wildcard) &&
(DoMemoryRead<u8>(address + 13) == f14 || f14 == wildcard) &&
(DoMemoryRead<u8>(address + 14) == f15 || f15 == wildcard) &&
(DoMemoryRead<u8>(address + 15) == f16 || f16 == wildcard))
{
if (r1 != wildcard)
DoMemoryWrite<u8>(address, r1);
if (r2 != wildcard)
DoMemoryWrite<u8>(address + 1, r2);
if (r3 != wildcard)
DoMemoryWrite<u8>(address + 2, r3);
if (r4 != wildcard)
DoMemoryWrite<u8>(address + 3, r4);
if (r5 != wildcard)
DoMemoryWrite<u8>(address + 4, r5);
if (r6 != wildcard)
DoMemoryWrite<u8>(address + 5, r6);
if (r7 != wildcard)
DoMemoryWrite<u8>(address + 6, r7);
if (r8 != wildcard)
DoMemoryWrite<u8>(address + 7, r8);
if (r9 != wildcard)
DoMemoryWrite<u8>(address + 8, r9);
if (r10 != wildcard)
DoMemoryWrite<u8>(address + 9, r10);
if (r11 != wildcard)
DoMemoryWrite<u8>(address + 10, r11);
if (r12 != wildcard)
DoMemoryWrite<u8>(address + 11, r12);
if (r13 != wildcard)
DoMemoryWrite<u8>(address + 12, r13);
if (r14 != wildcard)
DoMemoryWrite<u8>(address + 13, r14);
if (r15 != wildcard)
DoMemoryWrite<u8>(address + 14, r15);
if (r16 != wildcard)
DoMemoryWrite<u8>(address + 15, r16);
address = address + 15;
}
}
index += 5;
}
break;
case InstructionCode::CompareEqual16:
{
const u16 value = DoMemoryRead<u16>(inst.address);
if (value == inst.value16)
index++;
else
index = GetNextNonConditionalInstruction(index);
}
break;
case InstructionCode::CompareNotEqual16:
{
const u16 value = DoMemoryRead<u16>(inst.address);
if (value != inst.value16)
index++;
else
index = GetNextNonConditionalInstruction(index);
}
break;
case InstructionCode::CompareLess16:
{
const u16 value = DoMemoryRead<u16>(inst.address);
if (value < inst.value16)
index++;
else
index = GetNextNonConditionalInstruction(index);
}
break;
case InstructionCode::CompareGreater16:
{
const u16 value = DoMemoryRead<u16>(inst.address);
if (value > inst.value16)
index++;
else
index = GetNextNonConditionalInstruction(index);
}
break;
case InstructionCode::CompareEqual8:
{
const u8 value = DoMemoryRead<u8>(inst.address);
if (value == inst.value8)
index++;
else
index = GetNextNonConditionalInstruction(index);
}
break;
case InstructionCode::CompareNotEqual8:
{
const u8 value = DoMemoryRead<u8>(inst.address);
if (value != inst.value8)
index++;
else
index = GetNextNonConditionalInstruction(index);
}
break;
case InstructionCode::CompareLess8:
{
const u8 value = DoMemoryRead<u8>(inst.address);
if (value < inst.value8)
index++;
else
index = GetNextNonConditionalInstruction(index);
}
break;
case InstructionCode::CompareGreater8:
{
const u8 value = DoMemoryRead<u8>(inst.address);
if (value > inst.value8)
index++;
else
index = GetNextNonConditionalInstruction(index);
}
break;
case InstructionCode::CompareButtons: // D4
{
if (inst.value16 == GetControllerButtonBits())
index++;
else
index = GetNextNonConditionalInstruction(index);
}
break;
case InstructionCode::SkipIfNotEqual16: // C0
case InstructionCode::ExtSkipIfNotEqual32: // A4
case InstructionCode::SkipIfButtonsNotEqual: // D5
case InstructionCode::SkipIfButtonsEqual: // D6
{
index++;
bool activate_codes;
switch (inst.code)
{
case InstructionCode::SkipIfNotEqual16: // C0
activate_codes = (DoMemoryRead<u16>(inst.address) == inst.value16);
break;
case InstructionCode::ExtSkipIfNotEqual32: // A4
activate_codes = (DoMemoryRead<u32>(inst.address) == inst.value32);
break;
case InstructionCode::SkipIfButtonsNotEqual: // D5
activate_codes = (GetControllerButtonBits() == inst.value16);
break;
case InstructionCode::SkipIfButtonsEqual: // D6
activate_codes = (GetControllerButtonBits() != inst.value16);
break;
default:
activate_codes = false;
break;
}
if (activate_codes)
{
// execute following instructions
continue;
}
// skip to the next separator (00000000 FFFF), or end
constexpr u64 separator_value = UINT64_C(0x000000000000FFFF);
while (index < count)
{
// we don't want to execute the separator instruction
const u64 bits = instructions[index++].bits;
if (bits == separator_value)
break;
}
}
break;
case InstructionCode::DelayActivation: // C1
{
// A value of around 4000 or 5000 will usually give you a good 20-30 second delay before codes are activated.
// Frame number * 0.3 -> (20 * 60) * 10 / 3 => 4000
const u32 comp_value = (System::GetFrameNumber() * 10) / 3;
if (comp_value < inst.value16)
index = count;
else
index++;
}
break;
case InstructionCode::Slide:
{
if ((index + 1) >= instructions.size())
{
Log_ErrorPrintf("Incomplete slide instruction");
return;
}
const u32 slide_count = (inst.first >> 8) & 0xFFu;
const u32 address_increment = inst.first & 0xFFu;
const u16 value_increment = Truncate16(inst.second);
const Instruction& inst2 = instructions[index + 1];
const InstructionCode write_type = inst2.code;
u32 address = inst2.address;
u16 value = inst2.value16;
if (write_type == InstructionCode::ConstantWrite8)
{
for (u32 i = 0; i < slide_count; i++)
{
DoMemoryWrite<u8>(address, Truncate8(value));
address += address_increment;
value += value_increment;
}
}
else if (write_type == InstructionCode::ConstantWrite16)
{
for (u32 i = 0; i < slide_count; i++)
{
DoMemoryWrite<u16>(address, value);
address += address_increment;
value += value_increment;
}
}
else
{
Log_ErrorPrintf("Invalid command in second slide parameter 0x%02X", static_cast<unsigned>(write_type));
}
index += 2;
}
break;
case InstructionCode::MemoryCopy:
{
if ((index + 1) >= instructions.size())
{
Log_ErrorPrintf("Incomplete memory copy instruction");
return;
}
const Instruction& inst2 = instructions[index + 1];
const u32 byte_count = inst.value16;
u32 src_address = inst.address;
u32 dst_address = inst2.address;
for (u32 i = 0; i < byte_count; i++)
{
u8 value = DoMemoryRead<u8>(src_address);
DoMemoryWrite<u8>(dst_address, value);
src_address++;
dst_address++;
}
index += 2;
}
break;
default:
{
Log_ErrorPrintf("Unhandled instruction code 0x%02X (%08X %08X)", static_cast<u8>(inst.code.GetValue()),
inst.first, inst.second);
index++;
}
break;
}
}
}
void CheatCode::ApplyOnDisable() const
{
const u32 count = static_cast<u32>(instructions.size());
u32 index = 0;
for (; index < count;)
{
const Instruction& inst = instructions[index];
switch (inst.code)
{
case InstructionCode::Nop:
case InstructionCode::ConstantWrite8:
case InstructionCode::ConstantWrite16:
case InstructionCode::ExtConstantWrite32:
case InstructionCode::ExtConstantBitSet8:
case InstructionCode::ExtConstantBitSet16:
case InstructionCode::ExtConstantBitSet32:
case InstructionCode::ExtConstantBitClear8:
case InstructionCode::ExtConstantBitClear16:
case InstructionCode::ExtConstantBitClear32:
case InstructionCode::ScratchpadWrite16:
case InstructionCode::ExtScratchpadWrite32:
case InstructionCode::ExtIncrement32:
case InstructionCode::ExtDecrement32:
case InstructionCode::Increment16:
case InstructionCode::Decrement16:
case InstructionCode::Increment8:
case InstructionCode::Decrement8:
case InstructionCode::ExtConstantForceRange8:
case InstructionCode::ExtConstantForceRangeLimits16:
case InstructionCode::ExtConstantForceRangeRollRound16:
case InstructionCode::DelayActivation: // C1
case InstructionCode::ExtConstantWriteIfMatch16:
index++;
break;
case InstructionCode::ExtConstantForceRange16:
case InstructionCode::Slide:
case InstructionCode::MemoryCopy:
index += 2;
break;
case InstructionCode::ExtFindAndReplace:
index += 5;
break;
// for conditionals, we don't want to skip over in case it changed at some point
case InstructionCode::ExtCompareEqual32:
case InstructionCode::ExtCompareNotEqual32:
case InstructionCode::ExtCompareLess32:
case InstructionCode::ExtCompareGreater32:
case InstructionCode::CompareEqual16:
case InstructionCode::CompareNotEqual16:
case InstructionCode::CompareLess16:
case InstructionCode::CompareGreater16:
case InstructionCode::CompareEqual8:
case InstructionCode::CompareNotEqual8:
case InstructionCode::CompareLess8:
case InstructionCode::CompareGreater8:
case InstructionCode::CompareButtons: // D4
index++;
break;
// same deal for block conditionals
case InstructionCode::SkipIfNotEqual16: // C0
case InstructionCode::ExtSkipIfNotEqual32: // A4
case InstructionCode::SkipIfButtonsNotEqual: // D5
case InstructionCode::SkipIfButtonsEqual: // D6
index++;
break;
case InstructionCode::ExtConstantWriteIfMatchWithRestore16:
{
const u16 value = DoMemoryRead<u16>(inst.address);
const u16 comparevalue = Truncate16(inst.value32 >> 16);
const u16 newvalue = Truncate16(inst.value32 & 0xFFFFu);
if (value == newvalue)
DoMemoryWrite<u16>(inst.address, comparevalue);
index++;
}
break;
default:
{
Log_ErrorPrintf("Unhandled instruction code 0x%02X (%08X %08X)", static_cast<u8>(inst.code.GetValue()),
inst.first, inst.second);
index++;
}
break;
}
}
}
static std::array<const char*, 1> s_cheat_code_type_names = {{"Gameshark"}};
static std::array<const char*, 1> s_cheat_code_type_display_names{{TRANSLATABLE("Cheats", "Gameshark")}};
const char* CheatCode::GetTypeName(Type type)
{
return s_cheat_code_type_names[static_cast<u32>(type)];
}
const char* CheatCode::GetTypeDisplayName(Type type)
{
return s_cheat_code_type_display_names[static_cast<u32>(type)];
}
std::optional<CheatCode::Type> CheatCode::ParseTypeName(const char* str)
{
for (u32 i = 0; i < static_cast<u32>(s_cheat_code_type_names.size()); i++)
{
if (std::strcmp(s_cheat_code_type_names[i], str) == 0)
return static_cast<Type>(i);
}
return std::nullopt;
}
static std::array<const char*, 2> s_cheat_code_activation_names = {{"Manual", "EndFrame"}};
static std::array<const char*, 2> s_cheat_code_activation_display_names{
{TRANSLATABLE("Cheats", "Manual"), TRANSLATABLE("Cheats", "Automatic (Frame End)")}};
const char* CheatCode::GetActivationName(Activation activation)
{
return s_cheat_code_activation_names[static_cast<u32>(activation)];
}
const char* CheatCode::GetActivationDisplayName(Activation activation)
{
return s_cheat_code_activation_display_names[static_cast<u32>(activation)];
}
std::optional<CheatCode::Activation> CheatCode::ParseActivationName(const char* str)
{
for (u32 i = 0; i < static_cast<u32>(s_cheat_code_activation_names.size()); i++)
{
if (std::strcmp(s_cheat_code_activation_names[i], str) == 0)
return static_cast<Activation>(i);
}
return std::nullopt;
}
MemoryScan::MemoryScan() = default;
MemoryScan::~MemoryScan() = default;
void MemoryScan::ResetSearch()
{
m_results.clear();
}
void MemoryScan::Search()
{
m_results.clear();
switch (m_size)
{
case MemoryAccessSize::Byte:
SearchBytes();
break;
case MemoryAccessSize::HalfWord:
SearchHalfwords();
break;
case MemoryAccessSize::Word:
SearchWords();
break;
default:
break;
}
}
void MemoryScan::SearchBytes()
{
for (PhysicalMemoryAddress address = m_start_address; address < m_end_address; address++)
{
if (!IsValidScanAddress(address))
continue;
const u8 bvalue = DoMemoryRead<u8>(address);
Result res;
res.address = address;
res.value = m_signed ? SignExtend32(bvalue) : ZeroExtend32(bvalue);
res.last_value = res.value;
res.value_changed = false;
if (res.Filter(m_operator, m_value, m_signed))
m_results.push_back(res);
}
}
void MemoryScan::SearchHalfwords()
{
for (PhysicalMemoryAddress address = m_start_address; address < m_end_address; address += 2)
{
if (!IsValidScanAddress(address))
continue;
const u16 bvalue = DoMemoryRead<u16>(address);
Result res;
res.address = address;
res.value = m_signed ? SignExtend32(bvalue) : ZeroExtend32(bvalue);
res.last_value = res.value;
res.value_changed = false;
if (res.Filter(m_operator, m_value, m_signed))
m_results.push_back(res);
}
}
void MemoryScan::SearchWords()
{
for (PhysicalMemoryAddress address = m_start_address; address < m_end_address; address += 4)
{
if (!IsValidScanAddress(address))
continue;
Result res;
res.address = address;
res.value = DoMemoryRead<u32>(address);
res.last_value = res.value;
res.value_changed = false;
if (res.Filter(m_operator, m_value, m_signed))
m_results.push_back(res);
}
}
void MemoryScan::SearchAgain()
{
ResultVector new_results;
new_results.reserve(m_results.size());
for (Result& res : m_results)
{
res.UpdateValue(m_size, m_signed);
if (res.Filter(m_operator, m_value, m_signed))
{
res.last_value = res.value;
new_results.push_back(res);
}
}
m_results.swap(new_results);
}
void MemoryScan::UpdateResultsValues()
{
for (Result& res : m_results)
res.UpdateValue(m_size, m_signed);
}
void MemoryScan::SetResultValue(u32 index, u32 value)
{
if (index >= m_results.size())
return;
Result& res = m_results[index];
if (res.value == value)
return;
switch (m_size)
{
case MemoryAccessSize::Byte:
DoMemoryWrite<u8>(res.address, Truncate8(value));
break;
case MemoryAccessSize::HalfWord:
DoMemoryWrite<u16>(res.address, Truncate16(value));
break;
case MemoryAccessSize::Word:
CPU::SafeWriteMemoryWord(res.address, value);
break;
}
res.value = value;
res.value_changed = true;
}
bool MemoryScan::Result::Filter(Operator op, u32 comp_value, bool is_signed) const
{
switch (op)
{
case Operator::Equal:
{
return (value == comp_value);
}
case Operator::NotEqual:
{
return (value != comp_value);
}
case Operator::GreaterThan:
{
return is_signed ? (static_cast<s32>(value) > static_cast<s32>(comp_value)) : (value > comp_value);
}
case Operator::GreaterEqual:
{
return is_signed ? (static_cast<s32>(value) >= static_cast<s32>(comp_value)) : (value >= comp_value);
}
case Operator::LessThan:
{
return is_signed ? (static_cast<s32>(value) < static_cast<s32>(comp_value)) : (value < comp_value);
}
case Operator::LessEqual:
{
return is_signed ? (static_cast<s32>(value) <= static_cast<s32>(comp_value)) : (value <= comp_value);
}
case Operator::IncreasedBy:
{
return is_signed ? ((static_cast<s32>(value) - static_cast<s32>(last_value)) == static_cast<s32>(comp_value)) :
((value - last_value) == comp_value);
}
case Operator::DecreasedBy:
{
return is_signed ? ((static_cast<s32>(last_value) - static_cast<s32>(value)) == static_cast<s32>(comp_value)) :
((last_value - value) == comp_value);
}
case Operator::ChangedBy:
{
if (is_signed)
return (std::abs(static_cast<s32>(last_value) - static_cast<s32>(value)) == static_cast<s32>(comp_value));
else
return ((last_value > value) ? (last_value - value) : (value - last_value)) == comp_value;
}
case Operator::EqualLast:
{
return (value == last_value);
}
case Operator::NotEqualLast:
{
return (value != last_value);
}
case Operator::GreaterThanLast:
{
return is_signed ? (static_cast<s32>(value) > static_cast<s32>(last_value)) : (value > last_value);
}
case Operator::GreaterEqualLast:
{
return is_signed ? (static_cast<s32>(value) >= static_cast<s32>(last_value)) : (value >= last_value);
}
case Operator::LessThanLast:
{
return is_signed ? (static_cast<s32>(value) < static_cast<s32>(last_value)) : (value < last_value);
}
case Operator::LessEqualLast:
{
return is_signed ? (static_cast<s32>(value) <= static_cast<s32>(last_value)) : (value <= last_value);
}
case Operator::Any:
return true;
default:
return false;
}
}
void MemoryScan::Result::UpdateValue(MemoryAccessSize size, bool is_signed)
{
const u32 old_value = value;
switch (size)
{
case MemoryAccessSize::Byte:
{
u8 bvalue = DoMemoryRead<u8>(address);
value = is_signed ? SignExtend32(bvalue) : ZeroExtend32(bvalue);
}
break;
case MemoryAccessSize::HalfWord:
{
u16 bvalue = DoMemoryRead<u16>(address);
value = is_signed ? SignExtend32(bvalue) : ZeroExtend32(bvalue);
}
break;
case MemoryAccessSize::Word:
{
CPU::SafeReadMemoryWord(address, &value);
}
break;
}
value_changed = (value != old_value);
}
MemoryWatchList::MemoryWatchList() = default;
MemoryWatchList::~MemoryWatchList() = default;
const MemoryWatchList::Entry* MemoryWatchList::GetEntryByAddress(u32 address) const
{
for (const Entry& entry : m_entries)
{
if (entry.address == address)
return &entry;
}
return nullptr;
}
bool MemoryWatchList::AddEntry(std::string description, u32 address, MemoryAccessSize size, bool is_signed, bool freeze)
{
if (GetEntryByAddress(address))
return false;
Entry entry;
entry.description = std::move(description);
entry.address = address;
entry.size = size;
entry.is_signed = is_signed;
entry.freeze = false;
UpdateEntryValue(&entry);
entry.changed = false;
entry.freeze = freeze;
m_entries.push_back(std::move(entry));
return true;
}
void MemoryWatchList::RemoveEntry(u32 index)
{
if (index >= m_entries.size())
return;
m_entries.erase(m_entries.begin() + index);
}
bool MemoryWatchList::RemoveEntryByAddress(u32 address)
{
for (auto it = m_entries.begin(); it != m_entries.end(); ++it)
{
if (it->address == address)
{
m_entries.erase(it);
return true;
}
}
return false;
}
void MemoryWatchList::SetEntryDescription(u32 index, std::string description)
{
if (index >= m_entries.size())
return;
Entry& entry = m_entries[index];
entry.description = std::move(description);
}
void MemoryWatchList::SetEntryFreeze(u32 index, bool freeze)
{
if (index >= m_entries.size())
return;
Entry& entry = m_entries[index];
entry.freeze = freeze;
}
void MemoryWatchList::SetEntryValue(u32 index, u32 value)
{
if (index >= m_entries.size())
return;
Entry& entry = m_entries[index];
if (entry.value == value)
return;
SetEntryValue(&entry, value);
}
bool MemoryWatchList::RemoveEntryByDescription(const char* description)
{
bool result = false;
for (auto it = m_entries.begin(); it != m_entries.end();)
{
if (it->description == description)
{
it = m_entries.erase(it);
result = true;
continue;
}
++it;
}
return result;
}
void MemoryWatchList::UpdateValues()
{
for (Entry& entry : m_entries)
UpdateEntryValue(&entry);
}
void MemoryWatchList::SetEntryValue(Entry* entry, u32 value)
{
switch (entry->size)
{
case MemoryAccessSize::Byte:
DoMemoryWrite<u8>(entry->address, Truncate8(value));
break;
case MemoryAccessSize::HalfWord:
DoMemoryWrite<u16>(entry->address, Truncate16(value));
break;
case MemoryAccessSize::Word:
DoMemoryWrite<u32>(entry->address, value);
break;
}
entry->changed = (entry->value != value);
entry->value = value;
}
void MemoryWatchList::UpdateEntryValue(Entry* entry)
{
const u32 old_value = entry->value;
switch (entry->size)
{
case MemoryAccessSize::Byte:
{
u8 bvalue = DoMemoryRead<u8>(entry->address);
entry->value = entry->is_signed ? SignExtend32(bvalue) : ZeroExtend32(bvalue);
}
break;
case MemoryAccessSize::HalfWord:
{
u16 bvalue = DoMemoryRead<u16>(entry->address);
entry->value = entry->is_signed ? SignExtend32(bvalue) : ZeroExtend32(bvalue);
}
break;
case MemoryAccessSize::Word:
{
entry->value = DoMemoryRead<u32>(entry->address);
}
break;
}
entry->changed = (old_value != entry->value);
if (entry->freeze && entry->changed)
SetEntryValue(entry, old_value);
}