mirror of
				https://github.com/RetroDECK/Duckstation.git
				synced 2025-04-10 19:15:14 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			5687 lines
		
	
	
		
			208 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5687 lines
		
	
	
		
			208 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  xxHash - Fast Hash algorithm
 | |
|  *  Copyright (c) Yann Collet, Facebook, Inc.
 | |
|  *
 | |
|  *  You can contact the author at :
 | |
|  *  - xxHash homepage: http://www.xxhash.com
 | |
|  *  - xxHash source repository : https://github.com/Cyan4973/xxHash
 | |
|  *
 | |
|  * This source code is licensed under both the BSD-style license (found in the
 | |
|  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
 | |
|  * in the COPYING file in the root directory of this source tree).
 | |
|  * You may select, at your option, one of the above-listed licenses.
 | |
| */
 | |
| 
 | |
| 
 | |
| #ifndef XXH_NO_XXH3
 | |
| # define XXH_NO_XXH3
 | |
| #endif
 | |
| 
 | |
| #ifndef XXH_NAMESPACE
 | |
| # define XXH_NAMESPACE ZSTD_
 | |
| #endif
 | |
| 
 | |
| /*!
 | |
|  * @mainpage xxHash
 | |
|  *
 | |
|  * @file xxhash.h
 | |
|  * xxHash prototypes and implementation
 | |
|  */
 | |
| /* TODO: update */
 | |
| /* Notice extracted from xxHash homepage:
 | |
| 
 | |
| xxHash is an extremely fast hash algorithm, running at RAM speed limits.
 | |
| It also successfully passes all tests from the SMHasher suite.
 | |
| 
 | |
| Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 Duo @3GHz)
 | |
| 
 | |
| Name            Speed       Q.Score   Author
 | |
| xxHash          5.4 GB/s     10
 | |
| CrapWow         3.2 GB/s      2       Andrew
 | |
| MurmurHash 3a   2.7 GB/s     10       Austin Appleby
 | |
| SpookyHash      2.0 GB/s     10       Bob Jenkins
 | |
| SBox            1.4 GB/s      9       Bret Mulvey
 | |
| Lookup3         1.2 GB/s      9       Bob Jenkins
 | |
| SuperFastHash   1.2 GB/s      1       Paul Hsieh
 | |
| CityHash64      1.05 GB/s    10       Pike & Alakuijala
 | |
| FNV             0.55 GB/s     5       Fowler, Noll, Vo
 | |
| CRC32           0.43 GB/s     9
 | |
| MD5-32          0.33 GB/s    10       Ronald L. Rivest
 | |
| SHA1-32         0.28 GB/s    10
 | |
| 
 | |
| Q.Score is a measure of quality of the hash function.
 | |
| It depends on successfully passing SMHasher test set.
 | |
| 10 is a perfect score.
 | |
| 
 | |
| Note: SMHasher's CRC32 implementation is not the fastest one.
 | |
| Other speed-oriented implementations can be faster,
 | |
| especially in combination with PCLMUL instruction:
 | |
| https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html?showComment=1552696407071#c3490092340461170735
 | |
| 
 | |
| A 64-bit version, named XXH64, is available since r35.
 | |
| It offers much better speed, but for 64-bit applications only.
 | |
| Name     Speed on 64 bits    Speed on 32 bits
 | |
| XXH64       13.8 GB/s            1.9 GB/s
 | |
| XXH32        6.8 GB/s            6.0 GB/s
 | |
| */
 | |
| 
 | |
| #if defined (__cplusplus)
 | |
| extern "C" {
 | |
| #endif
 | |
| 
 | |
| /* ****************************
 | |
|  *  INLINE mode
 | |
|  ******************************/
 | |
| /*!
 | |
|  * XXH_INLINE_ALL (and XXH_PRIVATE_API)
 | |
|  * Use these build macros to inline xxhash into the target unit.
 | |
|  * Inlining improves performance on small inputs, especially when the length is
 | |
|  * expressed as a compile-time constant:
 | |
|  *
 | |
|  *      https://fastcompression.blogspot.com/2018/03/xxhash-for-small-keys-impressive-power.html
 | |
|  *
 | |
|  * It also keeps xxHash symbols private to the unit, so they are not exported.
 | |
|  *
 | |
|  * Usage:
 | |
|  *     #define XXH_INLINE_ALL
 | |
|  *     #include "xxhash.h"
 | |
|  *
 | |
|  * Do not compile and link xxhash.o as a separate object, as it is not useful.
 | |
|  */
 | |
| #if (defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)) \
 | |
|     && !defined(XXH_INLINE_ALL_31684351384)
 | |
|    /* this section should be traversed only once */
 | |
| #  define XXH_INLINE_ALL_31684351384
 | |
|    /* give access to the advanced API, required to compile implementations */
 | |
| #  undef XXH_STATIC_LINKING_ONLY   /* avoid macro redef */
 | |
| #  define XXH_STATIC_LINKING_ONLY
 | |
|    /* make all functions private */
 | |
| #  undef XXH_PUBLIC_API
 | |
| #  if defined(__GNUC__)
 | |
| #    define XXH_PUBLIC_API static __inline __attribute__((unused))
 | |
| #  elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
 | |
| #    define XXH_PUBLIC_API static inline
 | |
| #  elif defined(_MSC_VER)
 | |
| #    define XXH_PUBLIC_API static __inline
 | |
| #  else
 | |
|      /* note: this version may generate warnings for unused static functions */
 | |
| #    define XXH_PUBLIC_API static
 | |
| #  endif
 | |
| 
 | |
|    /*
 | |
|     * This part deals with the special case where a unit wants to inline xxHash,
 | |
|     * but "xxhash.h" has previously been included without XXH_INLINE_ALL,
 | |
|     * such as part of some previously included *.h header file.
 | |
|     * Without further action, the new include would just be ignored,
 | |
|     * and functions would effectively _not_ be inlined (silent failure).
 | |
|     * The following macros solve this situation by prefixing all inlined names,
 | |
|     * avoiding naming collision with previous inclusions.
 | |
|     */
 | |
|    /* Before that, we unconditionally #undef all symbols,
 | |
|     * in case they were already defined with XXH_NAMESPACE.
 | |
|     * They will then be redefined for XXH_INLINE_ALL
 | |
|     */
 | |
| #  undef XXH_versionNumber
 | |
|     /* XXH32 */
 | |
| #  undef XXH32
 | |
| #  undef XXH32_createState
 | |
| #  undef XXH32_freeState
 | |
| #  undef XXH32_reset
 | |
| #  undef XXH32_update
 | |
| #  undef XXH32_digest
 | |
| #  undef XXH32_copyState
 | |
| #  undef XXH32_canonicalFromHash
 | |
| #  undef XXH32_hashFromCanonical
 | |
|     /* XXH64 */
 | |
| #  undef XXH64
 | |
| #  undef XXH64_createState
 | |
| #  undef XXH64_freeState
 | |
| #  undef XXH64_reset
 | |
| #  undef XXH64_update
 | |
| #  undef XXH64_digest
 | |
| #  undef XXH64_copyState
 | |
| #  undef XXH64_canonicalFromHash
 | |
| #  undef XXH64_hashFromCanonical
 | |
|     /* XXH3_64bits */
 | |
| #  undef XXH3_64bits
 | |
| #  undef XXH3_64bits_withSecret
 | |
| #  undef XXH3_64bits_withSeed
 | |
| #  undef XXH3_64bits_withSecretandSeed
 | |
| #  undef XXH3_createState
 | |
| #  undef XXH3_freeState
 | |
| #  undef XXH3_copyState
 | |
| #  undef XXH3_64bits_reset
 | |
| #  undef XXH3_64bits_reset_withSeed
 | |
| #  undef XXH3_64bits_reset_withSecret
 | |
| #  undef XXH3_64bits_update
 | |
| #  undef XXH3_64bits_digest
 | |
| #  undef XXH3_generateSecret
 | |
|     /* XXH3_128bits */
 | |
| #  undef XXH128
 | |
| #  undef XXH3_128bits
 | |
| #  undef XXH3_128bits_withSeed
 | |
| #  undef XXH3_128bits_withSecret
 | |
| #  undef XXH3_128bits_reset
 | |
| #  undef XXH3_128bits_reset_withSeed
 | |
| #  undef XXH3_128bits_reset_withSecret
 | |
| #  undef XXH3_128bits_reset_withSecretandSeed
 | |
| #  undef XXH3_128bits_update
 | |
| #  undef XXH3_128bits_digest
 | |
| #  undef XXH128_isEqual
 | |
| #  undef XXH128_cmp
 | |
| #  undef XXH128_canonicalFromHash
 | |
| #  undef XXH128_hashFromCanonical
 | |
|     /* Finally, free the namespace itself */
 | |
| #  undef XXH_NAMESPACE
 | |
| 
 | |
|     /* employ the namespace for XXH_INLINE_ALL */
 | |
| #  define XXH_NAMESPACE XXH_INLINE_
 | |
|    /*
 | |
|     * Some identifiers (enums, type names) are not symbols,
 | |
|     * but they must nonetheless be renamed to avoid redeclaration.
 | |
|     * Alternative solution: do not redeclare them.
 | |
|     * However, this requires some #ifdefs, and has a more dispersed impact.
 | |
|     * Meanwhile, renaming can be achieved in a single place.
 | |
|     */
 | |
| #  define XXH_IPREF(Id)   XXH_NAMESPACE ## Id
 | |
| #  define XXH_OK XXH_IPREF(XXH_OK)
 | |
| #  define XXH_ERROR XXH_IPREF(XXH_ERROR)
 | |
| #  define XXH_errorcode XXH_IPREF(XXH_errorcode)
 | |
| #  define XXH32_canonical_t  XXH_IPREF(XXH32_canonical_t)
 | |
| #  define XXH64_canonical_t  XXH_IPREF(XXH64_canonical_t)
 | |
| #  define XXH128_canonical_t XXH_IPREF(XXH128_canonical_t)
 | |
| #  define XXH32_state_s XXH_IPREF(XXH32_state_s)
 | |
| #  define XXH32_state_t XXH_IPREF(XXH32_state_t)
 | |
| #  define XXH64_state_s XXH_IPREF(XXH64_state_s)
 | |
| #  define XXH64_state_t XXH_IPREF(XXH64_state_t)
 | |
| #  define XXH3_state_s  XXH_IPREF(XXH3_state_s)
 | |
| #  define XXH3_state_t  XXH_IPREF(XXH3_state_t)
 | |
| #  define XXH128_hash_t XXH_IPREF(XXH128_hash_t)
 | |
|    /* Ensure the header is parsed again, even if it was previously included */
 | |
| #  undef XXHASH_H_5627135585666179
 | |
| #  undef XXHASH_H_STATIC_13879238742
 | |
| #endif /* XXH_INLINE_ALL || XXH_PRIVATE_API */
 | |
| 
 | |
| 
 | |
| 
 | |
| /* ****************************************************************
 | |
|  *  Stable API
 | |
|  *****************************************************************/
 | |
| #ifndef XXHASH_H_5627135585666179
 | |
| #define XXHASH_H_5627135585666179 1
 | |
| 
 | |
| 
 | |
| /*!
 | |
|  * @defgroup public Public API
 | |
|  * Contains details on the public xxHash functions.
 | |
|  * @{
 | |
|  */
 | |
| /* specific declaration modes for Windows */
 | |
| #if !defined(XXH_INLINE_ALL) && !defined(XXH_PRIVATE_API)
 | |
| #  if defined(WIN32) && defined(_MSC_VER) && (defined(XXH_IMPORT) || defined(XXH_EXPORT))
 | |
| #    ifdef XXH_EXPORT
 | |
| #      define XXH_PUBLIC_API __declspec(dllexport)
 | |
| #    elif XXH_IMPORT
 | |
| #      define XXH_PUBLIC_API __declspec(dllimport)
 | |
| #    endif
 | |
| #  else
 | |
| #    define XXH_PUBLIC_API   /* do nothing */
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| #ifdef XXH_DOXYGEN
 | |
| /*!
 | |
|  * @brief Emulate a namespace by transparently prefixing all symbols.
 | |
|  *
 | |
|  * If you want to include _and expose_ xxHash functions from within your own
 | |
|  * library, but also want to avoid symbol collisions with other libraries which
 | |
|  * may also include xxHash, you can use XXH_NAMESPACE to automatically prefix
 | |
|  * any public symbol from xxhash library with the value of XXH_NAMESPACE
 | |
|  * (therefore, avoid empty or numeric values).
 | |
|  *
 | |
|  * Note that no change is required within the calling program as long as it
 | |
|  * includes `xxhash.h`: Regular symbol names will be automatically translated
 | |
|  * by this header.
 | |
|  */
 | |
| #  define XXH_NAMESPACE /* YOUR NAME HERE */
 | |
| #  undef XXH_NAMESPACE
 | |
| #endif
 | |
| 
 | |
| #ifdef XXH_NAMESPACE
 | |
| #  define XXH_CAT(A,B) A##B
 | |
| #  define XXH_NAME2(A,B) XXH_CAT(A,B)
 | |
| #  define XXH_versionNumber XXH_NAME2(XXH_NAMESPACE, XXH_versionNumber)
 | |
| /* XXH32 */
 | |
| #  define XXH32 XXH_NAME2(XXH_NAMESPACE, XXH32)
 | |
| #  define XXH32_createState XXH_NAME2(XXH_NAMESPACE, XXH32_createState)
 | |
| #  define XXH32_freeState XXH_NAME2(XXH_NAMESPACE, XXH32_freeState)
 | |
| #  define XXH32_reset XXH_NAME2(XXH_NAMESPACE, XXH32_reset)
 | |
| #  define XXH32_update XXH_NAME2(XXH_NAMESPACE, XXH32_update)
 | |
| #  define XXH32_digest XXH_NAME2(XXH_NAMESPACE, XXH32_digest)
 | |
| #  define XXH32_copyState XXH_NAME2(XXH_NAMESPACE, XXH32_copyState)
 | |
| #  define XXH32_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH32_canonicalFromHash)
 | |
| #  define XXH32_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH32_hashFromCanonical)
 | |
| /* XXH64 */
 | |
| #  define XXH64 XXH_NAME2(XXH_NAMESPACE, XXH64)
 | |
| #  define XXH64_createState XXH_NAME2(XXH_NAMESPACE, XXH64_createState)
 | |
| #  define XXH64_freeState XXH_NAME2(XXH_NAMESPACE, XXH64_freeState)
 | |
| #  define XXH64_reset XXH_NAME2(XXH_NAMESPACE, XXH64_reset)
 | |
| #  define XXH64_update XXH_NAME2(XXH_NAMESPACE, XXH64_update)
 | |
| #  define XXH64_digest XXH_NAME2(XXH_NAMESPACE, XXH64_digest)
 | |
| #  define XXH64_copyState XXH_NAME2(XXH_NAMESPACE, XXH64_copyState)
 | |
| #  define XXH64_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH64_canonicalFromHash)
 | |
| #  define XXH64_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH64_hashFromCanonical)
 | |
| /* XXH3_64bits */
 | |
| #  define XXH3_64bits XXH_NAME2(XXH_NAMESPACE, XXH3_64bits)
 | |
| #  define XXH3_64bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecret)
 | |
| #  define XXH3_64bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSeed)
 | |
| #  define XXH3_64bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_withSecretandSeed)
 | |
| #  define XXH3_createState XXH_NAME2(XXH_NAMESPACE, XXH3_createState)
 | |
| #  define XXH3_freeState XXH_NAME2(XXH_NAMESPACE, XXH3_freeState)
 | |
| #  define XXH3_copyState XXH_NAME2(XXH_NAMESPACE, XXH3_copyState)
 | |
| #  define XXH3_64bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset)
 | |
| #  define XXH3_64bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSeed)
 | |
| #  define XXH3_64bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecret)
 | |
| #  define XXH3_64bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_reset_withSecretandSeed)
 | |
| #  define XXH3_64bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_update)
 | |
| #  define XXH3_64bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_64bits_digest)
 | |
| #  define XXH3_generateSecret XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret)
 | |
| #  define XXH3_generateSecret_fromSeed XXH_NAME2(XXH_NAMESPACE, XXH3_generateSecret_fromSeed)
 | |
| /* XXH3_128bits */
 | |
| #  define XXH128 XXH_NAME2(XXH_NAMESPACE, XXH128)
 | |
| #  define XXH3_128bits XXH_NAME2(XXH_NAMESPACE, XXH3_128bits)
 | |
| #  define XXH3_128bits_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSeed)
 | |
| #  define XXH3_128bits_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecret)
 | |
| #  define XXH3_128bits_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_withSecretandSeed)
 | |
| #  define XXH3_128bits_reset XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset)
 | |
| #  define XXH3_128bits_reset_withSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSeed)
 | |
| #  define XXH3_128bits_reset_withSecret XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecret)
 | |
| #  define XXH3_128bits_reset_withSecretandSeed XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_reset_withSecretandSeed)
 | |
| #  define XXH3_128bits_update XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_update)
 | |
| #  define XXH3_128bits_digest XXH_NAME2(XXH_NAMESPACE, XXH3_128bits_digest)
 | |
| #  define XXH128_isEqual XXH_NAME2(XXH_NAMESPACE, XXH128_isEqual)
 | |
| #  define XXH128_cmp     XXH_NAME2(XXH_NAMESPACE, XXH128_cmp)
 | |
| #  define XXH128_canonicalFromHash XXH_NAME2(XXH_NAMESPACE, XXH128_canonicalFromHash)
 | |
| #  define XXH128_hashFromCanonical XXH_NAME2(XXH_NAMESPACE, XXH128_hashFromCanonical)
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* *************************************
 | |
| *  Version
 | |
| ***************************************/
 | |
| #define XXH_VERSION_MAJOR    0
 | |
| #define XXH_VERSION_MINOR    8
 | |
| #define XXH_VERSION_RELEASE  1
 | |
| #define XXH_VERSION_NUMBER  (XXH_VERSION_MAJOR *100*100 + XXH_VERSION_MINOR *100 + XXH_VERSION_RELEASE)
 | |
| 
 | |
| /*!
 | |
|  * @brief Obtains the xxHash version.
 | |
|  *
 | |
|  * This is mostly useful when xxHash is compiled as a shared library,
 | |
|  * since the returned value comes from the library, as opposed to header file.
 | |
|  *
 | |
|  * @return `XXH_VERSION_NUMBER` of the invoked library.
 | |
|  */
 | |
| XXH_PUBLIC_API unsigned XXH_versionNumber (void);
 | |
| 
 | |
| 
 | |
| /* ****************************
 | |
| *  Common basic types
 | |
| ******************************/
 | |
| #include <stddef.h>   /* size_t */
 | |
| typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode;
 | |
| 
 | |
| 
 | |
| /*-**********************************************************************
 | |
| *  32-bit hash
 | |
| ************************************************************************/
 | |
| #if defined(XXH_DOXYGEN) /* Don't show <stdint.h> include */
 | |
| /*!
 | |
|  * @brief An unsigned 32-bit integer.
 | |
|  *
 | |
|  * Not necessarily defined to `uint32_t` but functionally equivalent.
 | |
|  */
 | |
| typedef uint32_t XXH32_hash_t;
 | |
| 
 | |
| #elif !defined (__VMS) \
 | |
|   && (defined (__cplusplus) \
 | |
|   || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
 | |
| #   include <stdint.h>
 | |
|     typedef uint32_t XXH32_hash_t;
 | |
| 
 | |
| #else
 | |
| #   include <limits.h>
 | |
| #   if UINT_MAX == 0xFFFFFFFFUL
 | |
|       typedef unsigned int XXH32_hash_t;
 | |
| #   else
 | |
| #     if ULONG_MAX == 0xFFFFFFFFUL
 | |
|         typedef unsigned long XXH32_hash_t;
 | |
| #     else
 | |
| #       error "unsupported platform: need a 32-bit type"
 | |
| #     endif
 | |
| #   endif
 | |
| #endif
 | |
| 
 | |
| /*!
 | |
|  * @}
 | |
|  *
 | |
|  * @defgroup xxh32_family XXH32 family
 | |
|  * @ingroup public
 | |
|  * Contains functions used in the classic 32-bit xxHash algorithm.
 | |
|  *
 | |
|  * @note
 | |
|  *   XXH32 is useful for older platforms, with no or poor 64-bit performance.
 | |
|  *   Note that @ref xxh3_family provides competitive speed
 | |
|  *   for both 32-bit and 64-bit systems, and offers true 64/128 bit hash results.
 | |
|  *
 | |
|  * @see @ref xxh64_family, @ref xxh3_family : Other xxHash families
 | |
|  * @see @ref xxh32_impl for implementation details
 | |
|  * @{
 | |
|  */
 | |
| 
 | |
| /*!
 | |
|  * @brief Calculates the 32-bit hash of @p input using xxHash32.
 | |
|  *
 | |
|  * Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark): 5.4 GB/s
 | |
|  *
 | |
|  * @param input The block of data to be hashed, at least @p length bytes in size.
 | |
|  * @param length The length of @p input, in bytes.
 | |
|  * @param seed The 32-bit seed to alter the hash's output predictably.
 | |
|  *
 | |
|  * @pre
 | |
|  *   The memory between @p input and @p input + @p length must be valid,
 | |
|  *   readable, contiguous memory. However, if @p length is `0`, @p input may be
 | |
|  *   `NULL`. In C++, this also must be *TriviallyCopyable*.
 | |
|  *
 | |
|  * @return The calculated 32-bit hash value.
 | |
|  *
 | |
|  * @see
 | |
|  *    XXH64(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128():
 | |
|  *    Direct equivalents for the other variants of xxHash.
 | |
|  * @see
 | |
|  *    XXH32_createState(), XXH32_update(), XXH32_digest(): Streaming version.
 | |
|  */
 | |
| XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t length, XXH32_hash_t seed);
 | |
| 
 | |
| /*!
 | |
|  * Streaming functions generate the xxHash value from an incremental input.
 | |
|  * This method is slower than single-call functions, due to state management.
 | |
|  * For small inputs, prefer `XXH32()` and `XXH64()`, which are better optimized.
 | |
|  *
 | |
|  * An XXH state must first be allocated using `XXH*_createState()`.
 | |
|  *
 | |
|  * Start a new hash by initializing the state with a seed using `XXH*_reset()`.
 | |
|  *
 | |
|  * Then, feed the hash state by calling `XXH*_update()` as many times as necessary.
 | |
|  *
 | |
|  * The function returns an error code, with 0 meaning OK, and any other value
 | |
|  * meaning there is an error.
 | |
|  *
 | |
|  * Finally, a hash value can be produced anytime, by using `XXH*_digest()`.
 | |
|  * This function returns the nn-bits hash as an int or long long.
 | |
|  *
 | |
|  * It's still possible to continue inserting input into the hash state after a
 | |
|  * digest, and generate new hash values later on by invoking `XXH*_digest()`.
 | |
|  *
 | |
|  * When done, release the state using `XXH*_freeState()`.
 | |
|  *
 | |
|  * Example code for incrementally hashing a file:
 | |
|  * @code{.c}
 | |
|  *    #include <stdio.h>
 | |
|  *    #include <xxhash.h>
 | |
|  *    #define BUFFER_SIZE 256
 | |
|  *
 | |
|  *    // Note: XXH64 and XXH3 use the same interface.
 | |
|  *    XXH32_hash_t
 | |
|  *    hashFile(FILE* stream)
 | |
|  *    {
 | |
|  *        XXH32_state_t* state;
 | |
|  *        unsigned char buf[BUFFER_SIZE];
 | |
|  *        size_t amt;
 | |
|  *        XXH32_hash_t hash;
 | |
|  *
 | |
|  *        state = XXH32_createState();       // Create a state
 | |
|  *        assert(state != NULL);             // Error check here
 | |
|  *        XXH32_reset(state, 0xbaad5eed);    // Reset state with our seed
 | |
|  *        while ((amt = fread(buf, 1, sizeof(buf), stream)) != 0) {
 | |
|  *            XXH32_update(state, buf, amt); // Hash the file in chunks
 | |
|  *        }
 | |
|  *        hash = XXH32_digest(state);        // Finalize the hash
 | |
|  *        XXH32_freeState(state);            // Clean up
 | |
|  *        return hash;
 | |
|  *    }
 | |
|  * @endcode
 | |
|  */
 | |
| 
 | |
| /*!
 | |
|  * @typedef struct XXH32_state_s XXH32_state_t
 | |
|  * @brief The opaque state struct for the XXH32 streaming API.
 | |
|  *
 | |
|  * @see XXH32_state_s for details.
 | |
|  */
 | |
| typedef struct XXH32_state_s XXH32_state_t;
 | |
| 
 | |
| /*!
 | |
|  * @brief Allocates an @ref XXH32_state_t.
 | |
|  *
 | |
|  * Must be freed with XXH32_freeState().
 | |
|  * @return An allocated XXH32_state_t on success, `NULL` on failure.
 | |
|  */
 | |
| XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void);
 | |
| /*!
 | |
|  * @brief Frees an @ref XXH32_state_t.
 | |
|  *
 | |
|  * Must be allocated with XXH32_createState().
 | |
|  * @param statePtr A pointer to an @ref XXH32_state_t allocated with @ref XXH32_createState().
 | |
|  * @return XXH_OK.
 | |
|  */
 | |
| XXH_PUBLIC_API XXH_errorcode  XXH32_freeState(XXH32_state_t* statePtr);
 | |
| /*!
 | |
|  * @brief Copies one @ref XXH32_state_t to another.
 | |
|  *
 | |
|  * @param dst_state The state to copy to.
 | |
|  * @param src_state The state to copy from.
 | |
|  * @pre
 | |
|  *   @p dst_state and @p src_state must not be `NULL` and must not overlap.
 | |
|  */
 | |
| XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dst_state, const XXH32_state_t* src_state);
 | |
| 
 | |
| /*!
 | |
|  * @brief Resets an @ref XXH32_state_t to begin a new hash.
 | |
|  *
 | |
|  * This function resets and seeds a state. Call it before @ref XXH32_update().
 | |
|  *
 | |
|  * @param statePtr The state struct to reset.
 | |
|  * @param seed The 32-bit seed to alter the hash result predictably.
 | |
|  *
 | |
|  * @pre
 | |
|  *   @p statePtr must not be `NULL`.
 | |
|  *
 | |
|  * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
 | |
|  */
 | |
| XXH_PUBLIC_API XXH_errorcode XXH32_reset  (XXH32_state_t* statePtr, XXH32_hash_t seed);
 | |
| 
 | |
| /*!
 | |
|  * @brief Consumes a block of @p input to an @ref XXH32_state_t.
 | |
|  *
 | |
|  * Call this to incrementally consume blocks of data.
 | |
|  *
 | |
|  * @param statePtr The state struct to update.
 | |
|  * @param input The block of data to be hashed, at least @p length bytes in size.
 | |
|  * @param length The length of @p input, in bytes.
 | |
|  *
 | |
|  * @pre
 | |
|  *   @p statePtr must not be `NULL`.
 | |
|  * @pre
 | |
|  *   The memory between @p input and @p input + @p length must be valid,
 | |
|  *   readable, contiguous memory. However, if @p length is `0`, @p input may be
 | |
|  *   `NULL`. In C++, this also must be *TriviallyCopyable*.
 | |
|  *
 | |
|  * @return @ref XXH_OK on success, @ref XXH_ERROR on failure.
 | |
|  */
 | |
| XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* statePtr, const void* input, size_t length);
 | |
| 
 | |
| /*!
 | |
|  * @brief Returns the calculated hash value from an @ref XXH32_state_t.
 | |
|  *
 | |
|  * @note
 | |
|  *   Calling XXH32_digest() will not affect @p statePtr, so you can update,
 | |
|  *   digest, and update again.
 | |
|  *
 | |
|  * @param statePtr The state struct to calculate the hash from.
 | |
|  *
 | |
|  * @pre
 | |
|  *  @p statePtr must not be `NULL`.
 | |
|  *
 | |
|  * @return The calculated xxHash32 value from that state.
 | |
|  */
 | |
| XXH_PUBLIC_API XXH32_hash_t  XXH32_digest (const XXH32_state_t* statePtr);
 | |
| 
 | |
| /*******   Canonical representation   *******/
 | |
| 
 | |
| /*
 | |
|  * The default return values from XXH functions are unsigned 32 and 64 bit
 | |
|  * integers.
 | |
|  * This the simplest and fastest format for further post-processing.
 | |
|  *
 | |
|  * However, this leaves open the question of what is the order on the byte level,
 | |
|  * since little and big endian conventions will store the same number differently.
 | |
|  *
 | |
|  * The canonical representation settles this issue by mandating big-endian
 | |
|  * convention, the same convention as human-readable numbers (large digits first).
 | |
|  *
 | |
|  * When writing hash values to storage, sending them over a network, or printing
 | |
|  * them, it's highly recommended to use the canonical representation to ensure
 | |
|  * portability across a wider range of systems, present and future.
 | |
|  *
 | |
|  * The following functions allow transformation of hash values to and from
 | |
|  * canonical format.
 | |
|  */
 | |
| 
 | |
| /*!
 | |
|  * @brief Canonical (big endian) representation of @ref XXH32_hash_t.
 | |
|  */
 | |
| typedef struct {
 | |
|     unsigned char digest[4]; /*!< Hash bytes, big endian */
 | |
| } XXH32_canonical_t;
 | |
| 
 | |
| /*!
 | |
|  * @brief Converts an @ref XXH32_hash_t to a big endian @ref XXH32_canonical_t.
 | |
|  *
 | |
|  * @param dst The @ref XXH32_canonical_t pointer to be stored to.
 | |
|  * @param hash The @ref XXH32_hash_t to be converted.
 | |
|  *
 | |
|  * @pre
 | |
|  *   @p dst must not be `NULL`.
 | |
|  */
 | |
| XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash);
 | |
| 
 | |
| /*!
 | |
|  * @brief Converts an @ref XXH32_canonical_t to a native @ref XXH32_hash_t.
 | |
|  *
 | |
|  * @param src The @ref XXH32_canonical_t to convert.
 | |
|  *
 | |
|  * @pre
 | |
|  *   @p src must not be `NULL`.
 | |
|  *
 | |
|  * @return The converted hash.
 | |
|  */
 | |
| XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src);
 | |
| 
 | |
| 
 | |
| #ifdef __has_attribute
 | |
| # define XXH_HAS_ATTRIBUTE(x) __has_attribute(x)
 | |
| #else
 | |
| # define XXH_HAS_ATTRIBUTE(x) 0
 | |
| #endif
 | |
| 
 | |
| /* C-language Attributes are added in C23. */
 | |
| #if defined(__STDC_VERSION__) && (__STDC_VERSION__ > 201710L) && defined(__has_c_attribute)
 | |
| # define XXH_HAS_C_ATTRIBUTE(x) __has_c_attribute(x)
 | |
| #else
 | |
| # define XXH_HAS_C_ATTRIBUTE(x) 0
 | |
| #endif
 | |
| 
 | |
| #if defined(__cplusplus) && defined(__has_cpp_attribute)
 | |
| # define XXH_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
 | |
| #else
 | |
| # define XXH_HAS_CPP_ATTRIBUTE(x) 0
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| Define XXH_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute
 | |
| introduced in CPP17 and C23.
 | |
| CPP17 : https://en.cppreference.com/w/cpp/language/attributes/fallthrough
 | |
| C23   : https://en.cppreference.com/w/c/language/attributes/fallthrough
 | |
| */
 | |
| #if XXH_HAS_C_ATTRIBUTE(x)
 | |
| # define XXH_FALLTHROUGH [[fallthrough]]
 | |
| #elif XXH_HAS_CPP_ATTRIBUTE(x)
 | |
| # define XXH_FALLTHROUGH [[fallthrough]]
 | |
| #elif XXH_HAS_ATTRIBUTE(__fallthrough__)
 | |
| # define XXH_FALLTHROUGH __attribute__ ((fallthrough))
 | |
| #else
 | |
| # define XXH_FALLTHROUGH
 | |
| #endif
 | |
| 
 | |
| /*!
 | |
|  * @}
 | |
|  * @ingroup public
 | |
|  * @{
 | |
|  */
 | |
| 
 | |
| #ifndef XXH_NO_LONG_LONG
 | |
| /*-**********************************************************************
 | |
| *  64-bit hash
 | |
| ************************************************************************/
 | |
| #if defined(XXH_DOXYGEN) /* don't include <stdint.h> */
 | |
| /*!
 | |
|  * @brief An unsigned 64-bit integer.
 | |
|  *
 | |
|  * Not necessarily defined to `uint64_t` but functionally equivalent.
 | |
|  */
 | |
| typedef uint64_t XXH64_hash_t;
 | |
| #elif !defined (__VMS) \
 | |
|   && (defined (__cplusplus) \
 | |
|   || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
 | |
| #  include <stdint.h>
 | |
|    typedef uint64_t XXH64_hash_t;
 | |
| #else
 | |
| #  include <limits.h>
 | |
| #  if defined(__LP64__) && ULONG_MAX == 0xFFFFFFFFFFFFFFFFULL
 | |
|      /* LP64 ABI says uint64_t is unsigned long */
 | |
|      typedef unsigned long XXH64_hash_t;
 | |
| #  else
 | |
|      /* the following type must have a width of 64-bit */
 | |
|      typedef unsigned long long XXH64_hash_t;
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| /*!
 | |
|  * @}
 | |
|  *
 | |
|  * @defgroup xxh64_family XXH64 family
 | |
|  * @ingroup public
 | |
|  * @{
 | |
|  * Contains functions used in the classic 64-bit xxHash algorithm.
 | |
|  *
 | |
|  * @note
 | |
|  *   XXH3 provides competitive speed for both 32-bit and 64-bit systems,
 | |
|  *   and offers true 64/128 bit hash results.
 | |
|  *   It provides better speed for systems with vector processing capabilities.
 | |
|  */
 | |
| 
 | |
| 
 | |
| /*!
 | |
|  * @brief Calculates the 64-bit hash of @p input using xxHash64.
 | |
|  *
 | |
|  * This function usually runs faster on 64-bit systems, but slower on 32-bit
 | |
|  * systems (see benchmark).
 | |
|  *
 | |
|  * @param input The block of data to be hashed, at least @p length bytes in size.
 | |
|  * @param length The length of @p input, in bytes.
 | |
|  * @param seed The 64-bit seed to alter the hash's output predictably.
 | |
|  *
 | |
|  * @pre
 | |
|  *   The memory between @p input and @p input + @p length must be valid,
 | |
|  *   readable, contiguous memory. However, if @p length is `0`, @p input may be
 | |
|  *   `NULL`. In C++, this also must be *TriviallyCopyable*.
 | |
|  *
 | |
|  * @return The calculated 64-bit hash.
 | |
|  *
 | |
|  * @see
 | |
|  *    XXH32(), XXH3_64bits_withSeed(), XXH3_128bits_withSeed(), XXH128():
 | |
|  *    Direct equivalents for the other variants of xxHash.
 | |
|  * @see
 | |
|  *    XXH64_createState(), XXH64_update(), XXH64_digest(): Streaming version.
 | |
|  */
 | |
| XXH_PUBLIC_API XXH64_hash_t XXH64(const void* input, size_t length, XXH64_hash_t seed);
 | |
| 
 | |
| /*******   Streaming   *******/
 | |
| /*!
 | |
|  * @brief The opaque state struct for the XXH64 streaming API.
 | |
|  *
 | |
|  * @see XXH64_state_s for details.
 | |
|  */
 | |
| typedef struct XXH64_state_s XXH64_state_t;   /* incomplete type */
 | |
| XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void);
 | |
| XXH_PUBLIC_API XXH_errorcode  XXH64_freeState(XXH64_state_t* statePtr);
 | |
| XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dst_state, const XXH64_state_t* src_state);
 | |
| 
 | |
| XXH_PUBLIC_API XXH_errorcode XXH64_reset  (XXH64_state_t* statePtr, XXH64_hash_t seed);
 | |
| XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* statePtr, const void* input, size_t length);
 | |
| XXH_PUBLIC_API XXH64_hash_t  XXH64_digest (const XXH64_state_t* statePtr);
 | |
| 
 | |
| /*******   Canonical representation   *******/
 | |
| typedef struct { unsigned char digest[sizeof(XXH64_hash_t)]; } XXH64_canonical_t;
 | |
| XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash);
 | |
| XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src);
 | |
| 
 | |
| #ifndef XXH_NO_XXH3
 | |
| /*!
 | |
|  * @}
 | |
|  * ************************************************************************
 | |
|  * @defgroup xxh3_family XXH3 family
 | |
|  * @ingroup public
 | |
|  * @{
 | |
|  *
 | |
|  * XXH3 is a more recent hash algorithm featuring:
 | |
|  *  - Improved speed for both small and large inputs
 | |
|  *  - True 64-bit and 128-bit outputs
 | |
|  *  - SIMD acceleration
 | |
|  *  - Improved 32-bit viability
 | |
|  *
 | |
|  * Speed analysis methodology is explained here:
 | |
|  *
 | |
|  *    https://fastcompression.blogspot.com/2019/03/presenting-xxh3.html
 | |
|  *
 | |
|  * Compared to XXH64, expect XXH3 to run approximately
 | |
|  * ~2x faster on large inputs and >3x faster on small ones,
 | |
|  * exact differences vary depending on platform.
 | |
|  *
 | |
|  * XXH3's speed benefits greatly from SIMD and 64-bit arithmetic,
 | |
|  * but does not require it.
 | |
|  * Any 32-bit and 64-bit targets that can run XXH32 smoothly
 | |
|  * can run XXH3 at competitive speeds, even without vector support.
 | |
|  * Further details are explained in the implementation.
 | |
|  *
 | |
|  * Optimized implementations are provided for AVX512, AVX2, SSE2, NEON, POWER8,
 | |
|  * ZVector and scalar targets. This can be controlled via the XXH_VECTOR macro.
 | |
|  *
 | |
|  * XXH3 implementation is portable:
 | |
|  * it has a generic C90 formulation that can be compiled on any platform,
 | |
|  * all implementations generage exactly the same hash value on all platforms.
 | |
|  * Starting from v0.8.0, it's also labelled "stable", meaning that
 | |
|  * any future version will also generate the same hash value.
 | |
|  *
 | |
|  * XXH3 offers 2 variants, _64bits and _128bits.
 | |
|  *
 | |
|  * When only 64 bits are needed, prefer invoking the _64bits variant, as it
 | |
|  * reduces the amount of mixing, resulting in faster speed on small inputs.
 | |
|  * It's also generally simpler to manipulate a scalar return type than a struct.
 | |
|  *
 | |
|  * The API supports one-shot hashing, streaming mode, and custom secrets.
 | |
|  */
 | |
| 
 | |
| /*-**********************************************************************
 | |
| *  XXH3 64-bit variant
 | |
| ************************************************************************/
 | |
| 
 | |
| /* XXH3_64bits():
 | |
|  * default 64-bit variant, using default secret and default seed of 0.
 | |
|  * It's the fastest variant. */
 | |
| XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* data, size_t len);
 | |
| 
 | |
| /*
 | |
|  * XXH3_64bits_withSeed():
 | |
|  * This variant generates a custom secret on the fly
 | |
|  * based on default secret altered using the `seed` value.
 | |
|  * While this operation is decently fast, note that it's not completely free.
 | |
|  * Note: seed==0 produces the same results as XXH3_64bits().
 | |
|  */
 | |
| XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
 | |
| 
 | |
| /*!
 | |
|  * The bare minimum size for a custom secret.
 | |
|  *
 | |
|  * @see
 | |
|  *  XXH3_64bits_withSecret(), XXH3_64bits_reset_withSecret(),
 | |
|  *  XXH3_128bits_withSecret(), XXH3_128bits_reset_withSecret().
 | |
|  */
 | |
| #define XXH3_SECRET_SIZE_MIN 136
 | |
| 
 | |
| /*
 | |
|  * XXH3_64bits_withSecret():
 | |
|  * It's possible to provide any blob of bytes as a "secret" to generate the hash.
 | |
|  * This makes it more difficult for an external actor to prepare an intentional collision.
 | |
|  * The main condition is that secretSize *must* be large enough (>= XXH3_SECRET_SIZE_MIN).
 | |
|  * However, the quality of the secret impacts the dispersion of the hash algorithm.
 | |
|  * Therefore, the secret _must_ look like a bunch of random bytes.
 | |
|  * Avoid "trivial" or structured data such as repeated sequences or a text document.
 | |
|  * Whenever in doubt about the "randomness" of the blob of bytes,
 | |
|  * consider employing "XXH3_generateSecret()" instead (see below).
 | |
|  * It will generate a proper high entropy secret derived from the blob of bytes.
 | |
|  * Another advantage of using XXH3_generateSecret() is that
 | |
|  * it guarantees that all bits within the initial blob of bytes
 | |
|  * will impact every bit of the output.
 | |
|  * This is not necessarily the case when using the blob of bytes directly
 | |
|  * because, when hashing _small_ inputs, only a portion of the secret is employed.
 | |
|  */
 | |
| XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
 | |
| 
 | |
| 
 | |
| /*******   Streaming   *******/
 | |
| /*
 | |
|  * Streaming requires state maintenance.
 | |
|  * This operation costs memory and CPU.
 | |
|  * As a consequence, streaming is slower than one-shot hashing.
 | |
|  * For better performance, prefer one-shot functions whenever applicable.
 | |
|  */
 | |
| 
 | |
| /*!
 | |
|  * @brief The state struct for the XXH3 streaming API.
 | |
|  *
 | |
|  * @see XXH3_state_s for details.
 | |
|  */
 | |
| typedef struct XXH3_state_s XXH3_state_t;
 | |
| XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void);
 | |
| XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr);
 | |
| XXH_PUBLIC_API void XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state);
 | |
| 
 | |
| /*
 | |
|  * XXH3_64bits_reset():
 | |
|  * Initialize with default parameters.
 | |
|  * digest will be equivalent to `XXH3_64bits()`.
 | |
|  */
 | |
| XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset(XXH3_state_t* statePtr);
 | |
| /*
 | |
|  * XXH3_64bits_reset_withSeed():
 | |
|  * Generate a custom secret from `seed`, and store it into `statePtr`.
 | |
|  * digest will be equivalent to `XXH3_64bits_withSeed()`.
 | |
|  */
 | |
| XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
 | |
| /*
 | |
|  * XXH3_64bits_reset_withSecret():
 | |
|  * `secret` is referenced, it _must outlive_ the hash streaming session.
 | |
|  * Similar to one-shot API, `secretSize` must be >= `XXH3_SECRET_SIZE_MIN`,
 | |
|  * and the quality of produced hash values depends on secret's entropy
 | |
|  * (secret's content should look like a bunch of random bytes).
 | |
|  * When in doubt about the randomness of a candidate `secret`,
 | |
|  * consider employing `XXH3_generateSecret()` instead (see below).
 | |
|  */
 | |
| XXH_PUBLIC_API XXH_errorcode XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
 | |
| 
 | |
| XXH_PUBLIC_API XXH_errorcode XXH3_64bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
 | |
| XXH_PUBLIC_API XXH64_hash_t  XXH3_64bits_digest (const XXH3_state_t* statePtr);
 | |
| 
 | |
| /* note : canonical representation of XXH3 is the same as XXH64
 | |
|  * since they both produce XXH64_hash_t values */
 | |
| 
 | |
| 
 | |
| /*-**********************************************************************
 | |
| *  XXH3 128-bit variant
 | |
| ************************************************************************/
 | |
| 
 | |
| /*!
 | |
|  * @brief The return value from 128-bit hashes.
 | |
|  *
 | |
|  * Stored in little endian order, although the fields themselves are in native
 | |
|  * endianness.
 | |
|  */
 | |
| typedef struct {
 | |
|     XXH64_hash_t low64;   /*!< `value & 0xFFFFFFFFFFFFFFFF` */
 | |
|     XXH64_hash_t high64;  /*!< `value >> 64` */
 | |
| } XXH128_hash_t;
 | |
| 
 | |
| XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* data, size_t len);
 | |
| XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSeed(const void* data, size_t len, XXH64_hash_t seed);
 | |
| XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize);
 | |
| 
 | |
| /*******   Streaming   *******/
 | |
| /*
 | |
|  * Streaming requires state maintenance.
 | |
|  * This operation costs memory and CPU.
 | |
|  * As a consequence, streaming is slower than one-shot hashing.
 | |
|  * For better performance, prefer one-shot functions whenever applicable.
 | |
|  *
 | |
|  * XXH3_128bits uses the same XXH3_state_t as XXH3_64bits().
 | |
|  * Use already declared XXH3_createState() and XXH3_freeState().
 | |
|  *
 | |
|  * All reset and streaming functions have same meaning as their 64-bit counterpart.
 | |
|  */
 | |
| 
 | |
| XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset(XXH3_state_t* statePtr);
 | |
| XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed);
 | |
| XXH_PUBLIC_API XXH_errorcode XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize);
 | |
| 
 | |
| XXH_PUBLIC_API XXH_errorcode XXH3_128bits_update (XXH3_state_t* statePtr, const void* input, size_t length);
 | |
| XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* statePtr);
 | |
| 
 | |
| /* Following helper functions make it possible to compare XXH128_hast_t values.
 | |
|  * Since XXH128_hash_t is a structure, this capability is not offered by the language.
 | |
|  * Note: For better performance, these functions can be inlined using XXH_INLINE_ALL */
 | |
| 
 | |
| /*!
 | |
|  * XXH128_isEqual():
 | |
|  * Return: 1 if `h1` and `h2` are equal, 0 if they are not.
 | |
|  */
 | |
| XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2);
 | |
| 
 | |
| /*!
 | |
|  * XXH128_cmp():
 | |
|  *
 | |
|  * This comparator is compatible with stdlib's `qsort()`/`bsearch()`.
 | |
|  *
 | |
|  * return: >0 if *h128_1  > *h128_2
 | |
|  *         =0 if *h128_1 == *h128_2
 | |
|  *         <0 if *h128_1  < *h128_2
 | |
|  */
 | |
| XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2);
 | |
| 
 | |
| 
 | |
| /*******   Canonical representation   *******/
 | |
| typedef struct { unsigned char digest[sizeof(XXH128_hash_t)]; } XXH128_canonical_t;
 | |
| XXH_PUBLIC_API void XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash);
 | |
| XXH_PUBLIC_API XXH128_hash_t XXH128_hashFromCanonical(const XXH128_canonical_t* src);
 | |
| 
 | |
| 
 | |
| #endif  /* !XXH_NO_XXH3 */
 | |
| #endif  /* XXH_NO_LONG_LONG */
 | |
| 
 | |
| /*!
 | |
|  * @}
 | |
|  */
 | |
| #endif /* XXHASH_H_5627135585666179 */
 | |
| 
 | |
| 
 | |
| 
 | |
| #if defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742)
 | |
| #define XXHASH_H_STATIC_13879238742
 | |
| /* ****************************************************************************
 | |
|  * This section contains declarations which are not guaranteed to remain stable.
 | |
|  * They may change in future versions, becoming incompatible with a different
 | |
|  * version of the library.
 | |
|  * These declarations should only be used with static linking.
 | |
|  * Never use them in association with dynamic linking!
 | |
|  ***************************************************************************** */
 | |
| 
 | |
| /*
 | |
|  * These definitions are only present to allow static allocation
 | |
|  * of XXH states, on stack or in a struct, for example.
 | |
|  * Never **ever** access their members directly.
 | |
|  */
 | |
| 
 | |
| /*!
 | |
|  * @internal
 | |
|  * @brief Structure for XXH32 streaming API.
 | |
|  *
 | |
|  * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
 | |
|  * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
 | |
|  * an opaque type. This allows fields to safely be changed.
 | |
|  *
 | |
|  * Typedef'd to @ref XXH32_state_t.
 | |
|  * Do not access the members of this struct directly.
 | |
|  * @see XXH64_state_s, XXH3_state_s
 | |
|  */
 | |
| struct XXH32_state_s {
 | |
|    XXH32_hash_t total_len_32; /*!< Total length hashed, modulo 2^32 */
 | |
|    XXH32_hash_t large_len;    /*!< Whether the hash is >= 16 (handles @ref total_len_32 overflow) */
 | |
|    XXH32_hash_t v[4];         /*!< Accumulator lanes */
 | |
|    XXH32_hash_t mem32[4];     /*!< Internal buffer for partial reads. Treated as unsigned char[16]. */
 | |
|    XXH32_hash_t memsize;      /*!< Amount of data in @ref mem32 */
 | |
|    XXH32_hash_t reserved;     /*!< Reserved field. Do not read nor write to it. */
 | |
| };   /* typedef'd to XXH32_state_t */
 | |
| 
 | |
| 
 | |
| #ifndef XXH_NO_LONG_LONG  /* defined when there is no 64-bit support */
 | |
| 
 | |
| /*!
 | |
|  * @internal
 | |
|  * @brief Structure for XXH64 streaming API.
 | |
|  *
 | |
|  * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
 | |
|  * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined. Otherwise it is
 | |
|  * an opaque type. This allows fields to safely be changed.
 | |
|  *
 | |
|  * Typedef'd to @ref XXH64_state_t.
 | |
|  * Do not access the members of this struct directly.
 | |
|  * @see XXH32_state_s, XXH3_state_s
 | |
|  */
 | |
| struct XXH64_state_s {
 | |
|    XXH64_hash_t total_len;    /*!< Total length hashed. This is always 64-bit. */
 | |
|    XXH64_hash_t v[4];         /*!< Accumulator lanes */
 | |
|    XXH64_hash_t mem64[4];     /*!< Internal buffer for partial reads. Treated as unsigned char[32]. */
 | |
|    XXH32_hash_t memsize;      /*!< Amount of data in @ref mem64 */
 | |
|    XXH32_hash_t reserved32;   /*!< Reserved field, needed for padding anyways*/
 | |
|    XXH64_hash_t reserved64;   /*!< Reserved field. Do not read or write to it. */
 | |
| };   /* typedef'd to XXH64_state_t */
 | |
| 
 | |
| 
 | |
| #ifndef XXH_NO_XXH3
 | |
| 
 | |
| #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) /* >= C11 */
 | |
| #  include <stdalign.h>
 | |
| #  define XXH_ALIGN(n)      alignas(n)
 | |
| #elif defined(__cplusplus) && (__cplusplus >= 201103L) /* >= C++11 */
 | |
| /* In C++ alignas() is a keyword */
 | |
| #  define XXH_ALIGN(n)      alignas(n)
 | |
| #elif defined(__GNUC__)
 | |
| #  define XXH_ALIGN(n)      __attribute__ ((aligned(n)))
 | |
| #elif defined(_MSC_VER)
 | |
| #  define XXH_ALIGN(n)      __declspec(align(n))
 | |
| #else
 | |
| #  define XXH_ALIGN(n)   /* disabled */
 | |
| #endif
 | |
| 
 | |
| /* Old GCC versions only accept the attribute after the type in structures. */
 | |
| #if !(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L))   /* C11+ */ \
 | |
|     && ! (defined(__cplusplus) && (__cplusplus >= 201103L)) /* >= C++11 */ \
 | |
|     && defined(__GNUC__)
 | |
| #   define XXH_ALIGN_MEMBER(align, type) type XXH_ALIGN(align)
 | |
| #else
 | |
| #   define XXH_ALIGN_MEMBER(align, type) XXH_ALIGN(align) type
 | |
| #endif
 | |
| 
 | |
| /*!
 | |
|  * @brief The size of the internal XXH3 buffer.
 | |
|  *
 | |
|  * This is the optimal update size for incremental hashing.
 | |
|  *
 | |
|  * @see XXH3_64b_update(), XXH3_128b_update().
 | |
|  */
 | |
| #define XXH3_INTERNALBUFFER_SIZE 256
 | |
| 
 | |
| /*!
 | |
|  * @brief Default size of the secret buffer (and @ref XXH3_kSecret).
 | |
|  *
 | |
|  * This is the size used in @ref XXH3_kSecret and the seeded functions.
 | |
|  *
 | |
|  * Not to be confused with @ref XXH3_SECRET_SIZE_MIN.
 | |
|  */
 | |
| #define XXH3_SECRET_DEFAULT_SIZE 192
 | |
| 
 | |
| /*!
 | |
|  * @internal
 | |
|  * @brief Structure for XXH3 streaming API.
 | |
|  *
 | |
|  * @note This is only defined when @ref XXH_STATIC_LINKING_ONLY,
 | |
|  * @ref XXH_INLINE_ALL, or @ref XXH_IMPLEMENTATION is defined.
 | |
|  * Otherwise it is an opaque type.
 | |
|  * Never use this definition in combination with dynamic library.
 | |
|  * This allows fields to safely be changed in the future.
 | |
|  *
 | |
|  * @note ** This structure has a strict alignment requirement of 64 bytes!! **
 | |
|  * Do not allocate this with `malloc()` or `new`,
 | |
|  * it will not be sufficiently aligned.
 | |
|  * Use @ref XXH3_createState() and @ref XXH3_freeState(), or stack allocation.
 | |
|  *
 | |
|  * Typedef'd to @ref XXH3_state_t.
 | |
|  * Do never access the members of this struct directly.
 | |
|  *
 | |
|  * @see XXH3_INITSTATE() for stack initialization.
 | |
|  * @see XXH3_createState(), XXH3_freeState().
 | |
|  * @see XXH32_state_s, XXH64_state_s
 | |
|  */
 | |
| struct XXH3_state_s {
 | |
|    XXH_ALIGN_MEMBER(64, XXH64_hash_t acc[8]);
 | |
|        /*!< The 8 accumulators. Similar to `vN` in @ref XXH32_state_s::v1 and @ref XXH64_state_s */
 | |
|    XXH_ALIGN_MEMBER(64, unsigned char customSecret[XXH3_SECRET_DEFAULT_SIZE]);
 | |
|        /*!< Used to store a custom secret generated from a seed. */
 | |
|    XXH_ALIGN_MEMBER(64, unsigned char buffer[XXH3_INTERNALBUFFER_SIZE]);
 | |
|        /*!< The internal buffer. @see XXH32_state_s::mem32 */
 | |
|    XXH32_hash_t bufferedSize;
 | |
|        /*!< The amount of memory in @ref buffer, @see XXH32_state_s::memsize */
 | |
|    XXH32_hash_t useSeed;
 | |
|        /*!< Reserved field. Needed for padding on 64-bit. */
 | |
|    size_t nbStripesSoFar;
 | |
|        /*!< Number or stripes processed. */
 | |
|    XXH64_hash_t totalLen;
 | |
|        /*!< Total length hashed. 64-bit even on 32-bit targets. */
 | |
|    size_t nbStripesPerBlock;
 | |
|        /*!< Number of stripes per block. */
 | |
|    size_t secretLimit;
 | |
|        /*!< Size of @ref customSecret or @ref extSecret */
 | |
|    XXH64_hash_t seed;
 | |
|        /*!< Seed for _withSeed variants. Must be zero otherwise, @see XXH3_INITSTATE() */
 | |
|    XXH64_hash_t reserved64;
 | |
|        /*!< Reserved field. */
 | |
|    const unsigned char* extSecret;
 | |
|        /*!< Reference to an external secret for the _withSecret variants, NULL
 | |
|         *   for other variants. */
 | |
|    /* note: there may be some padding at the end due to alignment on 64 bytes */
 | |
| }; /* typedef'd to XXH3_state_t */
 | |
| 
 | |
| #undef XXH_ALIGN_MEMBER
 | |
| 
 | |
| /*!
 | |
|  * @brief Initializes a stack-allocated `XXH3_state_s`.
 | |
|  *
 | |
|  * When the @ref XXH3_state_t structure is merely emplaced on stack,
 | |
|  * it should be initialized with XXH3_INITSTATE() or a memset()
 | |
|  * in case its first reset uses XXH3_NNbits_reset_withSeed().
 | |
|  * This init can be omitted if the first reset uses default or _withSecret mode.
 | |
|  * This operation isn't necessary when the state is created with XXH3_createState().
 | |
|  * Note that this doesn't prepare the state for a streaming operation,
 | |
|  * it's still necessary to use XXH3_NNbits_reset*() afterwards.
 | |
|  */
 | |
| #define XXH3_INITSTATE(XXH3_state_ptr)   { (XXH3_state_ptr)->seed = 0; }
 | |
| 
 | |
| 
 | |
| /* XXH128() :
 | |
|  * simple alias to pre-selected XXH3_128bits variant
 | |
|  */
 | |
| XXH_PUBLIC_API XXH128_hash_t XXH128(const void* data, size_t len, XXH64_hash_t seed);
 | |
| 
 | |
| 
 | |
| /* ===   Experimental API   === */
 | |
| /* Symbols defined below must be considered tied to a specific library version. */
 | |
| 
 | |
| /*
 | |
|  * XXH3_generateSecret():
 | |
|  *
 | |
|  * Derive a high-entropy secret from any user-defined content, named customSeed.
 | |
|  * The generated secret can be used in combination with `*_withSecret()` functions.
 | |
|  * The `_withSecret()` variants are useful to provide a higher level of protection than 64-bit seed,
 | |
|  * as it becomes much more difficult for an external actor to guess how to impact the calculation logic.
 | |
|  *
 | |
|  * The function accepts as input a custom seed of any length and any content,
 | |
|  * and derives from it a high-entropy secret of length @secretSize
 | |
|  * into an already allocated buffer @secretBuffer.
 | |
|  * @secretSize must be >= XXH3_SECRET_SIZE_MIN
 | |
|  *
 | |
|  * The generated secret can then be used with any `*_withSecret()` variant.
 | |
|  * Functions `XXH3_128bits_withSecret()`, `XXH3_64bits_withSecret()`,
 | |
|  * `XXH3_128bits_reset_withSecret()` and `XXH3_64bits_reset_withSecret()`
 | |
|  * are part of this list. They all accept a `secret` parameter
 | |
|  * which must be large enough for implementation reasons (>= XXH3_SECRET_SIZE_MIN)
 | |
|  * _and_ feature very high entropy (consist of random-looking bytes).
 | |
|  * These conditions can be a high bar to meet, so
 | |
|  * XXH3_generateSecret() can be employed to ensure proper quality.
 | |
|  *
 | |
|  * customSeed can be anything. It can have any size, even small ones,
 | |
|  * and its content can be anything, even "poor entropy" sources such as a bunch of zeroes.
 | |
|  * The resulting `secret` will nonetheless provide all required qualities.
 | |
|  *
 | |
|  * When customSeedSize > 0, supplying NULL as customSeed is undefined behavior.
 | |
|  */
 | |
| XXH_PUBLIC_API XXH_errorcode XXH3_generateSecret(void* secretBuffer, size_t secretSize, const void* customSeed, size_t customSeedSize);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * XXH3_generateSecret_fromSeed():
 | |
|  *
 | |
|  * Generate the same secret as the _withSeed() variants.
 | |
|  *
 | |
|  * The resulting secret has a length of XXH3_SECRET_DEFAULT_SIZE (necessarily).
 | |
|  * @secretBuffer must be already allocated, of size at least XXH3_SECRET_DEFAULT_SIZE bytes.
 | |
|  *
 | |
|  * The generated secret can be used in combination with
 | |
|  *`*_withSecret()` and `_withSecretandSeed()` variants.
 | |
|  * This generator is notably useful in combination with `_withSecretandSeed()`,
 | |
|  * as a way to emulate a faster `_withSeed()` variant.
 | |
|  */
 | |
| XXH_PUBLIC_API void XXH3_generateSecret_fromSeed(void* secretBuffer, XXH64_hash_t seed);
 | |
| 
 | |
| /*
 | |
|  * *_withSecretandSeed() :
 | |
|  * These variants generate hash values using either
 | |
|  * @seed for "short" keys (< XXH3_MIDSIZE_MAX = 240 bytes)
 | |
|  * or @secret for "large" keys (>= XXH3_MIDSIZE_MAX).
 | |
|  *
 | |
|  * This generally benefits speed, compared to `_withSeed()` or `_withSecret()`.
 | |
|  * `_withSeed()` has to generate the secret on the fly for "large" keys.
 | |
|  * It's fast, but can be perceptible for "not so large" keys (< 1 KB).
 | |
|  * `_withSecret()` has to generate the masks on the fly for "small" keys,
 | |
|  * which requires more instructions than _withSeed() variants.
 | |
|  * Therefore, _withSecretandSeed variant combines the best of both worlds.
 | |
|  *
 | |
|  * When @secret has been generated by XXH3_generateSecret_fromSeed(),
 | |
|  * this variant produces *exactly* the same results as `_withSeed()` variant,
 | |
|  * hence offering only a pure speed benefit on "large" input,
 | |
|  * by skipping the need to regenerate the secret for every large input.
 | |
|  *
 | |
|  * Another usage scenario is to hash the secret to a 64-bit hash value,
 | |
|  * for example with XXH3_64bits(), which then becomes the seed,
 | |
|  * and then employ both the seed and the secret in _withSecretandSeed().
 | |
|  * On top of speed, an added benefit is that each bit in the secret
 | |
|  * has a 50% chance to swap each bit in the output,
 | |
|  * via its impact to the seed.
 | |
|  * This is not guaranteed when using the secret directly in "small data" scenarios,
 | |
|  * because only portions of the secret are employed for small data.
 | |
|  */
 | |
| XXH_PUBLIC_API XXH64_hash_t
 | |
| XXH3_64bits_withSecretandSeed(const void* data, size_t len,
 | |
|                               const void* secret, size_t secretSize,
 | |
|                               XXH64_hash_t seed);
 | |
| 
 | |
| XXH_PUBLIC_API XXH128_hash_t
 | |
| XXH3_128bits_withSecretandSeed(const void* data, size_t len,
 | |
|                                const void* secret, size_t secretSize,
 | |
|                                XXH64_hash_t seed64);
 | |
| 
 | |
| XXH_PUBLIC_API XXH_errorcode
 | |
| XXH3_64bits_reset_withSecretandSeed(XXH3_state_t* statePtr,
 | |
|                                     const void* secret, size_t secretSize,
 | |
|                                     XXH64_hash_t seed64);
 | |
| 
 | |
| XXH_PUBLIC_API XXH_errorcode
 | |
| XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr,
 | |
|                                      const void* secret, size_t secretSize,
 | |
|                                      XXH64_hash_t seed64);
 | |
| 
 | |
| 
 | |
| #endif  /* XXH_NO_XXH3 */
 | |
| #endif  /* XXH_NO_LONG_LONG */
 | |
| #if defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API)
 | |
| #  define XXH_IMPLEMENTATION
 | |
| #endif
 | |
| 
 | |
| #endif  /* defined(XXH_STATIC_LINKING_ONLY) && !defined(XXHASH_H_STATIC_13879238742) */
 | |
| 
 | |
| 
 | |
| /* ======================================================================== */
 | |
| /* ======================================================================== */
 | |
| /* ======================================================================== */
 | |
| 
 | |
| 
 | |
| /*-**********************************************************************
 | |
|  * xxHash implementation
 | |
|  *-**********************************************************************
 | |
|  * xxHash's implementation used to be hosted inside xxhash.c.
 | |
|  *
 | |
|  * However, inlining requires implementation to be visible to the compiler,
 | |
|  * hence be included alongside the header.
 | |
|  * Previously, implementation was hosted inside xxhash.c,
 | |
|  * which was then #included when inlining was activated.
 | |
|  * This construction created issues with a few build and install systems,
 | |
|  * as it required xxhash.c to be stored in /include directory.
 | |
|  *
 | |
|  * xxHash implementation is now directly integrated within xxhash.h.
 | |
|  * As a consequence, xxhash.c is no longer needed in /include.
 | |
|  *
 | |
|  * xxhash.c is still available and is still useful.
 | |
|  * In a "normal" setup, when xxhash is not inlined,
 | |
|  * xxhash.h only exposes the prototypes and public symbols,
 | |
|  * while xxhash.c can be built into an object file xxhash.o
 | |
|  * which can then be linked into the final binary.
 | |
|  ************************************************************************/
 | |
| 
 | |
| #if ( defined(XXH_INLINE_ALL) || defined(XXH_PRIVATE_API) \
 | |
|    || defined(XXH_IMPLEMENTATION) ) && !defined(XXH_IMPLEM_13a8737387)
 | |
| #  define XXH_IMPLEM_13a8737387
 | |
| 
 | |
| /* *************************************
 | |
| *  Tuning parameters
 | |
| ***************************************/
 | |
| 
 | |
| /*!
 | |
|  * @defgroup tuning Tuning parameters
 | |
|  * @{
 | |
|  *
 | |
|  * Various macros to control xxHash's behavior.
 | |
|  */
 | |
| #ifdef XXH_DOXYGEN
 | |
| /*!
 | |
|  * @brief Define this to disable 64-bit code.
 | |
|  *
 | |
|  * Useful if only using the @ref xxh32_family and you have a strict C90 compiler.
 | |
|  */
 | |
| #  define XXH_NO_LONG_LONG
 | |
| #  undef XXH_NO_LONG_LONG /* don't actually */
 | |
| /*!
 | |
|  * @brief Controls how unaligned memory is accessed.
 | |
|  *
 | |
|  * By default, access to unaligned memory is controlled by `memcpy()`, which is
 | |
|  * safe and portable.
 | |
|  *
 | |
|  * Unfortunately, on some target/compiler combinations, the generated assembly
 | |
|  * is sub-optimal.
 | |
|  *
 | |
|  * The below switch allow selection of a different access method
 | |
|  * in the search for improved performance.
 | |
|  *
 | |
|  * @par Possible options:
 | |
|  *
 | |
|  *  - `XXH_FORCE_MEMORY_ACCESS=0` (default): `memcpy`
 | |
|  *   @par
 | |
|  *     Use `memcpy()`. Safe and portable. Note that most modern compilers will
 | |
|  *     eliminate the function call and treat it as an unaligned access.
 | |
|  *
 | |
|  *  - `XXH_FORCE_MEMORY_ACCESS=1`: `__attribute__((packed))`
 | |
|  *   @par
 | |
|  *     Depends on compiler extensions and is therefore not portable.
 | |
|  *     This method is safe _if_ your compiler supports it,
 | |
|  *     and *generally* as fast or faster than `memcpy`.
 | |
|  *
 | |
|  *  - `XXH_FORCE_MEMORY_ACCESS=2`: Direct cast
 | |
|  *  @par
 | |
|  *     Casts directly and dereferences. This method doesn't depend on the
 | |
|  *     compiler, but it violates the C standard as it directly dereferences an
 | |
|  *     unaligned pointer. It can generate buggy code on targets which do not
 | |
|  *     support unaligned memory accesses, but in some circumstances, it's the
 | |
|  *     only known way to get the most performance.
 | |
|  *
 | |
|  *  - `XXH_FORCE_MEMORY_ACCESS=3`: Byteshift
 | |
|  *  @par
 | |
|  *     Also portable. This can generate the best code on old compilers which don't
 | |
|  *     inline small `memcpy()` calls, and it might also be faster on big-endian
 | |
|  *     systems which lack a native byteswap instruction. However, some compilers
 | |
|  *     will emit literal byteshifts even if the target supports unaligned access.
 | |
|  *  .
 | |
|  *
 | |
|  * @warning
 | |
|  *   Methods 1 and 2 rely on implementation-defined behavior. Use these with
 | |
|  *   care, as what works on one compiler/platform/optimization level may cause
 | |
|  *   another to read garbage data or even crash.
 | |
|  *
 | |
|  * See http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html for details.
 | |
|  *
 | |
|  * Prefer these methods in priority order (0 > 3 > 1 > 2)
 | |
|  */
 | |
| #  define XXH_FORCE_MEMORY_ACCESS 0
 | |
| 
 | |
| /*!
 | |
|  * @def XXH_FORCE_ALIGN_CHECK
 | |
|  * @brief If defined to non-zero, adds a special path for aligned inputs (XXH32()
 | |
|  * and XXH64() only).
 | |
|  *
 | |
|  * This is an important performance trick for architectures without decent
 | |
|  * unaligned memory access performance.
 | |
|  *
 | |
|  * It checks for input alignment, and when conditions are met, uses a "fast
 | |
|  * path" employing direct 32-bit/64-bit reads, resulting in _dramatically
 | |
|  * faster_ read speed.
 | |
|  *
 | |
|  * The check costs one initial branch per hash, which is generally negligible,
 | |
|  * but not zero.
 | |
|  *
 | |
|  * Moreover, it's not useful to generate an additional code path if memory
 | |
|  * access uses the same instruction for both aligned and unaligned
 | |
|  * addresses (e.g. x86 and aarch64).
 | |
|  *
 | |
|  * In these cases, the alignment check can be removed by setting this macro to 0.
 | |
|  * Then the code will always use unaligned memory access.
 | |
|  * Align check is automatically disabled on x86, x64 & arm64,
 | |
|  * which are platforms known to offer good unaligned memory accesses performance.
 | |
|  *
 | |
|  * This option does not affect XXH3 (only XXH32 and XXH64).
 | |
|  */
 | |
| #  define XXH_FORCE_ALIGN_CHECK 0
 | |
| 
 | |
| /*!
 | |
|  * @def XXH_NO_INLINE_HINTS
 | |
|  * @brief When non-zero, sets all functions to `static`.
 | |
|  *
 | |
|  * By default, xxHash tries to force the compiler to inline almost all internal
 | |
|  * functions.
 | |
|  *
 | |
|  * This can usually improve performance due to reduced jumping and improved
 | |
|  * constant folding, but significantly increases the size of the binary which
 | |
|  * might not be favorable.
 | |
|  *
 | |
|  * Additionally, sometimes the forced inlining can be detrimental to performance,
 | |
|  * depending on the architecture.
 | |
|  *
 | |
|  * XXH_NO_INLINE_HINTS marks all internal functions as static, giving the
 | |
|  * compiler full control on whether to inline or not.
 | |
|  *
 | |
|  * When not optimizing (-O0), optimizing for size (-Os, -Oz), or using
 | |
|  * -fno-inline with GCC or Clang, this will automatically be defined.
 | |
|  */
 | |
| #  define XXH_NO_INLINE_HINTS 0
 | |
| 
 | |
| /*!
 | |
|  * @def XXH32_ENDJMP
 | |
|  * @brief Whether to use a jump for `XXH32_finalize`.
 | |
|  *
 | |
|  * For performance, `XXH32_finalize` uses multiple branches in the finalizer.
 | |
|  * This is generally preferable for performance,
 | |
|  * but depending on exact architecture, a jmp may be preferable.
 | |
|  *
 | |
|  * This setting is only possibly making a difference for very small inputs.
 | |
|  */
 | |
| #  define XXH32_ENDJMP 0
 | |
| 
 | |
| /*!
 | |
|  * @internal
 | |
|  * @brief Redefines old internal names.
 | |
|  *
 | |
|  * For compatibility with code that uses xxHash's internals before the names
 | |
|  * were changed to improve namespacing. There is no other reason to use this.
 | |
|  */
 | |
| #  define XXH_OLD_NAMES
 | |
| #  undef XXH_OLD_NAMES /* don't actually use, it is ugly. */
 | |
| #endif /* XXH_DOXYGEN */
 | |
| /*!
 | |
|  * @}
 | |
|  */
 | |
| 
 | |
| #ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
 | |
|    /* prefer __packed__ structures (method 1) for gcc on armv7+ and mips */
 | |
| #  if !defined(__clang__) && \
 | |
| ( \
 | |
|     (defined(__INTEL_COMPILER) && !defined(_WIN32)) || \
 | |
|     ( \
 | |
|         defined(__GNUC__) && ( \
 | |
|             (defined(__ARM_ARCH) && __ARM_ARCH >= 7) || \
 | |
|             ( \
 | |
|                 defined(__mips__) && \
 | |
|                 (__mips <= 5 || __mips_isa_rev < 6) && \
 | |
|                 (!defined(__mips16) || defined(__mips_mips16e2)) \
 | |
|             ) \
 | |
|         ) \
 | |
|     ) \
 | |
| )
 | |
| #    define XXH_FORCE_MEMORY_ACCESS 1
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| #ifndef XXH_FORCE_ALIGN_CHECK  /* can be defined externally */
 | |
| #  if defined(__i386)  || defined(__x86_64__) || defined(__aarch64__) \
 | |
|    || defined(_M_IX86) || defined(_M_X64)     || defined(_M_ARM64) /* visual */
 | |
| #    define XXH_FORCE_ALIGN_CHECK 0
 | |
| #  else
 | |
| #    define XXH_FORCE_ALIGN_CHECK 1
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| #ifndef XXH_NO_INLINE_HINTS
 | |
| #  if defined(__OPTIMIZE_SIZE__) /* -Os, -Oz */ \
 | |
|    || defined(__NO_INLINE__)     /* -O0, -fno-inline */
 | |
| #    define XXH_NO_INLINE_HINTS 1
 | |
| #  else
 | |
| #    define XXH_NO_INLINE_HINTS 0
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| #ifndef XXH32_ENDJMP
 | |
| /* generally preferable for performance */
 | |
| #  define XXH32_ENDJMP 0
 | |
| #endif
 | |
| 
 | |
| /*!
 | |
|  * @defgroup impl Implementation
 | |
|  * @{
 | |
|  */
 | |
| 
 | |
| 
 | |
| /* *************************************
 | |
| *  Includes & Memory related functions
 | |
| ***************************************/
 | |
| /* Modify the local functions below should you wish to use some other memory routines */
 | |
| /* for ZSTD_malloc(), ZSTD_free() */
 | |
| #define ZSTD_DEPS_NEED_MALLOC
 | |
| #include "zstd_deps.h"  /* size_t, ZSTD_malloc, ZSTD_free, ZSTD_memcpy */
 | |
| static void* XXH_malloc(size_t s) { return ZSTD_malloc(s); }
 | |
| static void  XXH_free  (void* p)  { ZSTD_free(p); }
 | |
| static void* XXH_memcpy(void* dest, const void* src, size_t size) { return ZSTD_memcpy(dest,src,size); }
 | |
| 
 | |
| 
 | |
| /* *************************************
 | |
| *  Compiler Specific Options
 | |
| ***************************************/
 | |
| #ifdef _MSC_VER /* Visual Studio warning fix */
 | |
| #  pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
 | |
| #endif
 | |
| 
 | |
| #if XXH_NO_INLINE_HINTS  /* disable inlining hints */
 | |
| #  if defined(__GNUC__) || defined(__clang__)
 | |
| #    define XXH_FORCE_INLINE static __attribute__((unused))
 | |
| #  else
 | |
| #    define XXH_FORCE_INLINE static
 | |
| #  endif
 | |
| #  define XXH_NO_INLINE static
 | |
| /* enable inlining hints */
 | |
| #elif defined(__GNUC__) || defined(__clang__)
 | |
| #  define XXH_FORCE_INLINE static __inline__ __attribute__((always_inline, unused))
 | |
| #  define XXH_NO_INLINE static __attribute__((noinline))
 | |
| #elif defined(_MSC_VER)  /* Visual Studio */
 | |
| #  define XXH_FORCE_INLINE static __forceinline
 | |
| #  define XXH_NO_INLINE static __declspec(noinline)
 | |
| #elif defined (__cplusplus) \
 | |
|   || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L))   /* C99 */
 | |
| #  define XXH_FORCE_INLINE static inline
 | |
| #  define XXH_NO_INLINE static
 | |
| #else
 | |
| #  define XXH_FORCE_INLINE static
 | |
| #  define XXH_NO_INLINE static
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 
 | |
| /* *************************************
 | |
| *  Debug
 | |
| ***************************************/
 | |
| /*!
 | |
|  * @ingroup tuning
 | |
|  * @def XXH_DEBUGLEVEL
 | |
|  * @brief Sets the debugging level.
 | |
|  *
 | |
|  * XXH_DEBUGLEVEL is expected to be defined externally, typically via the
 | |
|  * compiler's command line options. The value must be a number.
 | |
|  */
 | |
| #ifndef XXH_DEBUGLEVEL
 | |
| #  ifdef DEBUGLEVEL /* backwards compat */
 | |
| #    define XXH_DEBUGLEVEL DEBUGLEVEL
 | |
| #  else
 | |
| #    define XXH_DEBUGLEVEL 0
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| #if (XXH_DEBUGLEVEL>=1)
 | |
| #  include <assert.h>   /* note: can still be disabled with NDEBUG */
 | |
| #  define XXH_ASSERT(c)   assert(c)
 | |
| #else
 | |
| #  define XXH_ASSERT(c)   ((void)0)
 | |
| #endif
 | |
| 
 | |
| /* note: use after variable declarations */
 | |
| #ifndef XXH_STATIC_ASSERT
 | |
| #  if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)    /* C11 */
 | |
| #    include <assert.h>
 | |
| #    define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0)
 | |
| #  elif defined(__cplusplus) && (__cplusplus >= 201103L)            /* C++11 */
 | |
| #    define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { static_assert((c),m); } while(0)
 | |
| #  else
 | |
| #    define XXH_STATIC_ASSERT_WITH_MESSAGE(c,m) do { struct xxh_sa { char x[(c) ? 1 : -1]; }; } while(0)
 | |
| #  endif
 | |
| #  define XXH_STATIC_ASSERT(c) XXH_STATIC_ASSERT_WITH_MESSAGE((c),#c)
 | |
| #endif
 | |
| 
 | |
| /*!
 | |
|  * @internal
 | |
|  * @def XXH_COMPILER_GUARD(var)
 | |
|  * @brief Used to prevent unwanted optimizations for @p var.
 | |
|  *
 | |
|  * It uses an empty GCC inline assembly statement with a register constraint
 | |
|  * which forces @p var into a general purpose register (eg eax, ebx, ecx
 | |
|  * on x86) and marks it as modified.
 | |
|  *
 | |
|  * This is used in a few places to avoid unwanted autovectorization (e.g.
 | |
|  * XXH32_round()). All vectorization we want is explicit via intrinsics,
 | |
|  * and _usually_ isn't wanted elsewhere.
 | |
|  *
 | |
|  * We also use it to prevent unwanted constant folding for AArch64 in
 | |
|  * XXH3_initCustomSecret_scalar().
 | |
|  */
 | |
| #if defined(__GNUC__) || defined(__clang__)
 | |
| #  define XXH_COMPILER_GUARD(var) __asm__ __volatile__("" : "+r" (var))
 | |
| #else
 | |
| #  define XXH_COMPILER_GUARD(var) ((void)0)
 | |
| #endif
 | |
| 
 | |
| /* *************************************
 | |
| *  Basic Types
 | |
| ***************************************/
 | |
| #if !defined (__VMS) \
 | |
|  && (defined (__cplusplus) \
 | |
|  || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
 | |
| # include <stdint.h>
 | |
|   typedef uint8_t xxh_u8;
 | |
| #else
 | |
|   typedef unsigned char xxh_u8;
 | |
| #endif
 | |
| typedef XXH32_hash_t xxh_u32;
 | |
| 
 | |
| #ifdef XXH_OLD_NAMES
 | |
| #  define BYTE xxh_u8
 | |
| #  define U8   xxh_u8
 | |
| #  define U32  xxh_u32
 | |
| #endif
 | |
| 
 | |
| /* ***   Memory access   *** */
 | |
| 
 | |
| /*!
 | |
|  * @internal
 | |
|  * @fn xxh_u32 XXH_read32(const void* ptr)
 | |
|  * @brief Reads an unaligned 32-bit integer from @p ptr in native endianness.
 | |
|  *
 | |
|  * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
 | |
|  *
 | |
|  * @param ptr The pointer to read from.
 | |
|  * @return The 32-bit native endian integer from the bytes at @p ptr.
 | |
|  */
 | |
| 
 | |
| /*!
 | |
|  * @internal
 | |
|  * @fn xxh_u32 XXH_readLE32(const void* ptr)
 | |
|  * @brief Reads an unaligned 32-bit little endian integer from @p ptr.
 | |
|  *
 | |
|  * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
 | |
|  *
 | |
|  * @param ptr The pointer to read from.
 | |
|  * @return The 32-bit little endian integer from the bytes at @p ptr.
 | |
|  */
 | |
| 
 | |
| /*!
 | |
|  * @internal
 | |
|  * @fn xxh_u32 XXH_readBE32(const void* ptr)
 | |
|  * @brief Reads an unaligned 32-bit big endian integer from @p ptr.
 | |
|  *
 | |
|  * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
 | |
|  *
 | |
|  * @param ptr The pointer to read from.
 | |
|  * @return The 32-bit big endian integer from the bytes at @p ptr.
 | |
|  */
 | |
| 
 | |
| /*!
 | |
|  * @internal
 | |
|  * @fn xxh_u32 XXH_readLE32_align(const void* ptr, XXH_alignment align)
 | |
|  * @brief Like @ref XXH_readLE32(), but has an option for aligned reads.
 | |
|  *
 | |
|  * Affected by @ref XXH_FORCE_MEMORY_ACCESS.
 | |
|  * Note that when @ref XXH_FORCE_ALIGN_CHECK == 0, the @p align parameter is
 | |
|  * always @ref XXH_alignment::XXH_unaligned.
 | |
|  *
 | |
|  * @param ptr The pointer to read from.
 | |
|  * @param align Whether @p ptr is aligned.
 | |
|  * @pre
 | |
|  *   If @p align == @ref XXH_alignment::XXH_aligned, @p ptr must be 4 byte
 | |
|  *   aligned.
 | |
|  * @return The 32-bit little endian integer from the bytes at @p ptr.
 | |
|  */
 | |
| 
 | |
| #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
 | |
| /*
 | |
|  * Manual byteshift. Best for old compilers which don't inline memcpy.
 | |
|  * We actually directly use XXH_readLE32 and XXH_readBE32.
 | |
|  */
 | |
| #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
 | |
| 
 | |
| /*
 | |
|  * Force direct memory access. Only works on CPU which support unaligned memory
 | |
|  * access in hardware.
 | |
|  */
 | |
| static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; }
 | |
| 
 | |
| #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
 | |
| 
 | |
| /*
 | |
|  * __pack instructions are safer but compiler specific, hence potentially
 | |
|  * problematic for some compilers.
 | |
|  *
 | |
|  * Currently only defined for GCC and ICC.
 | |
|  */
 | |
| #ifdef XXH_OLD_NAMES
 | |
| typedef union { xxh_u32 u32; } __attribute__((packed)) unalign;
 | |
| #endif
 | |
| static xxh_u32 XXH_read32(const void* ptr)
 | |
| {
 | |
|     typedef union { xxh_u32 u32; } __attribute__((packed)) xxh_unalign;
 | |
|     return ((const xxh_unalign*)ptr)->u32;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| /*
 | |
|  * Portable and safe solution. Generally efficient.
 | |
|  * see: http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
 | |
|  */
 | |
| static xxh_u32 XXH_read32(const void* memPtr)
 | |
| {
 | |
|     xxh_u32 val;
 | |
|     XXH_memcpy(&val, memPtr, sizeof(val));
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| #endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
 | |
| 
 | |
| 
 | |
| /* ***   Endianness   *** */
 | |
| 
 | |
| /*!
 | |
|  * @ingroup tuning
 | |
|  * @def XXH_CPU_LITTLE_ENDIAN
 | |
|  * @brief Whether the target is little endian.
 | |
|  *
 | |
|  * Defined to 1 if the target is little endian, or 0 if it is big endian.
 | |
|  * It can be defined externally, for example on the compiler command line.
 | |
|  *
 | |
|  * If it is not defined,
 | |
|  * a runtime check (which is usually constant folded) is used instead.
 | |
|  *
 | |
|  * @note
 | |
|  *   This is not necessarily defined to an integer constant.
 | |
|  *
 | |
|  * @see XXH_isLittleEndian() for the runtime check.
 | |
|  */
 | |
| #ifndef XXH_CPU_LITTLE_ENDIAN
 | |
| /*
 | |
|  * Try to detect endianness automatically, to avoid the nonstandard behavior
 | |
|  * in `XXH_isLittleEndian()`
 | |
|  */
 | |
| #  if defined(_WIN32) /* Windows is always little endian */ \
 | |
|      || defined(__LITTLE_ENDIAN__) \
 | |
|      || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
 | |
| #    define XXH_CPU_LITTLE_ENDIAN 1
 | |
| #  elif defined(__BIG_ENDIAN__) \
 | |
|      || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
 | |
| #    define XXH_CPU_LITTLE_ENDIAN 0
 | |
| #  else
 | |
| /*!
 | |
|  * @internal
 | |
|  * @brief Runtime check for @ref XXH_CPU_LITTLE_ENDIAN.
 | |
|  *
 | |
|  * Most compilers will constant fold this.
 | |
|  */
 | |
| static int XXH_isLittleEndian(void)
 | |
| {
 | |
|     /*
 | |
|      * Portable and well-defined behavior.
 | |
|      * Don't use static: it is detrimental to performance.
 | |
|      */
 | |
|     const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 };
 | |
|     return one.c[0];
 | |
| }
 | |
| #   define XXH_CPU_LITTLE_ENDIAN   XXH_isLittleEndian()
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* ****************************************
 | |
| *  Compiler-specific Functions and Macros
 | |
| ******************************************/
 | |
| #define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
 | |
| 
 | |
| #ifdef __has_builtin
 | |
| #  define XXH_HAS_BUILTIN(x) __has_builtin(x)
 | |
| #else
 | |
| #  define XXH_HAS_BUILTIN(x) 0
 | |
| #endif
 | |
| 
 | |
| /*!
 | |
|  * @internal
 | |
|  * @def XXH_rotl32(x,r)
 | |
|  * @brief 32-bit rotate left.
 | |
|  *
 | |
|  * @param x The 32-bit integer to be rotated.
 | |
|  * @param r The number of bits to rotate.
 | |
|  * @pre
 | |
|  *   @p r > 0 && @p r < 32
 | |
|  * @note
 | |
|  *   @p x and @p r may be evaluated multiple times.
 | |
|  * @return The rotated result.
 | |
|  */
 | |
| #if !defined(NO_CLANG_BUILTIN) && XXH_HAS_BUILTIN(__builtin_rotateleft32) \
 | |
|                                && XXH_HAS_BUILTIN(__builtin_rotateleft64)
 | |
| #  define XXH_rotl32 __builtin_rotateleft32
 | |
| #  define XXH_rotl64 __builtin_rotateleft64
 | |
| /* Note: although _rotl exists for minGW (GCC under windows), performance seems poor */
 | |
| #elif defined(_MSC_VER)
 | |
| #  define XXH_rotl32(x,r) _rotl(x,r)
 | |
| #  define XXH_rotl64(x,r) _rotl64(x,r)
 | |
| #else
 | |
| #  define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r))))
 | |
| #  define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r))))
 | |
| #endif
 | |
| 
 | |
| /*!
 | |
|  * @internal
 | |
|  * @fn xxh_u32 XXH_swap32(xxh_u32 x)
 | |
|  * @brief A 32-bit byteswap.
 | |
|  *
 | |
|  * @param x The 32-bit integer to byteswap.
 | |
|  * @return @p x, byteswapped.
 | |
|  */
 | |
| #if defined(_MSC_VER)     /* Visual Studio */
 | |
| #  define XXH_swap32 _byteswap_ulong
 | |
| #elif XXH_GCC_VERSION >= 403
 | |
| #  define XXH_swap32 __builtin_bswap32
 | |
| #else
 | |
| static xxh_u32 XXH_swap32 (xxh_u32 x)
 | |
| {
 | |
|     return  ((x << 24) & 0xff000000 ) |
 | |
|             ((x <<  8) & 0x00ff0000 ) |
 | |
|             ((x >>  8) & 0x0000ff00 ) |
 | |
|             ((x >> 24) & 0x000000ff );
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* ***************************
 | |
| *  Memory reads
 | |
| *****************************/
 | |
| 
 | |
| /*!
 | |
|  * @internal
 | |
|  * @brief Enum to indicate whether a pointer is aligned.
 | |
|  */
 | |
| typedef enum {
 | |
|     XXH_aligned,  /*!< Aligned */
 | |
|     XXH_unaligned /*!< Possibly unaligned */
 | |
| } XXH_alignment;
 | |
| 
 | |
| /*
 | |
|  * XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load.
 | |
|  *
 | |
|  * This is ideal for older compilers which don't inline memcpy.
 | |
|  */
 | |
| #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
 | |
| 
 | |
| XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* memPtr)
 | |
| {
 | |
|     const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
 | |
|     return bytePtr[0]
 | |
|          | ((xxh_u32)bytePtr[1] << 8)
 | |
|          | ((xxh_u32)bytePtr[2] << 16)
 | |
|          | ((xxh_u32)bytePtr[3] << 24);
 | |
| }
 | |
| 
 | |
| XXH_FORCE_INLINE xxh_u32 XXH_readBE32(const void* memPtr)
 | |
| {
 | |
|     const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
 | |
|     return bytePtr[3]
 | |
|          | ((xxh_u32)bytePtr[2] << 8)
 | |
|          | ((xxh_u32)bytePtr[1] << 16)
 | |
|          | ((xxh_u32)bytePtr[0] << 24);
 | |
| }
 | |
| 
 | |
| #else
 | |
| XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr)
 | |
| {
 | |
|     return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
 | |
| }
 | |
| 
 | |
| static xxh_u32 XXH_readBE32(const void* ptr)
 | |
| {
 | |
|     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| XXH_FORCE_INLINE xxh_u32
 | |
| XXH_readLE32_align(const void* ptr, XXH_alignment align)
 | |
| {
 | |
|     if (align==XXH_unaligned) {
 | |
|         return XXH_readLE32(ptr);
 | |
|     } else {
 | |
|         return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* *************************************
 | |
| *  Misc
 | |
| ***************************************/
 | |
| /*! @ingroup public */
 | |
| XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
 | |
| 
 | |
| 
 | |
| /* *******************************************************************
 | |
| *  32-bit hash functions
 | |
| *********************************************************************/
 | |
| /*!
 | |
|  * @}
 | |
|  * @defgroup xxh32_impl XXH32 implementation
 | |
|  * @ingroup impl
 | |
|  * @{
 | |
|  */
 | |
|  /* #define instead of static const, to be used as initializers */
 | |
| #define XXH_PRIME32_1  0x9E3779B1U  /*!< 0b10011110001101110111100110110001 */
 | |
| #define XXH_PRIME32_2  0x85EBCA77U  /*!< 0b10000101111010111100101001110111 */
 | |
| #define XXH_PRIME32_3  0xC2B2AE3DU  /*!< 0b11000010101100101010111000111101 */
 | |
| #define XXH_PRIME32_4  0x27D4EB2FU  /*!< 0b00100111110101001110101100101111 */
 | |
| #define XXH_PRIME32_5  0x165667B1U  /*!< 0b00010110010101100110011110110001 */
 | |
| 
 | |
| #ifdef XXH_OLD_NAMES
 | |
| #  define PRIME32_1 XXH_PRIME32_1
 | |
| #  define PRIME32_2 XXH_PRIME32_2
 | |
| #  define PRIME32_3 XXH_PRIME32_3
 | |
| #  define PRIME32_4 XXH_PRIME32_4
 | |
| #  define PRIME32_5 XXH_PRIME32_5
 | |
| #endif
 | |
| 
 | |
| /*!
 | |
|  * @internal
 | |
|  * @brief Normal stripe processing routine.
 | |
|  *
 | |
|  * This shuffles the bits so that any bit from @p input impacts several bits in
 | |
|  * @p acc.
 | |
|  *
 | |
|  * @param acc The accumulator lane.
 | |
|  * @param input The stripe of input to mix.
 | |
|  * @return The mixed accumulator lane.
 | |
|  */
 | |
| static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input)
 | |
| {
 | |
|     acc += input * XXH_PRIME32_2;
 | |
|     acc  = XXH_rotl32(acc, 13);
 | |
|     acc *= XXH_PRIME32_1;
 | |
| #if (defined(__SSE4_1__) || defined(__aarch64__)) && !defined(XXH_ENABLE_AUTOVECTORIZE)
 | |
|     /*
 | |
|      * UGLY HACK:
 | |
|      * A compiler fence is the only thing that prevents GCC and Clang from
 | |
|      * autovectorizing the XXH32 loop (pragmas and attributes don't work for some
 | |
|      * reason) without globally disabling SSE4.1.
 | |
|      *
 | |
|      * The reason we want to avoid vectorization is because despite working on
 | |
|      * 4 integers at a time, there are multiple factors slowing XXH32 down on
 | |
|      * SSE4:
 | |
|      * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on
 | |
|      *   newer chips!) making it slightly slower to multiply four integers at
 | |
|      *   once compared to four integers independently. Even when pmulld was
 | |
|      *   fastest, Sandy/Ivy Bridge, it is still not worth it to go into SSE
 | |
|      *   just to multiply unless doing a long operation.
 | |
|      *
 | |
|      * - Four instructions are required to rotate,
 | |
|      *      movqda tmp,  v // not required with VEX encoding
 | |
|      *      pslld  tmp, 13 // tmp <<= 13
 | |
|      *      psrld  v,   19 // x >>= 19
 | |
|      *      por    v,  tmp // x |= tmp
 | |
|      *   compared to one for scalar:
 | |
|      *      roll   v, 13    // reliably fast across the board
 | |
|      *      shldl  v, v, 13 // Sandy Bridge and later prefer this for some reason
 | |
|      *
 | |
|      * - Instruction level parallelism is actually more beneficial here because
 | |
|      *   the SIMD actually serializes this operation: While v1 is rotating, v2
 | |
|      *   can load data, while v3 can multiply. SSE forces them to operate
 | |
|      *   together.
 | |
|      *
 | |
|      * This is also enabled on AArch64, as Clang autovectorizes it incorrectly
 | |
|      * and it is pointless writing a NEON implementation that is basically the
 | |
|      * same speed as scalar for XXH32.
 | |
|      */
 | |
|     XXH_COMPILER_GUARD(acc);
 | |
| #endif
 | |
|     return acc;
 | |
| }
 | |
| 
 | |
| /*!
 | |
|  * @internal
 | |
|  * @brief Mixes all bits to finalize the hash.
 | |
|  *
 | |
|  * The final mix ensures that all input bits have a chance to impact any bit in
 | |
|  * the output digest, resulting in an unbiased distribution.
 | |
|  *
 | |
|  * @param h32 The hash to avalanche.
 | |
|  * @return The avalanched hash.
 | |
|  */
 | |
| static xxh_u32 XXH32_avalanche(xxh_u32 h32)
 | |
| {
 | |
|     h32 ^= h32 >> 15;
 | |
|     h32 *= XXH_PRIME32_2;
 | |
|     h32 ^= h32 >> 13;
 | |
|     h32 *= XXH_PRIME32_3;
 | |
|     h32 ^= h32 >> 16;
 | |
|     return(h32);
 | |
| }
 | |
| 
 | |
| #define XXH_get32bits(p) XXH_readLE32_align(p, align)
 | |
| 
 | |
| /*!
 | |
|  * @internal
 | |
|  * @brief Processes the last 0-15 bytes of @p ptr.
 | |
|  *
 | |
|  * There may be up to 15 bytes remaining to consume from the input.
 | |
|  * This final stage will digest them to ensure that all input bytes are present
 | |
|  * in the final mix.
 | |
|  *
 | |
|  * @param h32 The hash to finalize.
 | |
|  * @param ptr The pointer to the remaining input.
 | |
|  * @param len The remaining length, modulo 16.
 | |
|  * @param align Whether @p ptr is aligned.
 | |
|  * @return The finalized hash.
 | |
|  */
 | |
| static xxh_u32
 | |
| XXH32_finalize(xxh_u32 h32, const xxh_u8* ptr, size_t len, XXH_alignment align)
 | |
| {
 | |
| #define XXH_PROCESS1 do {                           \
 | |
|     h32 += (*ptr++) * XXH_PRIME32_5;                \
 | |
|     h32 = XXH_rotl32(h32, 11) * XXH_PRIME32_1;      \
 | |
| } while (0)
 | |
| 
 | |
| #define XXH_PROCESS4 do {                           \
 | |
|     h32 += XXH_get32bits(ptr) * XXH_PRIME32_3;      \
 | |
|     ptr += 4;                                   \
 | |
|     h32  = XXH_rotl32(h32, 17) * XXH_PRIME32_4;     \
 | |
| } while (0)
 | |
| 
 | |
|     if (ptr==NULL) XXH_ASSERT(len == 0);
 | |
| 
 | |
|     /* Compact rerolled version; generally faster */
 | |
|     if (!XXH32_ENDJMP) {
 | |
|         len &= 15;
 | |
|         while (len >= 4) {
 | |
|             XXH_PROCESS4;
 | |
|             len -= 4;
 | |
|         }
 | |
|         while (len > 0) {
 | |
|             XXH_PROCESS1;
 | |
|             --len;
 | |
|         }
 | |
|         return XXH32_avalanche(h32);
 | |
|     } else {
 | |
|          switch(len&15) /* or switch(bEnd - p) */ {
 | |
|            case 12:      XXH_PROCESS4;
 | |
|                          XXH_FALLTHROUGH;
 | |
|            case 8:       XXH_PROCESS4;
 | |
|                          XXH_FALLTHROUGH;
 | |
|            case 4:       XXH_PROCESS4;
 | |
|                          return XXH32_avalanche(h32);
 | |
| 
 | |
|            case 13:      XXH_PROCESS4;
 | |
|                          XXH_FALLTHROUGH;
 | |
|            case 9:       XXH_PROCESS4;
 | |
|                          XXH_FALLTHROUGH;
 | |
|            case 5:       XXH_PROCESS4;
 | |
|                          XXH_PROCESS1;
 | |
|                          return XXH32_avalanche(h32);
 | |
| 
 | |
|            case 14:      XXH_PROCESS4;
 | |
|                          XXH_FALLTHROUGH;
 | |
|            case 10:      XXH_PROCESS4;
 | |
|                          XXH_FALLTHROUGH;
 | |
|            case 6:       XXH_PROCESS4;
 | |
|                          XXH_PROCESS1;
 | |
|                          XXH_PROCESS1;
 | |
|                          return XXH32_avalanche(h32);
 | |
| 
 | |
|            case 15:      XXH_PROCESS4;
 | |
|                          XXH_FALLTHROUGH;
 | |
|            case 11:      XXH_PROCESS4;
 | |
|                          XXH_FALLTHROUGH;
 | |
|            case 7:       XXH_PROCESS4;
 | |
|                          XXH_FALLTHROUGH;
 | |
|            case 3:       XXH_PROCESS1;
 | |
|                          XXH_FALLTHROUGH;
 | |
|            case 2:       XXH_PROCESS1;
 | |
|                          XXH_FALLTHROUGH;
 | |
|            case 1:       XXH_PROCESS1;
 | |
|                          XXH_FALLTHROUGH;
 | |
|            case 0:       return XXH32_avalanche(h32);
 | |
|         }
 | |
|         XXH_ASSERT(0);
 | |
|         return h32;   /* reaching this point is deemed impossible */
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifdef XXH_OLD_NAMES
 | |
| #  define PROCESS1 XXH_PROCESS1
 | |
| #  define PROCESS4 XXH_PROCESS4
 | |
| #else
 | |
| #  undef XXH_PROCESS1
 | |
| #  undef XXH_PROCESS4
 | |
| #endif
 | |
| 
 | |
| /*!
 | |
|  * @internal
 | |
|  * @brief The implementation for @ref XXH32().
 | |
|  *
 | |
|  * @param input , len , seed Directly passed from @ref XXH32().
 | |
|  * @param align Whether @p input is aligned.
 | |
|  * @return The calculated hash.
 | |
|  */
 | |
| XXH_FORCE_INLINE xxh_u32
 | |
| XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align)
 | |
| {
 | |
|     xxh_u32 h32;
 | |
| 
 | |
|     if (input==NULL) XXH_ASSERT(len == 0);
 | |
| 
 | |
|     if (len>=16) {
 | |
|         const xxh_u8* const bEnd = input + len;
 | |
|         const xxh_u8* const limit = bEnd - 15;
 | |
|         xxh_u32 v1 = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
 | |
|         xxh_u32 v2 = seed + XXH_PRIME32_2;
 | |
|         xxh_u32 v3 = seed + 0;
 | |
|         xxh_u32 v4 = seed - XXH_PRIME32_1;
 | |
| 
 | |
|         do {
 | |
|             v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4;
 | |
|             v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4;
 | |
|             v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4;
 | |
|             v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4;
 | |
|         } while (input < limit);
 | |
| 
 | |
|         h32 = XXH_rotl32(v1, 1)  + XXH_rotl32(v2, 7)
 | |
|             + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
 | |
|     } else {
 | |
|         h32  = seed + XXH_PRIME32_5;
 | |
|     }
 | |
| 
 | |
|     h32 += (xxh_u32)len;
 | |
| 
 | |
|     return XXH32_finalize(h32, input, len&15, align);
 | |
| }
 | |
| 
 | |
| /*! @ingroup xxh32_family */
 | |
| XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed)
 | |
| {
 | |
| #if 0
 | |
|     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
 | |
|     XXH32_state_t state;
 | |
|     XXH32_reset(&state, seed);
 | |
|     XXH32_update(&state, (const xxh_u8*)input, len);
 | |
|     return XXH32_digest(&state);
 | |
| #else
 | |
|     if (XXH_FORCE_ALIGN_CHECK) {
 | |
|         if ((((size_t)input) & 3) == 0) {   /* Input is 4-bytes aligned, leverage the speed benefit */
 | |
|             return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
 | |
|     }   }
 | |
| 
 | |
|     return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*******   Hash streaming   *******/
 | |
| /*!
 | |
|  * @ingroup xxh32_family
 | |
|  */
 | |
| XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
 | |
| {
 | |
|     return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
 | |
| }
 | |
| /*! @ingroup xxh32_family */
 | |
| XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
 | |
| {
 | |
|     XXH_free(statePtr);
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| /*! @ingroup xxh32_family */
 | |
| XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
 | |
| {
 | |
|     XXH_memcpy(dstState, srcState, sizeof(*dstState));
 | |
| }
 | |
| 
 | |
| /*! @ingroup xxh32_family */
 | |
| XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed)
 | |
| {
 | |
|     XXH_ASSERT(statePtr != NULL);
 | |
|     memset(statePtr, 0, sizeof(*statePtr));
 | |
|     statePtr->v[0] = seed + XXH_PRIME32_1 + XXH_PRIME32_2;
 | |
|     statePtr->v[1] = seed + XXH_PRIME32_2;
 | |
|     statePtr->v[2] = seed + 0;
 | |
|     statePtr->v[3] = seed - XXH_PRIME32_1;
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*! @ingroup xxh32_family */
 | |
| XXH_PUBLIC_API XXH_errorcode
 | |
| XXH32_update(XXH32_state_t* state, const void* input, size_t len)
 | |
| {
 | |
|     if (input==NULL) {
 | |
|         XXH_ASSERT(len == 0);
 | |
|         return XXH_OK;
 | |
|     }
 | |
| 
 | |
|     {   const xxh_u8* p = (const xxh_u8*)input;
 | |
|         const xxh_u8* const bEnd = p + len;
 | |
| 
 | |
|         state->total_len_32 += (XXH32_hash_t)len;
 | |
|         state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16));
 | |
| 
 | |
|         if (state->memsize + len < 16)  {   /* fill in tmp buffer */
 | |
|             XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len);
 | |
|             state->memsize += (XXH32_hash_t)len;
 | |
|             return XXH_OK;
 | |
|         }
 | |
| 
 | |
|         if (state->memsize) {   /* some data left from previous update */
 | |
|             XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize);
 | |
|             {   const xxh_u32* p32 = state->mem32;
 | |
|                 state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p32)); p32++;
 | |
|                 state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p32)); p32++;
 | |
|                 state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p32)); p32++;
 | |
|                 state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p32));
 | |
|             }
 | |
|             p += 16-state->memsize;
 | |
|             state->memsize = 0;
 | |
|         }
 | |
| 
 | |
|         if (p <= bEnd-16) {
 | |
|             const xxh_u8* const limit = bEnd - 16;
 | |
| 
 | |
|             do {
 | |
|                 state->v[0] = XXH32_round(state->v[0], XXH_readLE32(p)); p+=4;
 | |
|                 state->v[1] = XXH32_round(state->v[1], XXH_readLE32(p)); p+=4;
 | |
|                 state->v[2] = XXH32_round(state->v[2], XXH_readLE32(p)); p+=4;
 | |
|                 state->v[3] = XXH32_round(state->v[3], XXH_readLE32(p)); p+=4;
 | |
|             } while (p<=limit);
 | |
| 
 | |
|         }
 | |
| 
 | |
|         if (p < bEnd) {
 | |
|             XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
 | |
|             state->memsize = (unsigned)(bEnd-p);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*! @ingroup xxh32_family */
 | |
| XXH_PUBLIC_API XXH32_hash_t XXH32_digest(const XXH32_state_t* state)
 | |
| {
 | |
|     xxh_u32 h32;
 | |
| 
 | |
|     if (state->large_len) {
 | |
|         h32 = XXH_rotl32(state->v[0], 1)
 | |
|             + XXH_rotl32(state->v[1], 7)
 | |
|             + XXH_rotl32(state->v[2], 12)
 | |
|             + XXH_rotl32(state->v[3], 18);
 | |
|     } else {
 | |
|         h32 = state->v[2] /* == seed */ + XXH_PRIME32_5;
 | |
|     }
 | |
| 
 | |
|     h32 += state->total_len_32;
 | |
| 
 | |
|     return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*******   Canonical representation   *******/
 | |
| 
 | |
| /*!
 | |
|  * @ingroup xxh32_family
 | |
|  * The default return values from XXH functions are unsigned 32 and 64 bit
 | |
|  * integers.
 | |
|  *
 | |
|  * The canonical representation uses big endian convention, the same convention
 | |
|  * as human-readable numbers (large digits first).
 | |
|  *
 | |
|  * This way, hash values can be written into a file or buffer, remaining
 | |
|  * comparable across different systems.
 | |
|  *
 | |
|  * The following functions allow transformation of hash values to and from their
 | |
|  * canonical format.
 | |
|  */
 | |
| XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
 | |
| {
 | |
|     /* XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); */
 | |
|     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
 | |
|     XXH_memcpy(dst, &hash, sizeof(*dst));
 | |
| }
 | |
| /*! @ingroup xxh32_family */
 | |
| XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
 | |
| {
 | |
|     return XXH_readBE32(src);
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifndef XXH_NO_LONG_LONG
 | |
| 
 | |
| /* *******************************************************************
 | |
| *  64-bit hash functions
 | |
| *********************************************************************/
 | |
| /*!
 | |
|  * @}
 | |
|  * @ingroup impl
 | |
|  * @{
 | |
|  */
 | |
| /*******   Memory access   *******/
 | |
| 
 | |
| typedef XXH64_hash_t xxh_u64;
 | |
| 
 | |
| #ifdef XXH_OLD_NAMES
 | |
| #  define U64 xxh_u64
 | |
| #endif
 | |
| 
 | |
| #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
 | |
| /*
 | |
|  * Manual byteshift. Best for old compilers which don't inline memcpy.
 | |
|  * We actually directly use XXH_readLE64 and XXH_readBE64.
 | |
|  */
 | |
| #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
 | |
| 
 | |
| /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
 | |
| static xxh_u64 XXH_read64(const void* memPtr)
 | |
| {
 | |
|     return *(const xxh_u64*) memPtr;
 | |
| }
 | |
| 
 | |
| #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
 | |
| 
 | |
| /*
 | |
|  * __pack instructions are safer, but compiler specific, hence potentially
 | |
|  * problematic for some compilers.
 | |
|  *
 | |
|  * Currently only defined for GCC and ICC.
 | |
|  */
 | |
| #ifdef XXH_OLD_NAMES
 | |
| typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64;
 | |
| #endif
 | |
| static xxh_u64 XXH_read64(const void* ptr)
 | |
| {
 | |
|     typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) xxh_unalign64;
 | |
|     return ((const xxh_unalign64*)ptr)->u64;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| /*
 | |
|  * Portable and safe solution. Generally efficient.
 | |
|  * see: http://fastcompression.blogspot.com/2015/08/accessing-unaligned-memory.html
 | |
|  */
 | |
| static xxh_u64 XXH_read64(const void* memPtr)
 | |
| {
 | |
|     xxh_u64 val;
 | |
|     XXH_memcpy(&val, memPtr, sizeof(val));
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| #endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
 | |
| 
 | |
| #if defined(_MSC_VER)     /* Visual Studio */
 | |
| #  define XXH_swap64 _byteswap_uint64
 | |
| #elif XXH_GCC_VERSION >= 403
 | |
| #  define XXH_swap64 __builtin_bswap64
 | |
| #else
 | |
| static xxh_u64 XXH_swap64(xxh_u64 x)
 | |
| {
 | |
|     return  ((x << 56) & 0xff00000000000000ULL) |
 | |
|             ((x << 40) & 0x00ff000000000000ULL) |
 | |
|             ((x << 24) & 0x0000ff0000000000ULL) |
 | |
|             ((x << 8)  & 0x000000ff00000000ULL) |
 | |
|             ((x >> 8)  & 0x00000000ff000000ULL) |
 | |
|             ((x >> 24) & 0x0000000000ff0000ULL) |
 | |
|             ((x >> 40) & 0x000000000000ff00ULL) |
 | |
|             ((x >> 56) & 0x00000000000000ffULL);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* XXH_FORCE_MEMORY_ACCESS==3 is an endian-independent byteshift load. */
 | |
| #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==3))
 | |
| 
 | |
| XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* memPtr)
 | |
| {
 | |
|     const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
 | |
|     return bytePtr[0]
 | |
|          | ((xxh_u64)bytePtr[1] << 8)
 | |
|          | ((xxh_u64)bytePtr[2] << 16)
 | |
|          | ((xxh_u64)bytePtr[3] << 24)
 | |
|          | ((xxh_u64)bytePtr[4] << 32)
 | |
|          | ((xxh_u64)bytePtr[5] << 40)
 | |
|          | ((xxh_u64)bytePtr[6] << 48)
 | |
|          | ((xxh_u64)bytePtr[7] << 56);
 | |
| }
 | |
| 
 | |
| XXH_FORCE_INLINE xxh_u64 XXH_readBE64(const void* memPtr)
 | |
| {
 | |
|     const xxh_u8* bytePtr = (const xxh_u8 *)memPtr;
 | |
|     return bytePtr[7]
 | |
|          | ((xxh_u64)bytePtr[6] << 8)
 | |
|          | ((xxh_u64)bytePtr[5] << 16)
 | |
|          | ((xxh_u64)bytePtr[4] << 24)
 | |
|          | ((xxh_u64)bytePtr[3] << 32)
 | |
|          | ((xxh_u64)bytePtr[2] << 40)
 | |
|          | ((xxh_u64)bytePtr[1] << 48)
 | |
|          | ((xxh_u64)bytePtr[0] << 56);
 | |
| }
 | |
| 
 | |
| #else
 | |
| XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr)
 | |
| {
 | |
|     return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
 | |
| }
 | |
| 
 | |
| static xxh_u64 XXH_readBE64(const void* ptr)
 | |
| {
 | |
|     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| XXH_FORCE_INLINE xxh_u64
 | |
| XXH_readLE64_align(const void* ptr, XXH_alignment align)
 | |
| {
 | |
|     if (align==XXH_unaligned)
 | |
|         return XXH_readLE64(ptr);
 | |
|     else
 | |
|         return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*******   xxh64   *******/
 | |
| /*!
 | |
|  * @}
 | |
|  * @defgroup xxh64_impl XXH64 implementation
 | |
|  * @ingroup impl
 | |
|  * @{
 | |
|  */
 | |
| /* #define rather that static const, to be used as initializers */
 | |
| #define XXH_PRIME64_1  0x9E3779B185EBCA87ULL  /*!< 0b1001111000110111011110011011000110000101111010111100101010000111 */
 | |
| #define XXH_PRIME64_2  0xC2B2AE3D27D4EB4FULL  /*!< 0b1100001010110010101011100011110100100111110101001110101101001111 */
 | |
| #define XXH_PRIME64_3  0x165667B19E3779F9ULL  /*!< 0b0001011001010110011001111011000110011110001101110111100111111001 */
 | |
| #define XXH_PRIME64_4  0x85EBCA77C2B2AE63ULL  /*!< 0b1000010111101011110010100111011111000010101100101010111001100011 */
 | |
| #define XXH_PRIME64_5  0x27D4EB2F165667C5ULL  /*!< 0b0010011111010100111010110010111100010110010101100110011111000101 */
 | |
| 
 | |
| #ifdef XXH_OLD_NAMES
 | |
| #  define PRIME64_1 XXH_PRIME64_1
 | |
| #  define PRIME64_2 XXH_PRIME64_2
 | |
| #  define PRIME64_3 XXH_PRIME64_3
 | |
| #  define PRIME64_4 XXH_PRIME64_4
 | |
| #  define PRIME64_5 XXH_PRIME64_5
 | |
| #endif
 | |
| 
 | |
| static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input)
 | |
| {
 | |
|     acc += input * XXH_PRIME64_2;
 | |
|     acc  = XXH_rotl64(acc, 31);
 | |
|     acc *= XXH_PRIME64_1;
 | |
|     return acc;
 | |
| }
 | |
| 
 | |
| static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val)
 | |
| {
 | |
|     val  = XXH64_round(0, val);
 | |
|     acc ^= val;
 | |
|     acc  = acc * XXH_PRIME64_1 + XXH_PRIME64_4;
 | |
|     return acc;
 | |
| }
 | |
| 
 | |
| static xxh_u64 XXH64_avalanche(xxh_u64 h64)
 | |
| {
 | |
|     h64 ^= h64 >> 33;
 | |
|     h64 *= XXH_PRIME64_2;
 | |
|     h64 ^= h64 >> 29;
 | |
|     h64 *= XXH_PRIME64_3;
 | |
|     h64 ^= h64 >> 32;
 | |
|     return h64;
 | |
| }
 | |
| 
 | |
| 
 | |
| #define XXH_get64bits(p) XXH_readLE64_align(p, align)
 | |
| 
 | |
| static xxh_u64
 | |
| XXH64_finalize(xxh_u64 h64, const xxh_u8* ptr, size_t len, XXH_alignment align)
 | |
| {
 | |
|     if (ptr==NULL) XXH_ASSERT(len == 0);
 | |
|     len &= 31;
 | |
|     while (len >= 8) {
 | |
|         xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr));
 | |
|         ptr += 8;
 | |
|         h64 ^= k1;
 | |
|         h64  = XXH_rotl64(h64,27) * XXH_PRIME64_1 + XXH_PRIME64_4;
 | |
|         len -= 8;
 | |
|     }
 | |
|     if (len >= 4) {
 | |
|         h64 ^= (xxh_u64)(XXH_get32bits(ptr)) * XXH_PRIME64_1;
 | |
|         ptr += 4;
 | |
|         h64 = XXH_rotl64(h64, 23) * XXH_PRIME64_2 + XXH_PRIME64_3;
 | |
|         len -= 4;
 | |
|     }
 | |
|     while (len > 0) {
 | |
|         h64 ^= (*ptr++) * XXH_PRIME64_5;
 | |
|         h64 = XXH_rotl64(h64, 11) * XXH_PRIME64_1;
 | |
|         --len;
 | |
|     }
 | |
|     return  XXH64_avalanche(h64);
 | |
| }
 | |
| 
 | |
| #ifdef XXH_OLD_NAMES
 | |
| #  define PROCESS1_64 XXH_PROCESS1_64
 | |
| #  define PROCESS4_64 XXH_PROCESS4_64
 | |
| #  define PROCESS8_64 XXH_PROCESS8_64
 | |
| #else
 | |
| #  undef XXH_PROCESS1_64
 | |
| #  undef XXH_PROCESS4_64
 | |
| #  undef XXH_PROCESS8_64
 | |
| #endif
 | |
| 
 | |
| XXH_FORCE_INLINE xxh_u64
 | |
| XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align)
 | |
| {
 | |
|     xxh_u64 h64;
 | |
|     if (input==NULL) XXH_ASSERT(len == 0);
 | |
| 
 | |
|     if (len>=32) {
 | |
|         const xxh_u8* const bEnd = input + len;
 | |
|         const xxh_u8* const limit = bEnd - 31;
 | |
|         xxh_u64 v1 = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
 | |
|         xxh_u64 v2 = seed + XXH_PRIME64_2;
 | |
|         xxh_u64 v3 = seed + 0;
 | |
|         xxh_u64 v4 = seed - XXH_PRIME64_1;
 | |
| 
 | |
|         do {
 | |
|             v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8;
 | |
|             v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8;
 | |
|             v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8;
 | |
|             v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8;
 | |
|         } while (input<limit);
 | |
| 
 | |
|         h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
 | |
|         h64 = XXH64_mergeRound(h64, v1);
 | |
|         h64 = XXH64_mergeRound(h64, v2);
 | |
|         h64 = XXH64_mergeRound(h64, v3);
 | |
|         h64 = XXH64_mergeRound(h64, v4);
 | |
| 
 | |
|     } else {
 | |
|         h64  = seed + XXH_PRIME64_5;
 | |
|     }
 | |
| 
 | |
|     h64 += (xxh_u64) len;
 | |
| 
 | |
|     return XXH64_finalize(h64, input, len, align);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*! @ingroup xxh64_family */
 | |
| XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, XXH64_hash_t seed)
 | |
| {
 | |
| #if 0
 | |
|     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
 | |
|     XXH64_state_t state;
 | |
|     XXH64_reset(&state, seed);
 | |
|     XXH64_update(&state, (const xxh_u8*)input, len);
 | |
|     return XXH64_digest(&state);
 | |
| #else
 | |
|     if (XXH_FORCE_ALIGN_CHECK) {
 | |
|         if ((((size_t)input) & 7)==0) {  /* Input is aligned, let's leverage the speed advantage */
 | |
|             return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
 | |
|     }   }
 | |
| 
 | |
|     return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
 | |
| 
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*******   Hash Streaming   *******/
 | |
| 
 | |
| /*! @ingroup xxh64_family*/
 | |
| XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
 | |
| {
 | |
|     return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
 | |
| }
 | |
| /*! @ingroup xxh64_family */
 | |
| XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
 | |
| {
 | |
|     XXH_free(statePtr);
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| /*! @ingroup xxh64_family */
 | |
| XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState)
 | |
| {
 | |
|     XXH_memcpy(dstState, srcState, sizeof(*dstState));
 | |
| }
 | |
| 
 | |
| /*! @ingroup xxh64_family */
 | |
| XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, XXH64_hash_t seed)
 | |
| {
 | |
|     XXH_ASSERT(statePtr != NULL);
 | |
|     memset(statePtr, 0, sizeof(*statePtr));
 | |
|     statePtr->v[0] = seed + XXH_PRIME64_1 + XXH_PRIME64_2;
 | |
|     statePtr->v[1] = seed + XXH_PRIME64_2;
 | |
|     statePtr->v[2] = seed + 0;
 | |
|     statePtr->v[3] = seed - XXH_PRIME64_1;
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| /*! @ingroup xxh64_family */
 | |
| XXH_PUBLIC_API XXH_errorcode
 | |
| XXH64_update (XXH64_state_t* state, const void* input, size_t len)
 | |
| {
 | |
|     if (input==NULL) {
 | |
|         XXH_ASSERT(len == 0);
 | |
|         return XXH_OK;
 | |
|     }
 | |
| 
 | |
|     {   const xxh_u8* p = (const xxh_u8*)input;
 | |
|         const xxh_u8* const bEnd = p + len;
 | |
| 
 | |
|         state->total_len += len;
 | |
| 
 | |
|         if (state->memsize + len < 32) {  /* fill in tmp buffer */
 | |
|             XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len);
 | |
|             state->memsize += (xxh_u32)len;
 | |
|             return XXH_OK;
 | |
|         }
 | |
| 
 | |
|         if (state->memsize) {   /* tmp buffer is full */
 | |
|             XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize);
 | |
|             state->v[0] = XXH64_round(state->v[0], XXH_readLE64(state->mem64+0));
 | |
|             state->v[1] = XXH64_round(state->v[1], XXH_readLE64(state->mem64+1));
 | |
|             state->v[2] = XXH64_round(state->v[2], XXH_readLE64(state->mem64+2));
 | |
|             state->v[3] = XXH64_round(state->v[3], XXH_readLE64(state->mem64+3));
 | |
|             p += 32 - state->memsize;
 | |
|             state->memsize = 0;
 | |
|         }
 | |
| 
 | |
|         if (p+32 <= bEnd) {
 | |
|             const xxh_u8* const limit = bEnd - 32;
 | |
| 
 | |
|             do {
 | |
|                 state->v[0] = XXH64_round(state->v[0], XXH_readLE64(p)); p+=8;
 | |
|                 state->v[1] = XXH64_round(state->v[1], XXH_readLE64(p)); p+=8;
 | |
|                 state->v[2] = XXH64_round(state->v[2], XXH_readLE64(p)); p+=8;
 | |
|                 state->v[3] = XXH64_round(state->v[3], XXH_readLE64(p)); p+=8;
 | |
|             } while (p<=limit);
 | |
| 
 | |
|         }
 | |
| 
 | |
|         if (p < bEnd) {
 | |
|             XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
 | |
|             state->memsize = (unsigned)(bEnd-p);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*! @ingroup xxh64_family */
 | |
| XXH_PUBLIC_API XXH64_hash_t XXH64_digest(const XXH64_state_t* state)
 | |
| {
 | |
|     xxh_u64 h64;
 | |
| 
 | |
|     if (state->total_len >= 32) {
 | |
|         h64 = XXH_rotl64(state->v[0], 1) + XXH_rotl64(state->v[1], 7) + XXH_rotl64(state->v[2], 12) + XXH_rotl64(state->v[3], 18);
 | |
|         h64 = XXH64_mergeRound(h64, state->v[0]);
 | |
|         h64 = XXH64_mergeRound(h64, state->v[1]);
 | |
|         h64 = XXH64_mergeRound(h64, state->v[2]);
 | |
|         h64 = XXH64_mergeRound(h64, state->v[3]);
 | |
|     } else {
 | |
|         h64  = state->v[2] /*seed*/ + XXH_PRIME64_5;
 | |
|     }
 | |
| 
 | |
|     h64 += (xxh_u64) state->total_len;
 | |
| 
 | |
|     return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned);
 | |
| }
 | |
| 
 | |
| 
 | |
| /******* Canonical representation   *******/
 | |
| 
 | |
| /*! @ingroup xxh64_family */
 | |
| XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
 | |
| {
 | |
|     /* XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); */
 | |
|     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
 | |
|     XXH_memcpy(dst, &hash, sizeof(*dst));
 | |
| }
 | |
| 
 | |
| /*! @ingroup xxh64_family */
 | |
| XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
 | |
| {
 | |
|     return XXH_readBE64(src);
 | |
| }
 | |
| 
 | |
| #ifndef XXH_NO_XXH3
 | |
| 
 | |
| /* *********************************************************************
 | |
| *  XXH3
 | |
| *  New generation hash designed for speed on small keys and vectorization
 | |
| ************************************************************************ */
 | |
| /*!
 | |
|  * @}
 | |
|  * @defgroup xxh3_impl XXH3 implementation
 | |
|  * @ingroup impl
 | |
|  * @{
 | |
|  */
 | |
| 
 | |
| /* ===   Compiler specifics   === */
 | |
| 
 | |
| #if ((defined(sun) || defined(__sun)) && __cplusplus) /* Solaris includes __STDC_VERSION__ with C++. Tested with GCC 5.5 */
 | |
| #  define XXH_RESTRICT /* disable */
 | |
| #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* >= C99 */
 | |
| #  define XXH_RESTRICT   restrict
 | |
| #else
 | |
| /* Note: it might be useful to define __restrict or __restrict__ for some C++ compilers */
 | |
| #  define XXH_RESTRICT   /* disable */
 | |
| #endif
 | |
| 
 | |
| #if (defined(__GNUC__) && (__GNUC__ >= 3))  \
 | |
|   || (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 800)) \
 | |
|   || defined(__clang__)
 | |
| #    define XXH_likely(x) __builtin_expect(x, 1)
 | |
| #    define XXH_unlikely(x) __builtin_expect(x, 0)
 | |
| #else
 | |
| #    define XXH_likely(x) (x)
 | |
| #    define XXH_unlikely(x) (x)
 | |
| #endif
 | |
| 
 | |
| #if defined(__GNUC__) || defined(__clang__)
 | |
| #  if defined(__ARM_NEON__) || defined(__ARM_NEON) \
 | |
|    || defined(__aarch64__)  || defined(_M_ARM) \
 | |
|    || defined(_M_ARM64)     || defined(_M_ARM64EC)
 | |
| #    define inline __inline__  /* circumvent a clang bug */
 | |
| #    include <arm_neon.h>
 | |
| #    undef inline
 | |
| #  elif defined(__AVX2__)
 | |
| #    include <immintrin.h>
 | |
| #  elif defined(__SSE2__)
 | |
| #    include <emmintrin.h>
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #  include <intrin.h>
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * One goal of XXH3 is to make it fast on both 32-bit and 64-bit, while
 | |
|  * remaining a true 64-bit/128-bit hash function.
 | |
|  *
 | |
|  * This is done by prioritizing a subset of 64-bit operations that can be
 | |
|  * emulated without too many steps on the average 32-bit machine.
 | |
|  *
 | |
|  * For example, these two lines seem similar, and run equally fast on 64-bit:
 | |
|  *
 | |
|  *   xxh_u64 x;
 | |
|  *   x ^= (x >> 47); // good
 | |
|  *   x ^= (x >> 13); // bad
 | |
|  *
 | |
|  * However, to a 32-bit machine, there is a major difference.
 | |
|  *
 | |
|  * x ^= (x >> 47) looks like this:
 | |
|  *
 | |
|  *   x.lo ^= (x.hi >> (47 - 32));
 | |
|  *
 | |
|  * while x ^= (x >> 13) looks like this:
 | |
|  *
 | |
|  *   // note: funnel shifts are not usually cheap.
 | |
|  *   x.lo ^= (x.lo >> 13) | (x.hi << (32 - 13));
 | |
|  *   x.hi ^= (x.hi >> 13);
 | |
|  *
 | |
|  * The first one is significantly faster than the second, simply because the
 | |
|  * shift is larger than 32. This means:
 | |
|  *  - All the bits we need are in the upper 32 bits, so we can ignore the lower
 | |
|  *    32 bits in the shift.
 | |
|  *  - The shift result will always fit in the lower 32 bits, and therefore,
 | |
|  *    we can ignore the upper 32 bits in the xor.
 | |
|  *
 | |
|  * Thanks to this optimization, XXH3 only requires these features to be efficient:
 | |
|  *
 | |
|  *  - Usable unaligned access
 | |
|  *  - A 32-bit or 64-bit ALU
 | |
|  *      - If 32-bit, a decent ADC instruction
 | |
|  *  - A 32 or 64-bit multiply with a 64-bit result
 | |
|  *  - For the 128-bit variant, a decent byteswap helps short inputs.
 | |
|  *
 | |
|  * The first two are already required by XXH32, and almost all 32-bit and 64-bit
 | |
|  * platforms which can run XXH32 can run XXH3 efficiently.
 | |
|  *
 | |
|  * Thumb-1, the classic 16-bit only subset of ARM's instruction set, is one
 | |
|  * notable exception.
 | |
|  *
 | |
|  * First of all, Thumb-1 lacks support for the UMULL instruction which
 | |
|  * performs the important long multiply. This means numerous __aeabi_lmul
 | |
|  * calls.
 | |
|  *
 | |
|  * Second of all, the 8 functional registers are just not enough.
 | |
|  * Setup for __aeabi_lmul, byteshift loads, pointers, and all arithmetic need
 | |
|  * Lo registers, and this shuffling results in thousands more MOVs than A32.
 | |
|  *
 | |
|  * A32 and T32 don't have this limitation. They can access all 14 registers,
 | |
|  * do a 32->64 multiply with UMULL, and the flexible operand allowing free
 | |
|  * shifts is helpful, too.
 | |
|  *
 | |
|  * Therefore, we do a quick sanity check.
 | |
|  *
 | |
|  * If compiling Thumb-1 for a target which supports ARM instructions, we will
 | |
|  * emit a warning, as it is not a "sane" platform to compile for.
 | |
|  *
 | |
|  * Usually, if this happens, it is because of an accident and you probably need
 | |
|  * to specify -march, as you likely meant to compile for a newer architecture.
 | |
|  *
 | |
|  * Credit: large sections of the vectorial and asm source code paths
 | |
|  *         have been contributed by @easyaspi314
 | |
|  */
 | |
| #if defined(__thumb__) && !defined(__thumb2__) && defined(__ARM_ARCH_ISA_ARM)
 | |
| #   warning "XXH3 is highly inefficient without ARM or Thumb-2."
 | |
| #endif
 | |
| 
 | |
| /* ==========================================
 | |
|  * Vectorization detection
 | |
|  * ========================================== */
 | |
| 
 | |
| #ifdef XXH_DOXYGEN
 | |
| /*!
 | |
|  * @ingroup tuning
 | |
|  * @brief Overrides the vectorization implementation chosen for XXH3.
 | |
|  *
 | |
|  * Can be defined to 0 to disable SIMD or any of the values mentioned in
 | |
|  * @ref XXH_VECTOR_TYPE.
 | |
|  *
 | |
|  * If this is not defined, it uses predefined macros to determine the best
 | |
|  * implementation.
 | |
|  */
 | |
| #  define XXH_VECTOR XXH_SCALAR
 | |
| /*!
 | |
|  * @ingroup tuning
 | |
|  * @brief Possible values for @ref XXH_VECTOR.
 | |
|  *
 | |
|  * Note that these are actually implemented as macros.
 | |
|  *
 | |
|  * If this is not defined, it is detected automatically.
 | |
|  * @ref XXH_X86DISPATCH overrides this.
 | |
|  */
 | |
| enum XXH_VECTOR_TYPE /* fake enum */ {
 | |
|     XXH_SCALAR = 0,  /*!< Portable scalar version */
 | |
|     XXH_SSE2   = 1,  /*!<
 | |
|                       * SSE2 for Pentium 4, Opteron, all x86_64.
 | |
|                       *
 | |
|                       * @note SSE2 is also guaranteed on Windows 10, macOS, and
 | |
|                       * Android x86.
 | |
|                       */
 | |
|     XXH_AVX2   = 2,  /*!< AVX2 for Haswell and Bulldozer */
 | |
|     XXH_AVX512 = 3,  /*!< AVX512 for Skylake and Icelake */
 | |
|     XXH_NEON   = 4,  /*!< NEON for most ARMv7-A and all AArch64 */
 | |
|     XXH_VSX    = 5,  /*!< VSX and ZVector for POWER8/z13 (64-bit) */
 | |
| };
 | |
| /*!
 | |
|  * @ingroup tuning
 | |
|  * @brief Selects the minimum alignment for XXH3's accumulators.
 | |
|  *
 | |
|  * When using SIMD, this should match the alignment reqired for said vector
 | |
|  * type, so, for example, 32 for AVX2.
 | |
|  *
 | |
|  * Default: Auto detected.
 | |
|  */
 | |
| #  define XXH_ACC_ALIGN 8
 | |
| #endif
 | |
| 
 | |
| /* Actual definition */
 | |
| #ifndef XXH_DOXYGEN
 | |
| #  define XXH_SCALAR 0
 | |
| #  define XXH_SSE2   1
 | |
| #  define XXH_AVX2   2
 | |
| #  define XXH_AVX512 3
 | |
| #  define XXH_NEON   4
 | |
| #  define XXH_VSX    5
 | |
| #endif
 | |
| 
 | |
| #ifndef XXH_VECTOR    /* can be defined on command line */
 | |
| #  if ( \
 | |
|         defined(__ARM_NEON__) || defined(__ARM_NEON) /* gcc */ \
 | |
|      || defined(_M_ARM) || defined(_M_ARM64) || defined(_M_ARM64EC) /* msvc */ \
 | |
|    ) && ( \
 | |
|         defined(_WIN32) || defined(__LITTLE_ENDIAN__) /* little endian only */ \
 | |
|     || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
 | |
|    )
 | |
| #    define XXH_VECTOR XXH_NEON
 | |
| #  elif defined(__AVX512F__)
 | |
| #    define XXH_VECTOR XXH_AVX512
 | |
| #  elif defined(__AVX2__)
 | |
| #    define XXH_VECTOR XXH_AVX2
 | |
| #  elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
 | |
| #    define XXH_VECTOR XXH_SSE2
 | |
| #  elif (defined(__PPC64__) && defined(__POWER8_VECTOR__)) \
 | |
|      || (defined(__s390x__) && defined(__VEC__)) \
 | |
|      && defined(__GNUC__) /* TODO: IBM XL */
 | |
| #    define XXH_VECTOR XXH_VSX
 | |
| #  else
 | |
| #    define XXH_VECTOR XXH_SCALAR
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Controls the alignment of the accumulator,
 | |
|  * for compatibility with aligned vector loads, which are usually faster.
 | |
|  */
 | |
| #ifndef XXH_ACC_ALIGN
 | |
| #  if defined(XXH_X86DISPATCH)
 | |
| #     define XXH_ACC_ALIGN 64  /* for compatibility with avx512 */
 | |
| #  elif XXH_VECTOR == XXH_SCALAR  /* scalar */
 | |
| #     define XXH_ACC_ALIGN 8
 | |
| #  elif XXH_VECTOR == XXH_SSE2  /* sse2 */
 | |
| #     define XXH_ACC_ALIGN 16
 | |
| #  elif XXH_VECTOR == XXH_AVX2  /* avx2 */
 | |
| #     define XXH_ACC_ALIGN 32
 | |
| #  elif XXH_VECTOR == XXH_NEON  /* neon */
 | |
| #     define XXH_ACC_ALIGN 16
 | |
| #  elif XXH_VECTOR == XXH_VSX   /* vsx */
 | |
| #     define XXH_ACC_ALIGN 16
 | |
| #  elif XXH_VECTOR == XXH_AVX512  /* avx512 */
 | |
| #     define XXH_ACC_ALIGN 64
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| #if defined(XXH_X86DISPATCH) || XXH_VECTOR == XXH_SSE2 \
 | |
|     || XXH_VECTOR == XXH_AVX2 || XXH_VECTOR == XXH_AVX512
 | |
| #  define XXH_SEC_ALIGN XXH_ACC_ALIGN
 | |
| #else
 | |
| #  define XXH_SEC_ALIGN 8
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * UGLY HACK:
 | |
|  * GCC usually generates the best code with -O3 for xxHash.
 | |
|  *
 | |
|  * However, when targeting AVX2, it is overzealous in its unrolling resulting
 | |
|  * in code roughly 3/4 the speed of Clang.
 | |
|  *
 | |
|  * There are other issues, such as GCC splitting _mm256_loadu_si256 into
 | |
|  * _mm_loadu_si128 + _mm256_inserti128_si256. This is an optimization which
 | |
|  * only applies to Sandy and Ivy Bridge... which don't even support AVX2.
 | |
|  *
 | |
|  * That is why when compiling the AVX2 version, it is recommended to use either
 | |
|  *   -O2 -mavx2 -march=haswell
 | |
|  * or
 | |
|  *   -O2 -mavx2 -mno-avx256-split-unaligned-load
 | |
|  * for decent performance, or to use Clang instead.
 | |
|  *
 | |
|  * Fortunately, we can control the first one with a pragma that forces GCC into
 | |
|  * -O2, but the other one we can't control without "failed to inline always
 | |
|  * inline function due to target mismatch" warnings.
 | |
|  */
 | |
| #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
 | |
|   && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
 | |
|   && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
 | |
| #  pragma GCC push_options
 | |
| #  pragma GCC optimize("-O2")
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #if XXH_VECTOR == XXH_NEON
 | |
| /*
 | |
|  * NEON's setup for vmlal_u32 is a little more complicated than it is on
 | |
|  * SSE2, AVX2, and VSX.
 | |
|  *
 | |
|  * While PMULUDQ and VMULEUW both perform a mask, VMLAL.U32 performs an upcast.
 | |
|  *
 | |
|  * To do the same operation, the 128-bit 'Q' register needs to be split into
 | |
|  * two 64-bit 'D' registers, performing this operation::
 | |
|  *
 | |
|  *   [                a                 |                 b                ]
 | |
|  *            |              '---------. .--------'                |
 | |
|  *            |                         x                          |
 | |
|  *            |              .---------' '--------.                |
 | |
|  *   [ a & 0xFFFFFFFF | b & 0xFFFFFFFF ],[    a >> 32     |     b >> 32    ]
 | |
|  *
 | |
|  * Due to significant changes in aarch64, the fastest method for aarch64 is
 | |
|  * completely different than the fastest method for ARMv7-A.
 | |
|  *
 | |
|  * ARMv7-A treats D registers as unions overlaying Q registers, so modifying
 | |
|  * D11 will modify the high half of Q5. This is similar to how modifying AH
 | |
|  * will only affect bits 8-15 of AX on x86.
 | |
|  *
 | |
|  * VZIP takes two registers, and puts even lanes in one register and odd lanes
 | |
|  * in the other.
 | |
|  *
 | |
|  * On ARMv7-A, this strangely modifies both parameters in place instead of
 | |
|  * taking the usual 3-operand form.
 | |
|  *
 | |
|  * Therefore, if we want to do this, we can simply use a D-form VZIP.32 on the
 | |
|  * lower and upper halves of the Q register to end up with the high and low
 | |
|  * halves where we want - all in one instruction.
 | |
|  *
 | |
|  *   vzip.32   d10, d11       @ d10 = { d10[0], d11[0] }; d11 = { d10[1], d11[1] }
 | |
|  *
 | |
|  * Unfortunately we need inline assembly for this: Instructions modifying two
 | |
|  * registers at once is not possible in GCC or Clang's IR, and they have to
 | |
|  * create a copy.
 | |
|  *
 | |
|  * aarch64 requires a different approach.
 | |
|  *
 | |
|  * In order to make it easier to write a decent compiler for aarch64, many
 | |
|  * quirks were removed, such as conditional execution.
 | |
|  *
 | |
|  * NEON was also affected by this.
 | |
|  *
 | |
|  * aarch64 cannot access the high bits of a Q-form register, and writes to a
 | |
|  * D-form register zero the high bits, similar to how writes to W-form scalar
 | |
|  * registers (or DWORD registers on x86_64) work.
 | |
|  *
 | |
|  * The formerly free vget_high intrinsics now require a vext (with a few
 | |
|  * exceptions)
 | |
|  *
 | |
|  * Additionally, VZIP was replaced by ZIP1 and ZIP2, which are the equivalent
 | |
|  * of PUNPCKL* and PUNPCKH* in SSE, respectively, in order to only modify one
 | |
|  * operand.
 | |
|  *
 | |
|  * The equivalent of the VZIP.32 on the lower and upper halves would be this
 | |
|  * mess:
 | |
|  *
 | |
|  *   ext     v2.4s, v0.4s, v0.4s, #2 // v2 = { v0[2], v0[3], v0[0], v0[1] }
 | |
|  *   zip1    v1.2s, v0.2s, v2.2s     // v1 = { v0[0], v2[0] }
 | |
|  *   zip2    v0.2s, v0.2s, v1.2s     // v0 = { v0[1], v2[1] }
 | |
|  *
 | |
|  * Instead, we use a literal downcast, vmovn_u64 (XTN), and vshrn_n_u64 (SHRN):
 | |
|  *
 | |
|  *   shrn    v1.2s, v0.2d, #32  // v1 = (uint32x2_t)(v0 >> 32);
 | |
|  *   xtn     v0.2s, v0.2d       // v0 = (uint32x2_t)(v0 & 0xFFFFFFFF);
 | |
|  *
 | |
|  * This is available on ARMv7-A, but is less efficient than a single VZIP.32.
 | |
|  */
 | |
| 
 | |
| /*!
 | |
|  * Function-like macro:
 | |
|  * void XXH_SPLIT_IN_PLACE(uint64x2_t &in, uint32x2_t &outLo, uint32x2_t &outHi)
 | |
|  * {
 | |
|  *     outLo = (uint32x2_t)(in & 0xFFFFFFFF);
 | |
|  *     outHi = (uint32x2_t)(in >> 32);
 | |
|  *     in = UNDEFINED;
 | |
|  * }
 | |
|  */
 | |
| # if !defined(XXH_NO_VZIP_HACK) /* define to disable */ \
 | |
|    && (defined(__GNUC__) || defined(__clang__)) \
 | |
|    && (defined(__arm__) || defined(__thumb__) || defined(_M_ARM))
 | |
| #  define XXH_SPLIT_IN_PLACE(in, outLo, outHi)                                              \
 | |
|     do {                                                                                    \
 | |
|       /* Undocumented GCC/Clang operand modifier: %e0 = lower D half, %f0 = upper D half */ \
 | |
|       /* https://github.com/gcc-mirror/gcc/blob/38cf91e5/gcc/config/arm/arm.c#L22486 */     \
 | |
|       /* https://github.com/llvm-mirror/llvm/blob/2c4ca683/lib/Target/ARM/ARMAsmPrinter.cpp#L399 */ \
 | |
|       __asm__("vzip.32  %e0, %f0" : "+w" (in));                                             \
 | |
|       (outLo) = vget_low_u32 (vreinterpretq_u32_u64(in));                                   \
 | |
|       (outHi) = vget_high_u32(vreinterpretq_u32_u64(in));                                   \
 | |
|    } while (0)
 | |
| # else
 | |
| #  define XXH_SPLIT_IN_PLACE(in, outLo, outHi)                                            \
 | |
|     do {                                                                                  \
 | |
|       (outLo) = vmovn_u64    (in);                                                        \
 | |
|       (outHi) = vshrn_n_u64  ((in), 32);                                                  \
 | |
|     } while (0)
 | |
| # endif
 | |
| 
 | |
| /*!
 | |
|  * @ingroup tuning
 | |
|  * @brief Controls the NEON to scalar ratio for XXH3
 | |
|  *
 | |
|  * On AArch64 when not optimizing for size, XXH3 will run 6 lanes using NEON and
 | |
|  * 2 lanes on scalar by default.
 | |
|  *
 | |
|  * This can be set to 2, 4, 6, or 8. ARMv7 will default to all 8 NEON lanes, as the
 | |
|  * emulated 64-bit arithmetic is too slow.
 | |
|  *
 | |
|  * Modern ARM CPUs are _very_ sensitive to how their pipelines are used.
 | |
|  *
 | |
|  * For example, the Cortex-A73 can dispatch 3 micro-ops per cycle, but it can't
 | |
|  * have more than 2 NEON (F0/F1) micro-ops. If you are only using NEON instructions,
 | |
|  * you are only using 2/3 of the CPU bandwidth.
 | |
|  *
 | |
|  * This is even more noticable on the more advanced cores like the A76 which
 | |
|  * can dispatch 8 micro-ops per cycle, but still only 2 NEON micro-ops at once.
 | |
|  *
 | |
|  * Therefore, @ref XXH3_NEON_LANES lanes will be processed using NEON, and the
 | |
|  * remaining lanes will use scalar instructions. This improves the bandwidth
 | |
|  * and also gives the integer pipelines something to do besides twiddling loop
 | |
|  * counters and pointers.
 | |
|  *
 | |
|  * This change benefits CPUs with large micro-op buffers without negatively affecting
 | |
|  * other CPUs:
 | |
|  *
 | |
|  *  | Chipset               | Dispatch type       | NEON only | 6:2 hybrid | Diff. |
 | |
|  *  |:----------------------|:--------------------|----------:|-----------:|------:|
 | |
|  *  | Snapdragon 730 (A76)  | 2 NEON/8 micro-ops  |  8.8 GB/s |  10.1 GB/s |  ~16% |
 | |
|  *  | Snapdragon 835 (A73)  | 2 NEON/3 micro-ops  |  5.1 GB/s |   5.3 GB/s |   ~5% |
 | |
|  *  | Marvell PXA1928 (A53) | In-order dual-issue |  1.9 GB/s |   1.9 GB/s |    0% |
 | |
|  *
 | |
|  * It also seems to fix some bad codegen on GCC, making it almost as fast as clang.
 | |
|  *
 | |
|  * @see XXH3_accumulate_512_neon()
 | |
|  */
 | |
| # ifndef XXH3_NEON_LANES
 | |
| #  if (defined(__aarch64__) || defined(__arm64__) || defined(_M_ARM64) || defined(_M_ARM64EC)) \
 | |
|    && !defined(__OPTIMIZE_SIZE__)
 | |
| #   define XXH3_NEON_LANES 6
 | |
| #  else
 | |
| #   define XXH3_NEON_LANES XXH_ACC_NB
 | |
| #  endif
 | |
| # endif
 | |
| #endif  /* XXH_VECTOR == XXH_NEON */
 | |
| 
 | |
| /*
 | |
|  * VSX and Z Vector helpers.
 | |
|  *
 | |
|  * This is very messy, and any pull requests to clean this up are welcome.
 | |
|  *
 | |
|  * There are a lot of problems with supporting VSX and s390x, due to
 | |
|  * inconsistent intrinsics, spotty coverage, and multiple endiannesses.
 | |
|  */
 | |
| #if XXH_VECTOR == XXH_VSX
 | |
| #  if defined(__s390x__)
 | |
| #    include <s390intrin.h>
 | |
| #  else
 | |
| /* gcc's altivec.h can have the unwanted consequence to unconditionally
 | |
|  * #define bool, vector, and pixel keywords,
 | |
|  * with bad consequences for programs already using these keywords for other purposes.
 | |
|  * The paragraph defining these macros is skipped when __APPLE_ALTIVEC__ is defined.
 | |
|  * __APPLE_ALTIVEC__ is _generally_ defined automatically by the compiler,
 | |
|  * but it seems that, in some cases, it isn't.
 | |
|  * Force the build macro to be defined, so that keywords are not altered.
 | |
|  */
 | |
| #    if defined(__GNUC__) && !defined(__APPLE_ALTIVEC__)
 | |
| #      define __APPLE_ALTIVEC__
 | |
| #    endif
 | |
| #    include <altivec.h>
 | |
| #  endif
 | |
| 
 | |
| typedef __vector unsigned long long xxh_u64x2;
 | |
| typedef __vector unsigned char xxh_u8x16;
 | |
| typedef __vector unsigned xxh_u32x4;
 | |
| 
 | |
| # ifndef XXH_VSX_BE
 | |
| #  if defined(__BIG_ENDIAN__) \
 | |
|   || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
 | |
| #    define XXH_VSX_BE 1
 | |
| #  elif defined(__VEC_ELEMENT_REG_ORDER__) && __VEC_ELEMENT_REG_ORDER__ == __ORDER_BIG_ENDIAN__
 | |
| #    warning "-maltivec=be is not recommended. Please use native endianness."
 | |
| #    define XXH_VSX_BE 1
 | |
| #  else
 | |
| #    define XXH_VSX_BE 0
 | |
| #  endif
 | |
| # endif /* !defined(XXH_VSX_BE) */
 | |
| 
 | |
| # if XXH_VSX_BE
 | |
| #  if defined(__POWER9_VECTOR__) || (defined(__clang__) && defined(__s390x__))
 | |
| #    define XXH_vec_revb vec_revb
 | |
| #  else
 | |
| /*!
 | |
|  * A polyfill for POWER9's vec_revb().
 | |
|  */
 | |
| XXH_FORCE_INLINE xxh_u64x2 XXH_vec_revb(xxh_u64x2 val)
 | |
| {
 | |
|     xxh_u8x16 const vByteSwap = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00,
 | |
|                                   0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 };
 | |
|     return vec_perm(val, val, vByteSwap);
 | |
| }
 | |
| #  endif
 | |
| # endif /* XXH_VSX_BE */
 | |
| 
 | |
| /*!
 | |
|  * Performs an unaligned vector load and byte swaps it on big endian.
 | |
|  */
 | |
| XXH_FORCE_INLINE xxh_u64x2 XXH_vec_loadu(const void *ptr)
 | |
| {
 | |
|     xxh_u64x2 ret;
 | |
|     XXH_memcpy(&ret, ptr, sizeof(xxh_u64x2));
 | |
| # if XXH_VSX_BE
 | |
|     ret = XXH_vec_revb(ret);
 | |
| # endif
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * vec_mulo and vec_mule are very problematic intrinsics on PowerPC
 | |
|  *
 | |
|  * These intrinsics weren't added until GCC 8, despite existing for a while,
 | |
|  * and they are endian dependent. Also, their meaning swap depending on version.
 | |
|  * */
 | |
| # if defined(__s390x__)
 | |
|  /* s390x is always big endian, no issue on this platform */
 | |
| #  define XXH_vec_mulo vec_mulo
 | |
| #  define XXH_vec_mule vec_mule
 | |
| # elif defined(__clang__) && XXH_HAS_BUILTIN(__builtin_altivec_vmuleuw)
 | |
| /* Clang has a better way to control this, we can just use the builtin which doesn't swap. */
 | |
| #  define XXH_vec_mulo __builtin_altivec_vmulouw
 | |
| #  define XXH_vec_mule __builtin_altivec_vmuleuw
 | |
| # else
 | |
| /* gcc needs inline assembly */
 | |
| /* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
 | |
| XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mulo(xxh_u32x4 a, xxh_u32x4 b)
 | |
| {
 | |
|     xxh_u64x2 result;
 | |
|     __asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
 | |
|     return result;
 | |
| }
 | |
| XXH_FORCE_INLINE xxh_u64x2 XXH_vec_mule(xxh_u32x4 a, xxh_u32x4 b)
 | |
| {
 | |
|     xxh_u64x2 result;
 | |
|     __asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
 | |
|     return result;
 | |
| }
 | |
| # endif /* XXH_vec_mulo, XXH_vec_mule */
 | |
| #endif /* XXH_VECTOR == XXH_VSX */
 | |
| 
 | |
| 
 | |
| /* prefetch
 | |
|  * can be disabled, by declaring XXH_NO_PREFETCH build macro */
 | |
| #if defined(XXH_NO_PREFETCH)
 | |
| #  define XXH_PREFETCH(ptr)  (void)(ptr)  /* disabled */
 | |
| #else
 | |
| #  if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86))  /* _mm_prefetch() not defined outside of x86/x64 */
 | |
| #    include <mmintrin.h>   /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
 | |
| #    define XXH_PREFETCH(ptr)  _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
 | |
| #  elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
 | |
| #    define XXH_PREFETCH(ptr)  __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
 | |
| #  else
 | |
| #    define XXH_PREFETCH(ptr) (void)(ptr)  /* disabled */
 | |
| #  endif
 | |
| #endif  /* XXH_NO_PREFETCH */
 | |
| 
 | |
| 
 | |
| /* ==========================================
 | |
|  * XXH3 default settings
 | |
|  * ========================================== */
 | |
| 
 | |
| #define XXH_SECRET_DEFAULT_SIZE 192   /* minimum XXH3_SECRET_SIZE_MIN */
 | |
| 
 | |
| #if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
 | |
| #  error "default keyset is not large enough"
 | |
| #endif
 | |
| 
 | |
| /*! Pseudorandom secret taken directly from FARSH. */
 | |
| XXH_ALIGN(64) static const xxh_u8 XXH3_kSecret[XXH_SECRET_DEFAULT_SIZE] = {
 | |
|     0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
 | |
|     0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
 | |
|     0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
 | |
|     0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
 | |
|     0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
 | |
|     0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
 | |
|     0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
 | |
|     0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
 | |
|     0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
 | |
|     0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
 | |
|     0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
 | |
|     0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
 | |
| };
 | |
| 
 | |
| 
 | |
| #ifdef XXH_OLD_NAMES
 | |
| #  define kSecret XXH3_kSecret
 | |
| #endif
 | |
| 
 | |
| #ifdef XXH_DOXYGEN
 | |
| /*!
 | |
|  * @brief Calculates a 32-bit to 64-bit long multiply.
 | |
|  *
 | |
|  * Implemented as a macro.
 | |
|  *
 | |
|  * Wraps `__emulu` on MSVC x86 because it tends to call `__allmul` when it doesn't
 | |
|  * need to (but it shouldn't need to anyways, it is about 7 instructions to do
 | |
|  * a 64x64 multiply...). Since we know that this will _always_ emit `MULL`, we
 | |
|  * use that instead of the normal method.
 | |
|  *
 | |
|  * If you are compiling for platforms like Thumb-1 and don't have a better option,
 | |
|  * you may also want to write your own long multiply routine here.
 | |
|  *
 | |
|  * @param x, y Numbers to be multiplied
 | |
|  * @return 64-bit product of the low 32 bits of @p x and @p y.
 | |
|  */
 | |
| XXH_FORCE_INLINE xxh_u64
 | |
| XXH_mult32to64(xxh_u64 x, xxh_u64 y)
 | |
| {
 | |
|    return (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF);
 | |
| }
 | |
| #elif defined(_MSC_VER) && defined(_M_IX86)
 | |
| #    define XXH_mult32to64(x, y) __emulu((unsigned)(x), (unsigned)(y))
 | |
| #else
 | |
| /*
 | |
|  * Downcast + upcast is usually better than masking on older compilers like
 | |
|  * GCC 4.2 (especially 32-bit ones), all without affecting newer compilers.
 | |
|  *
 | |
|  * The other method, (x & 0xFFFFFFFF) * (y & 0xFFFFFFFF), will AND both operands
 | |
|  * and perform a full 64x64 multiply -- entirely redundant on 32-bit.
 | |
|  */
 | |
| #    define XXH_mult32to64(x, y) ((xxh_u64)(xxh_u32)(x) * (xxh_u64)(xxh_u32)(y))
 | |
| #endif
 | |
| 
 | |
| /*!
 | |
|  * @brief Calculates a 64->128-bit long multiply.
 | |
|  *
 | |
|  * Uses `__uint128_t` and `_umul128` if available, otherwise uses a scalar
 | |
|  * version.
 | |
|  *
 | |
|  * @param lhs , rhs The 64-bit integers to be multiplied
 | |
|  * @return The 128-bit result represented in an @ref XXH128_hash_t.
 | |
|  */
 | |
| static XXH128_hash_t
 | |
| XXH_mult64to128(xxh_u64 lhs, xxh_u64 rhs)
 | |
| {
 | |
|     /*
 | |
|      * GCC/Clang __uint128_t method.
 | |
|      *
 | |
|      * On most 64-bit targets, GCC and Clang define a __uint128_t type.
 | |
|      * This is usually the best way as it usually uses a native long 64-bit
 | |
|      * multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
 | |
|      *
 | |
|      * Usually.
 | |
|      *
 | |
|      * Despite being a 32-bit platform, Clang (and emscripten) define this type
 | |
|      * despite not having the arithmetic for it. This results in a laggy
 | |
|      * compiler builtin call which calculates a full 128-bit multiply.
 | |
|      * In that case it is best to use the portable one.
 | |
|      * https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
 | |
|      */
 | |
| #if (defined(__GNUC__) || defined(__clang__)) && !defined(__wasm__) \
 | |
|     && defined(__SIZEOF_INT128__) \
 | |
|     || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
 | |
| 
 | |
|     __uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs;
 | |
|     XXH128_hash_t r128;
 | |
|     r128.low64  = (xxh_u64)(product);
 | |
|     r128.high64 = (xxh_u64)(product >> 64);
 | |
|     return r128;
 | |
| 
 | |
|     /*
 | |
|      * MSVC for x64's _umul128 method.
 | |
|      *
 | |
|      * xxh_u64 _umul128(xxh_u64 Multiplier, xxh_u64 Multiplicand, xxh_u64 *HighProduct);
 | |
|      *
 | |
|      * This compiles to single operand MUL on x64.
 | |
|      */
 | |
| #elif (defined(_M_X64) || defined(_M_IA64)) && !defined(_M_ARM64EC)
 | |
| 
 | |
| #ifndef _MSC_VER
 | |
| #   pragma intrinsic(_umul128)
 | |
| #endif
 | |
|     xxh_u64 product_high;
 | |
|     xxh_u64 const product_low = _umul128(lhs, rhs, &product_high);
 | |
|     XXH128_hash_t r128;
 | |
|     r128.low64  = product_low;
 | |
|     r128.high64 = product_high;
 | |
|     return r128;
 | |
| 
 | |
|     /*
 | |
|      * MSVC for ARM64's __umulh method.
 | |
|      *
 | |
|      * This compiles to the same MUL + UMULH as GCC/Clang's __uint128_t method.
 | |
|      */
 | |
| #elif defined(_M_ARM64) || defined(_M_ARM64EC)
 | |
| 
 | |
| #ifndef _MSC_VER
 | |
| #   pragma intrinsic(__umulh)
 | |
| #endif
 | |
|     XXH128_hash_t r128;
 | |
|     r128.low64  = lhs * rhs;
 | |
|     r128.high64 = __umulh(lhs, rhs);
 | |
|     return r128;
 | |
| 
 | |
| #else
 | |
|     /*
 | |
|      * Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
 | |
|      *
 | |
|      * This is a fast and simple grade school multiply, which is shown below
 | |
|      * with base 10 arithmetic instead of base 0x100000000.
 | |
|      *
 | |
|      *           9 3 // D2 lhs = 93
 | |
|      *         x 7 5 // D2 rhs = 75
 | |
|      *     ----------
 | |
|      *           1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
 | |
|      *         4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
 | |
|      *         2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
 | |
|      *     + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
 | |
|      *     ---------
 | |
|      *         2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
 | |
|      *     + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
 | |
|      *     ---------
 | |
|      *       6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
 | |
|      *
 | |
|      * The reasons for adding the products like this are:
 | |
|      *  1. It avoids manual carry tracking. Just like how
 | |
|      *     (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
 | |
|      *     This avoids a lot of complexity.
 | |
|      *
 | |
|      *  2. It hints for, and on Clang, compiles to, the powerful UMAAL
 | |
|      *     instruction available in ARM's Digital Signal Processing extension
 | |
|      *     in 32-bit ARMv6 and later, which is shown below:
 | |
|      *
 | |
|      *         void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
 | |
|      *         {
 | |
|      *             xxh_u64 product = (xxh_u64)*RdLo * (xxh_u64)*RdHi + Rn + Rm;
 | |
|      *             *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
 | |
|      *             *RdHi = (xxh_u32)(product >> 32);
 | |
|      *         }
 | |
|      *
 | |
|      *     This instruction was designed for efficient long multiplication, and
 | |
|      *     allows this to be calculated in only 4 instructions at speeds
 | |
|      *     comparable to some 64-bit ALUs.
 | |
|      *
 | |
|      *  3. It isn't terrible on other platforms. Usually this will be a couple
 | |
|      *     of 32-bit ADD/ADCs.
 | |
|      */
 | |
| 
 | |
|     /* First calculate all of the cross products. */
 | |
|     xxh_u64 const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
 | |
|     xxh_u64 const hi_lo = XXH_mult32to64(lhs >> 32,        rhs & 0xFFFFFFFF);
 | |
|     xxh_u64 const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
 | |
|     xxh_u64 const hi_hi = XXH_mult32to64(lhs >> 32,        rhs >> 32);
 | |
| 
 | |
|     /* Now add the products together. These will never overflow. */
 | |
|     xxh_u64 const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
 | |
|     xxh_u64 const upper = (hi_lo >> 32) + (cross >> 32)        + hi_hi;
 | |
|     xxh_u64 const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
 | |
| 
 | |
|     XXH128_hash_t r128;
 | |
|     r128.low64  = lower;
 | |
|     r128.high64 = upper;
 | |
|     return r128;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*!
 | |
|  * @brief Calculates a 64-bit to 128-bit multiply, then XOR folds it.
 | |
|  *
 | |
|  * The reason for the separate function is to prevent passing too many structs
 | |
|  * around by value. This will hopefully inline the multiply, but we don't force it.
 | |
|  *
 | |
|  * @param lhs , rhs The 64-bit integers to multiply
 | |
|  * @return The low 64 bits of the product XOR'd by the high 64 bits.
 | |
|  * @see XXH_mult64to128()
 | |
|  */
 | |
| static xxh_u64
 | |
| XXH3_mul128_fold64(xxh_u64 lhs, xxh_u64 rhs)
 | |
| {
 | |
|     XXH128_hash_t product = XXH_mult64to128(lhs, rhs);
 | |
|     return product.low64 ^ product.high64;
 | |
| }
 | |
| 
 | |
| /*! Seems to produce slightly better code on GCC for some reason. */
 | |
| XXH_FORCE_INLINE xxh_u64 XXH_xorshift64(xxh_u64 v64, int shift)
 | |
| {
 | |
|     XXH_ASSERT(0 <= shift && shift < 64);
 | |
|     return v64 ^ (v64 >> shift);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is a fast avalanche stage,
 | |
|  * suitable when input bits are already partially mixed
 | |
|  */
 | |
| static XXH64_hash_t XXH3_avalanche(xxh_u64 h64)
 | |
| {
 | |
|     h64 = XXH_xorshift64(h64, 37);
 | |
|     h64 *= 0x165667919E3779F9ULL;
 | |
|     h64 = XXH_xorshift64(h64, 32);
 | |
|     return h64;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is a stronger avalanche,
 | |
|  * inspired by Pelle Evensen's rrmxmx
 | |
|  * preferable when input has not been previously mixed
 | |
|  */
 | |
| static XXH64_hash_t XXH3_rrmxmx(xxh_u64 h64, xxh_u64 len)
 | |
| {
 | |
|     /* this mix is inspired by Pelle Evensen's rrmxmx */
 | |
|     h64 ^= XXH_rotl64(h64, 49) ^ XXH_rotl64(h64, 24);
 | |
|     h64 *= 0x9FB21C651E98DF25ULL;
 | |
|     h64 ^= (h64 >> 35) + len ;
 | |
|     h64 *= 0x9FB21C651E98DF25ULL;
 | |
|     return XXH_xorshift64(h64, 28);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ==========================================
 | |
|  * Short keys
 | |
|  * ==========================================
 | |
|  * One of the shortcomings of XXH32 and XXH64 was that their performance was
 | |
|  * sub-optimal on short lengths. It used an iterative algorithm which strongly
 | |
|  * favored lengths that were a multiple of 4 or 8.
 | |
|  *
 | |
|  * Instead of iterating over individual inputs, we use a set of single shot
 | |
|  * functions which piece together a range of lengths and operate in constant time.
 | |
|  *
 | |
|  * Additionally, the number of multiplies has been significantly reduced. This
 | |
|  * reduces latency, especially when emulating 64-bit multiplies on 32-bit.
 | |
|  *
 | |
|  * Depending on the platform, this may or may not be faster than XXH32, but it
 | |
|  * is almost guaranteed to be faster than XXH64.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * At very short lengths, there isn't enough input to fully hide secrets, or use
 | |
|  * the entire secret.
 | |
|  *
 | |
|  * There is also only a limited amount of mixing we can do before significantly
 | |
|  * impacting performance.
 | |
|  *
 | |
|  * Therefore, we use different sections of the secret and always mix two secret
 | |
|  * samples with an XOR. This should have no effect on performance on the
 | |
|  * seedless or withSeed variants because everything _should_ be constant folded
 | |
|  * by modern compilers.
 | |
|  *
 | |
|  * The XOR mixing hides individual parts of the secret and increases entropy.
 | |
|  *
 | |
|  * This adds an extra layer of strength for custom secrets.
 | |
|  */
 | |
| XXH_FORCE_INLINE XXH64_hash_t
 | |
| XXH3_len_1to3_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
 | |
| {
 | |
|     XXH_ASSERT(input != NULL);
 | |
|     XXH_ASSERT(1 <= len && len <= 3);
 | |
|     XXH_ASSERT(secret != NULL);
 | |
|     /*
 | |
|      * len = 1: combined = { input[0], 0x01, input[0], input[0] }
 | |
|      * len = 2: combined = { input[1], 0x02, input[0], input[1] }
 | |
|      * len = 3: combined = { input[2], 0x03, input[0], input[1] }
 | |
|      */
 | |
|     {   xxh_u8  const c1 = input[0];
 | |
|         xxh_u8  const c2 = input[len >> 1];
 | |
|         xxh_u8  const c3 = input[len - 1];
 | |
|         xxh_u32 const combined = ((xxh_u32)c1 << 16) | ((xxh_u32)c2  << 24)
 | |
|                                | ((xxh_u32)c3 <<  0) | ((xxh_u32)len << 8);
 | |
|         xxh_u64 const bitflip = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
 | |
|         xxh_u64 const keyed = (xxh_u64)combined ^ bitflip;
 | |
|         return XXH64_avalanche(keyed);
 | |
|     }
 | |
| }
 | |
| 
 | |
| XXH_FORCE_INLINE XXH64_hash_t
 | |
| XXH3_len_4to8_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
 | |
| {
 | |
|     XXH_ASSERT(input != NULL);
 | |
|     XXH_ASSERT(secret != NULL);
 | |
|     XXH_ASSERT(4 <= len && len <= 8);
 | |
|     seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
 | |
|     {   xxh_u32 const input1 = XXH_readLE32(input);
 | |
|         xxh_u32 const input2 = XXH_readLE32(input + len - 4);
 | |
|         xxh_u64 const bitflip = (XXH_readLE64(secret+8) ^ XXH_readLE64(secret+16)) - seed;
 | |
|         xxh_u64 const input64 = input2 + (((xxh_u64)input1) << 32);
 | |
|         xxh_u64 const keyed = input64 ^ bitflip;
 | |
|         return XXH3_rrmxmx(keyed, len);
 | |
|     }
 | |
| }
 | |
| 
 | |
| XXH_FORCE_INLINE XXH64_hash_t
 | |
| XXH3_len_9to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
 | |
| {
 | |
|     XXH_ASSERT(input != NULL);
 | |
|     XXH_ASSERT(secret != NULL);
 | |
|     XXH_ASSERT(9 <= len && len <= 16);
 | |
|     {   xxh_u64 const bitflip1 = (XXH_readLE64(secret+24) ^ XXH_readLE64(secret+32)) + seed;
 | |
|         xxh_u64 const bitflip2 = (XXH_readLE64(secret+40) ^ XXH_readLE64(secret+48)) - seed;
 | |
|         xxh_u64 const input_lo = XXH_readLE64(input)           ^ bitflip1;
 | |
|         xxh_u64 const input_hi = XXH_readLE64(input + len - 8) ^ bitflip2;
 | |
|         xxh_u64 const acc = len
 | |
|                           + XXH_swap64(input_lo) + input_hi
 | |
|                           + XXH3_mul128_fold64(input_lo, input_hi);
 | |
|         return XXH3_avalanche(acc);
 | |
|     }
 | |
| }
 | |
| 
 | |
| XXH_FORCE_INLINE XXH64_hash_t
 | |
| XXH3_len_0to16_64b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
 | |
| {
 | |
|     XXH_ASSERT(len <= 16);
 | |
|     {   if (XXH_likely(len >  8)) return XXH3_len_9to16_64b(input, len, secret, seed);
 | |
|         if (XXH_likely(len >= 4)) return XXH3_len_4to8_64b(input, len, secret, seed);
 | |
|         if (len) return XXH3_len_1to3_64b(input, len, secret, seed);
 | |
|         return XXH64_avalanche(seed ^ (XXH_readLE64(secret+56) ^ XXH_readLE64(secret+64)));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * DISCLAIMER: There are known *seed-dependent* multicollisions here due to
 | |
|  * multiplication by zero, affecting hashes of lengths 17 to 240.
 | |
|  *
 | |
|  * However, they are very unlikely.
 | |
|  *
 | |
|  * Keep this in mind when using the unseeded XXH3_64bits() variant: As with all
 | |
|  * unseeded non-cryptographic hashes, it does not attempt to defend itself
 | |
|  * against specially crafted inputs, only random inputs.
 | |
|  *
 | |
|  * Compared to classic UMAC where a 1 in 2^31 chance of 4 consecutive bytes
 | |
|  * cancelling out the secret is taken an arbitrary number of times (addressed
 | |
|  * in XXH3_accumulate_512), this collision is very unlikely with random inputs
 | |
|  * and/or proper seeding:
 | |
|  *
 | |
|  * This only has a 1 in 2^63 chance of 8 consecutive bytes cancelling out, in a
 | |
|  * function that is only called up to 16 times per hash with up to 240 bytes of
 | |
|  * input.
 | |
|  *
 | |
|  * This is not too bad for a non-cryptographic hash function, especially with
 | |
|  * only 64 bit outputs.
 | |
|  *
 | |
|  * The 128-bit variant (which trades some speed for strength) is NOT affected
 | |
|  * by this, although it is always a good idea to use a proper seed if you care
 | |
|  * about strength.
 | |
|  */
 | |
| XXH_FORCE_INLINE xxh_u64 XXH3_mix16B(const xxh_u8* XXH_RESTRICT input,
 | |
|                                      const xxh_u8* XXH_RESTRICT secret, xxh_u64 seed64)
 | |
| {
 | |
| #if defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
 | |
|   && defined(__i386__) && defined(__SSE2__)  /* x86 + SSE2 */ \
 | |
|   && !defined(XXH_ENABLE_AUTOVECTORIZE)      /* Define to disable like XXH32 hack */
 | |
|     /*
 | |
|      * UGLY HACK:
 | |
|      * GCC for x86 tends to autovectorize the 128-bit multiply, resulting in
 | |
|      * slower code.
 | |
|      *
 | |
|      * By forcing seed64 into a register, we disrupt the cost model and
 | |
|      * cause it to scalarize. See `XXH32_round()`
 | |
|      *
 | |
|      * FIXME: Clang's output is still _much_ faster -- On an AMD Ryzen 3600,
 | |
|      * XXH3_64bits @ len=240 runs at 4.6 GB/s with Clang 9, but 3.3 GB/s on
 | |
|      * GCC 9.2, despite both emitting scalar code.
 | |
|      *
 | |
|      * GCC generates much better scalar code than Clang for the rest of XXH3,
 | |
|      * which is why finding a more optimal codepath is an interest.
 | |
|      */
 | |
|     XXH_COMPILER_GUARD(seed64);
 | |
| #endif
 | |
|     {   xxh_u64 const input_lo = XXH_readLE64(input);
 | |
|         xxh_u64 const input_hi = XXH_readLE64(input+8);
 | |
|         return XXH3_mul128_fold64(
 | |
|             input_lo ^ (XXH_readLE64(secret)   + seed64),
 | |
|             input_hi ^ (XXH_readLE64(secret+8) - seed64)
 | |
|         );
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* For mid range keys, XXH3 uses a Mum-hash variant. */
 | |
| XXH_FORCE_INLINE XXH64_hash_t
 | |
| XXH3_len_17to128_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
 | |
|                      const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
 | |
|                      XXH64_hash_t seed)
 | |
| {
 | |
|     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
 | |
|     XXH_ASSERT(16 < len && len <= 128);
 | |
| 
 | |
|     {   xxh_u64 acc = len * XXH_PRIME64_1;
 | |
|         if (len > 32) {
 | |
|             if (len > 64) {
 | |
|                 if (len > 96) {
 | |
|                     acc += XXH3_mix16B(input+48, secret+96, seed);
 | |
|                     acc += XXH3_mix16B(input+len-64, secret+112, seed);
 | |
|                 }
 | |
|                 acc += XXH3_mix16B(input+32, secret+64, seed);
 | |
|                 acc += XXH3_mix16B(input+len-48, secret+80, seed);
 | |
|             }
 | |
|             acc += XXH3_mix16B(input+16, secret+32, seed);
 | |
|             acc += XXH3_mix16B(input+len-32, secret+48, seed);
 | |
|         }
 | |
|         acc += XXH3_mix16B(input+0, secret+0, seed);
 | |
|         acc += XXH3_mix16B(input+len-16, secret+16, seed);
 | |
| 
 | |
|         return XXH3_avalanche(acc);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define XXH3_MIDSIZE_MAX 240
 | |
| 
 | |
| XXH_NO_INLINE XXH64_hash_t
 | |
| XXH3_len_129to240_64b(const xxh_u8* XXH_RESTRICT input, size_t len,
 | |
|                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
 | |
|                       XXH64_hash_t seed)
 | |
| {
 | |
|     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
 | |
|     XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
 | |
| 
 | |
|     #define XXH3_MIDSIZE_STARTOFFSET 3
 | |
|     #define XXH3_MIDSIZE_LASTOFFSET  17
 | |
| 
 | |
|     {   xxh_u64 acc = len * XXH_PRIME64_1;
 | |
|         int const nbRounds = (int)len / 16;
 | |
|         int i;
 | |
|         for (i=0; i<8; i++) {
 | |
|             acc += XXH3_mix16B(input+(16*i), secret+(16*i), seed);
 | |
|         }
 | |
|         acc = XXH3_avalanche(acc);
 | |
|         XXH_ASSERT(nbRounds >= 8);
 | |
| #if defined(__clang__)                                /* Clang */ \
 | |
|     && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */ \
 | |
|     && !defined(XXH_ENABLE_AUTOVECTORIZE)             /* Define to disable */
 | |
|         /*
 | |
|          * UGLY HACK:
 | |
|          * Clang for ARMv7-A tries to vectorize this loop, similar to GCC x86.
 | |
|          * In everywhere else, it uses scalar code.
 | |
|          *
 | |
|          * For 64->128-bit multiplies, even if the NEON was 100% optimal, it
 | |
|          * would still be slower than UMAAL (see XXH_mult64to128).
 | |
|          *
 | |
|          * Unfortunately, Clang doesn't handle the long multiplies properly and
 | |
|          * converts them to the nonexistent "vmulq_u64" intrinsic, which is then
 | |
|          * scalarized into an ugly mess of VMOV.32 instructions.
 | |
|          *
 | |
|          * This mess is difficult to avoid without turning autovectorization
 | |
|          * off completely, but they are usually relatively minor and/or not
 | |
|          * worth it to fix.
 | |
|          *
 | |
|          * This loop is the easiest to fix, as unlike XXH32, this pragma
 | |
|          * _actually works_ because it is a loop vectorization instead of an
 | |
|          * SLP vectorization.
 | |
|          */
 | |
|         #pragma clang loop vectorize(disable)
 | |
| #endif
 | |
|         for (i=8 ; i < nbRounds; i++) {
 | |
|             acc += XXH3_mix16B(input+(16*i), secret+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
 | |
|         }
 | |
|         /* last bytes */
 | |
|         acc += XXH3_mix16B(input + len - 16, secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
 | |
|         return XXH3_avalanche(acc);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* =======     Long Keys     ======= */
 | |
| 
 | |
| #define XXH_STRIPE_LEN 64
 | |
| #define XXH_SECRET_CONSUME_RATE 8   /* nb of secret bytes consumed at each accumulation */
 | |
| #define XXH_ACC_NB (XXH_STRIPE_LEN / sizeof(xxh_u64))
 | |
| 
 | |
| #ifdef XXH_OLD_NAMES
 | |
| #  define STRIPE_LEN XXH_STRIPE_LEN
 | |
| #  define ACC_NB XXH_ACC_NB
 | |
| #endif
 | |
| 
 | |
| XXH_FORCE_INLINE void XXH_writeLE64(void* dst, xxh_u64 v64)
 | |
| {
 | |
|     if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
 | |
|     XXH_memcpy(dst, &v64, sizeof(v64));
 | |
| }
 | |
| 
 | |
| /* Several intrinsic functions below are supposed to accept __int64 as argument,
 | |
|  * as documented in https://software.intel.com/sites/landingpage/IntrinsicsGuide/ .
 | |
|  * However, several environments do not define __int64 type,
 | |
|  * requiring a workaround.
 | |
|  */
 | |
| #if !defined (__VMS) \
 | |
|   && (defined (__cplusplus) \
 | |
|   || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
 | |
|     typedef int64_t xxh_i64;
 | |
| #else
 | |
|     /* the following type must have a width of 64-bit */
 | |
|     typedef long long xxh_i64;
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * XXH3_accumulate_512 is the tightest loop for long inputs, and it is the most optimized.
 | |
|  *
 | |
|  * It is a hardened version of UMAC, based off of FARSH's implementation.
 | |
|  *
 | |
|  * This was chosen because it adapts quite well to 32-bit, 64-bit, and SIMD
 | |
|  * implementations, and it is ridiculously fast.
 | |
|  *
 | |
|  * We harden it by mixing the original input to the accumulators as well as the product.
 | |
|  *
 | |
|  * This means that in the (relatively likely) case of a multiply by zero, the
 | |
|  * original input is preserved.
 | |
|  *
 | |
|  * On 128-bit inputs, we swap 64-bit pairs when we add the input to improve
 | |
|  * cross-pollination, as otherwise the upper and lower halves would be
 | |
|  * essentially independent.
 | |
|  *
 | |
|  * This doesn't matter on 64-bit hashes since they all get merged together in
 | |
|  * the end, so we skip the extra step.
 | |
|  *
 | |
|  * Both XXH3_64bits and XXH3_128bits use this subroutine.
 | |
|  */
 | |
| 
 | |
| #if (XXH_VECTOR == XXH_AVX512) \
 | |
|      || (defined(XXH_DISPATCH_AVX512) && XXH_DISPATCH_AVX512 != 0)
 | |
| 
 | |
| #ifndef XXH_TARGET_AVX512
 | |
| # define XXH_TARGET_AVX512  /* disable attribute target */
 | |
| #endif
 | |
| 
 | |
| XXH_FORCE_INLINE XXH_TARGET_AVX512 void
 | |
| XXH3_accumulate_512_avx512(void* XXH_RESTRICT acc,
 | |
|                      const void* XXH_RESTRICT input,
 | |
|                      const void* XXH_RESTRICT secret)
 | |
| {
 | |
|     __m512i* const xacc = (__m512i *) acc;
 | |
|     XXH_ASSERT((((size_t)acc) & 63) == 0);
 | |
|     XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
 | |
| 
 | |
|     {
 | |
|         /* data_vec    = input[0]; */
 | |
|         __m512i const data_vec    = _mm512_loadu_si512   (input);
 | |
|         /* key_vec     = secret[0]; */
 | |
|         __m512i const key_vec     = _mm512_loadu_si512   (secret);
 | |
|         /* data_key    = data_vec ^ key_vec; */
 | |
|         __m512i const data_key    = _mm512_xor_si512     (data_vec, key_vec);
 | |
|         /* data_key_lo = data_key >> 32; */
 | |
|         __m512i const data_key_lo = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1));
 | |
|         /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
 | |
|         __m512i const product     = _mm512_mul_epu32     (data_key, data_key_lo);
 | |
|         /* xacc[0] += swap(data_vec); */
 | |
|         __m512i const data_swap = _mm512_shuffle_epi32(data_vec, (_MM_PERM_ENUM)_MM_SHUFFLE(1, 0, 3, 2));
 | |
|         __m512i const sum       = _mm512_add_epi64(*xacc, data_swap);
 | |
|         /* xacc[0] += product; */
 | |
|         *xacc = _mm512_add_epi64(product, sum);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * XXH3_scrambleAcc: Scrambles the accumulators to improve mixing.
 | |
|  *
 | |
|  * Multiplication isn't perfect, as explained by Google in HighwayHash:
 | |
|  *
 | |
|  *  // Multiplication mixes/scrambles bytes 0-7 of the 64-bit result to
 | |
|  *  // varying degrees. In descending order of goodness, bytes
 | |
|  *  // 3 4 2 5 1 6 0 7 have quality 228 224 164 160 100 96 36 32.
 | |
|  *  // As expected, the upper and lower bytes are much worse.
 | |
|  *
 | |
|  * Source: https://github.com/google/highwayhash/blob/0aaf66b/highwayhash/hh_avx2.h#L291
 | |
|  *
 | |
|  * Since our algorithm uses a pseudorandom secret to add some variance into the
 | |
|  * mix, we don't need to (or want to) mix as often or as much as HighwayHash does.
 | |
|  *
 | |
|  * This isn't as tight as XXH3_accumulate, but still written in SIMD to avoid
 | |
|  * extraction.
 | |
|  *
 | |
|  * Both XXH3_64bits and XXH3_128bits use this subroutine.
 | |
|  */
 | |
| 
 | |
| XXH_FORCE_INLINE XXH_TARGET_AVX512 void
 | |
| XXH3_scrambleAcc_avx512(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
 | |
| {
 | |
|     XXH_ASSERT((((size_t)acc) & 63) == 0);
 | |
|     XXH_STATIC_ASSERT(XXH_STRIPE_LEN == sizeof(__m512i));
 | |
|     {   __m512i* const xacc = (__m512i*) acc;
 | |
|         const __m512i prime32 = _mm512_set1_epi32((int)XXH_PRIME32_1);
 | |
| 
 | |
|         /* xacc[0] ^= (xacc[0] >> 47) */
 | |
|         __m512i const acc_vec     = *xacc;
 | |
|         __m512i const shifted     = _mm512_srli_epi64    (acc_vec, 47);
 | |
|         __m512i const data_vec    = _mm512_xor_si512     (acc_vec, shifted);
 | |
|         /* xacc[0] ^= secret; */
 | |
|         __m512i const key_vec     = _mm512_loadu_si512   (secret);
 | |
|         __m512i const data_key    = _mm512_xor_si512     (data_vec, key_vec);
 | |
| 
 | |
|         /* xacc[0] *= XXH_PRIME32_1; */
 | |
|         __m512i const data_key_hi = _mm512_shuffle_epi32 (data_key, (_MM_PERM_ENUM)_MM_SHUFFLE(0, 3, 0, 1));
 | |
|         __m512i const prod_lo     = _mm512_mul_epu32     (data_key, prime32);
 | |
|         __m512i const prod_hi     = _mm512_mul_epu32     (data_key_hi, prime32);
 | |
|         *xacc = _mm512_add_epi64(prod_lo, _mm512_slli_epi64(prod_hi, 32));
 | |
|     }
 | |
| }
 | |
| 
 | |
| XXH_FORCE_INLINE XXH_TARGET_AVX512 void
 | |
| XXH3_initCustomSecret_avx512(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
 | |
| {
 | |
|     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 63) == 0);
 | |
|     XXH_STATIC_ASSERT(XXH_SEC_ALIGN == 64);
 | |
|     XXH_ASSERT(((size_t)customSecret & 63) == 0);
 | |
|     (void)(&XXH_writeLE64);
 | |
|     {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m512i);
 | |
|         __m512i const seed = _mm512_mask_set1_epi64(_mm512_set1_epi64((xxh_i64)seed64), 0xAA, (xxh_i64)(0U - seed64));
 | |
| 
 | |
|         const __m512i* const src  = (const __m512i*) ((const void*) XXH3_kSecret);
 | |
|               __m512i* const dest = (      __m512i*) customSecret;
 | |
|         int i;
 | |
|         XXH_ASSERT(((size_t)src & 63) == 0); /* control alignment */
 | |
|         XXH_ASSERT(((size_t)dest & 63) == 0);
 | |
|         for (i=0; i < nbRounds; ++i) {
 | |
|             /* GCC has a bug, _mm512_stream_load_si512 accepts 'void*', not 'void const*',
 | |
|              * this will warn "discards 'const' qualifier". */
 | |
|             union {
 | |
|                 const __m512i* cp;
 | |
|                 void* p;
 | |
|             } remote_const_void;
 | |
|             remote_const_void.cp = src + i;
 | |
|             dest[i] = _mm512_add_epi64(_mm512_stream_load_si512(remote_const_void.p), seed);
 | |
|     }   }
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if (XXH_VECTOR == XXH_AVX2) \
 | |
|     || (defined(XXH_DISPATCH_AVX2) && XXH_DISPATCH_AVX2 != 0)
 | |
| 
 | |
| #ifndef XXH_TARGET_AVX2
 | |
| # define XXH_TARGET_AVX2  /* disable attribute target */
 | |
| #endif
 | |
| 
 | |
| XXH_FORCE_INLINE XXH_TARGET_AVX2 void
 | |
| XXH3_accumulate_512_avx2( void* XXH_RESTRICT acc,
 | |
|                     const void* XXH_RESTRICT input,
 | |
|                     const void* XXH_RESTRICT secret)
 | |
| {
 | |
|     XXH_ASSERT((((size_t)acc) & 31) == 0);
 | |
|     {   __m256i* const xacc    =       (__m256i *) acc;
 | |
|         /* Unaligned. This is mainly for pointer arithmetic, and because
 | |
|          * _mm256_loadu_si256 requires  a const __m256i * pointer for some reason. */
 | |
|         const         __m256i* const xinput  = (const __m256i *) input;
 | |
|         /* Unaligned. This is mainly for pointer arithmetic, and because
 | |
|          * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
 | |
|         const         __m256i* const xsecret = (const __m256i *) secret;
 | |
| 
 | |
|         size_t i;
 | |
|         for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
 | |
|             /* data_vec    = xinput[i]; */
 | |
|             __m256i const data_vec    = _mm256_loadu_si256    (xinput+i);
 | |
|             /* key_vec     = xsecret[i]; */
 | |
|             __m256i const key_vec     = _mm256_loadu_si256   (xsecret+i);
 | |
|             /* data_key    = data_vec ^ key_vec; */
 | |
|             __m256i const data_key    = _mm256_xor_si256     (data_vec, key_vec);
 | |
|             /* data_key_lo = data_key >> 32; */
 | |
|             __m256i const data_key_lo = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
 | |
|             /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
 | |
|             __m256i const product     = _mm256_mul_epu32     (data_key, data_key_lo);
 | |
|             /* xacc[i] += swap(data_vec); */
 | |
|             __m256i const data_swap = _mm256_shuffle_epi32(data_vec, _MM_SHUFFLE(1, 0, 3, 2));
 | |
|             __m256i const sum       = _mm256_add_epi64(xacc[i], data_swap);
 | |
|             /* xacc[i] += product; */
 | |
|             xacc[i] = _mm256_add_epi64(product, sum);
 | |
|     }   }
 | |
| }
 | |
| 
 | |
| XXH_FORCE_INLINE XXH_TARGET_AVX2 void
 | |
| XXH3_scrambleAcc_avx2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
 | |
| {
 | |
|     XXH_ASSERT((((size_t)acc) & 31) == 0);
 | |
|     {   __m256i* const xacc = (__m256i*) acc;
 | |
|         /* Unaligned. This is mainly for pointer arithmetic, and because
 | |
|          * _mm256_loadu_si256 requires a const __m256i * pointer for some reason. */
 | |
|         const         __m256i* const xsecret = (const __m256i *) secret;
 | |
|         const __m256i prime32 = _mm256_set1_epi32((int)XXH_PRIME32_1);
 | |
| 
 | |
|         size_t i;
 | |
|         for (i=0; i < XXH_STRIPE_LEN/sizeof(__m256i); i++) {
 | |
|             /* xacc[i] ^= (xacc[i] >> 47) */
 | |
|             __m256i const acc_vec     = xacc[i];
 | |
|             __m256i const shifted     = _mm256_srli_epi64    (acc_vec, 47);
 | |
|             __m256i const data_vec    = _mm256_xor_si256     (acc_vec, shifted);
 | |
|             /* xacc[i] ^= xsecret; */
 | |
|             __m256i const key_vec     = _mm256_loadu_si256   (xsecret+i);
 | |
|             __m256i const data_key    = _mm256_xor_si256     (data_vec, key_vec);
 | |
| 
 | |
|             /* xacc[i] *= XXH_PRIME32_1; */
 | |
|             __m256i const data_key_hi = _mm256_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
 | |
|             __m256i const prod_lo     = _mm256_mul_epu32     (data_key, prime32);
 | |
|             __m256i const prod_hi     = _mm256_mul_epu32     (data_key_hi, prime32);
 | |
|             xacc[i] = _mm256_add_epi64(prod_lo, _mm256_slli_epi64(prod_hi, 32));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| XXH_FORCE_INLINE XXH_TARGET_AVX2 void XXH3_initCustomSecret_avx2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
 | |
| {
 | |
|     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 31) == 0);
 | |
|     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE / sizeof(__m256i)) == 6);
 | |
|     XXH_STATIC_ASSERT(XXH_SEC_ALIGN <= 64);
 | |
|     (void)(&XXH_writeLE64);
 | |
|     XXH_PREFETCH(customSecret);
 | |
|     {   __m256i const seed = _mm256_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64, (xxh_i64)(0U - seed64), (xxh_i64)seed64);
 | |
| 
 | |
|         const __m256i* const src  = (const __m256i*) ((const void*) XXH3_kSecret);
 | |
|               __m256i*       dest = (      __m256i*) customSecret;
 | |
| 
 | |
| #       if defined(__GNUC__) || defined(__clang__)
 | |
|         /*
 | |
|          * On GCC & Clang, marking 'dest' as modified will cause the compiler:
 | |
|          *   - do not extract the secret from sse registers in the internal loop
 | |
|          *   - use less common registers, and avoid pushing these reg into stack
 | |
|          */
 | |
|         XXH_COMPILER_GUARD(dest);
 | |
| #       endif
 | |
|         XXH_ASSERT(((size_t)src & 31) == 0); /* control alignment */
 | |
|         XXH_ASSERT(((size_t)dest & 31) == 0);
 | |
| 
 | |
|         /* GCC -O2 need unroll loop manually */
 | |
|         dest[0] = _mm256_add_epi64(_mm256_stream_load_si256(src+0), seed);
 | |
|         dest[1] = _mm256_add_epi64(_mm256_stream_load_si256(src+1), seed);
 | |
|         dest[2] = _mm256_add_epi64(_mm256_stream_load_si256(src+2), seed);
 | |
|         dest[3] = _mm256_add_epi64(_mm256_stream_load_si256(src+3), seed);
 | |
|         dest[4] = _mm256_add_epi64(_mm256_stream_load_si256(src+4), seed);
 | |
|         dest[5] = _mm256_add_epi64(_mm256_stream_load_si256(src+5), seed);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* x86dispatch always generates SSE2 */
 | |
| #if (XXH_VECTOR == XXH_SSE2) || defined(XXH_X86DISPATCH)
 | |
| 
 | |
| #ifndef XXH_TARGET_SSE2
 | |
| # define XXH_TARGET_SSE2  /* disable attribute target */
 | |
| #endif
 | |
| 
 | |
| XXH_FORCE_INLINE XXH_TARGET_SSE2 void
 | |
| XXH3_accumulate_512_sse2( void* XXH_RESTRICT acc,
 | |
|                     const void* XXH_RESTRICT input,
 | |
|                     const void* XXH_RESTRICT secret)
 | |
| {
 | |
|     /* SSE2 is just a half-scale version of the AVX2 version. */
 | |
|     XXH_ASSERT((((size_t)acc) & 15) == 0);
 | |
|     {   __m128i* const xacc    =       (__m128i *) acc;
 | |
|         /* Unaligned. This is mainly for pointer arithmetic, and because
 | |
|          * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
 | |
|         const         __m128i* const xinput  = (const __m128i *) input;
 | |
|         /* Unaligned. This is mainly for pointer arithmetic, and because
 | |
|          * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
 | |
|         const         __m128i* const xsecret = (const __m128i *) secret;
 | |
| 
 | |
|         size_t i;
 | |
|         for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
 | |
|             /* data_vec    = xinput[i]; */
 | |
|             __m128i const data_vec    = _mm_loadu_si128   (xinput+i);
 | |
|             /* key_vec     = xsecret[i]; */
 | |
|             __m128i const key_vec     = _mm_loadu_si128   (xsecret+i);
 | |
|             /* data_key    = data_vec ^ key_vec; */
 | |
|             __m128i const data_key    = _mm_xor_si128     (data_vec, key_vec);
 | |
|             /* data_key_lo = data_key >> 32; */
 | |
|             __m128i const data_key_lo = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
 | |
|             /* product     = (data_key & 0xffffffff) * (data_key_lo & 0xffffffff); */
 | |
|             __m128i const product     = _mm_mul_epu32     (data_key, data_key_lo);
 | |
|             /* xacc[i] += swap(data_vec); */
 | |
|             __m128i const data_swap = _mm_shuffle_epi32(data_vec, _MM_SHUFFLE(1,0,3,2));
 | |
|             __m128i const sum       = _mm_add_epi64(xacc[i], data_swap);
 | |
|             /* xacc[i] += product; */
 | |
|             xacc[i] = _mm_add_epi64(product, sum);
 | |
|     }   }
 | |
| }
 | |
| 
 | |
| XXH_FORCE_INLINE XXH_TARGET_SSE2 void
 | |
| XXH3_scrambleAcc_sse2(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
 | |
| {
 | |
|     XXH_ASSERT((((size_t)acc) & 15) == 0);
 | |
|     {   __m128i* const xacc = (__m128i*) acc;
 | |
|         /* Unaligned. This is mainly for pointer arithmetic, and because
 | |
|          * _mm_loadu_si128 requires a const __m128i * pointer for some reason. */
 | |
|         const         __m128i* const xsecret = (const __m128i *) secret;
 | |
|         const __m128i prime32 = _mm_set1_epi32((int)XXH_PRIME32_1);
 | |
| 
 | |
|         size_t i;
 | |
|         for (i=0; i < XXH_STRIPE_LEN/sizeof(__m128i); i++) {
 | |
|             /* xacc[i] ^= (xacc[i] >> 47) */
 | |
|             __m128i const acc_vec     = xacc[i];
 | |
|             __m128i const shifted     = _mm_srli_epi64    (acc_vec, 47);
 | |
|             __m128i const data_vec    = _mm_xor_si128     (acc_vec, shifted);
 | |
|             /* xacc[i] ^= xsecret[i]; */
 | |
|             __m128i const key_vec     = _mm_loadu_si128   (xsecret+i);
 | |
|             __m128i const data_key    = _mm_xor_si128     (data_vec, key_vec);
 | |
| 
 | |
|             /* xacc[i] *= XXH_PRIME32_1; */
 | |
|             __m128i const data_key_hi = _mm_shuffle_epi32 (data_key, _MM_SHUFFLE(0, 3, 0, 1));
 | |
|             __m128i const prod_lo     = _mm_mul_epu32     (data_key, prime32);
 | |
|             __m128i const prod_hi     = _mm_mul_epu32     (data_key_hi, prime32);
 | |
|             xacc[i] = _mm_add_epi64(prod_lo, _mm_slli_epi64(prod_hi, 32));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| XXH_FORCE_INLINE XXH_TARGET_SSE2 void XXH3_initCustomSecret_sse2(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
 | |
| {
 | |
|     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
 | |
|     (void)(&XXH_writeLE64);
 | |
|     {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / sizeof(__m128i);
 | |
| 
 | |
| #       if defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER < 1900
 | |
|         /* MSVC 32bit mode does not support _mm_set_epi64x before 2015 */
 | |
|         XXH_ALIGN(16) const xxh_i64 seed64x2[2] = { (xxh_i64)seed64, (xxh_i64)(0U - seed64) };
 | |
|         __m128i const seed = _mm_load_si128((__m128i const*)seed64x2);
 | |
| #       else
 | |
|         __m128i const seed = _mm_set_epi64x((xxh_i64)(0U - seed64), (xxh_i64)seed64);
 | |
| #       endif
 | |
|         int i;
 | |
| 
 | |
|         const void* const src16 = XXH3_kSecret;
 | |
|         __m128i* dst16 = (__m128i*) customSecret;
 | |
| #       if defined(__GNUC__) || defined(__clang__)
 | |
|         /*
 | |
|          * On GCC & Clang, marking 'dest' as modified will cause the compiler:
 | |
|          *   - do not extract the secret from sse registers in the internal loop
 | |
|          *   - use less common registers, and avoid pushing these reg into stack
 | |
|          */
 | |
|         XXH_COMPILER_GUARD(dst16);
 | |
| #       endif
 | |
|         XXH_ASSERT(((size_t)src16 & 15) == 0); /* control alignment */
 | |
|         XXH_ASSERT(((size_t)dst16 & 15) == 0);
 | |
| 
 | |
|         for (i=0; i < nbRounds; ++i) {
 | |
|             dst16[i] = _mm_add_epi64(_mm_load_si128((const __m128i *)src16+i), seed);
 | |
|     }   }
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if (XXH_VECTOR == XXH_NEON)
 | |
| 
 | |
| /* forward declarations for the scalar routines */
 | |
| XXH_FORCE_INLINE void
 | |
| XXH3_scalarRound(void* XXH_RESTRICT acc, void const* XXH_RESTRICT input,
 | |
|                  void const* XXH_RESTRICT secret, size_t lane);
 | |
| 
 | |
| XXH_FORCE_INLINE void
 | |
| XXH3_scalarScrambleRound(void* XXH_RESTRICT acc,
 | |
|                          void const* XXH_RESTRICT secret, size_t lane);
 | |
| 
 | |
| /*!
 | |
|  * @internal
 | |
|  * @brief The bulk processing loop for NEON.
 | |
|  *
 | |
|  * The NEON code path is actually partially scalar when running on AArch64. This
 | |
|  * is to optimize the pipelining and can have up to 15% speedup depending on the
 | |
|  * CPU, and it also mitigates some GCC codegen issues.
 | |
|  *
 | |
|  * @see XXH3_NEON_LANES for configuring this and details about this optimization.
 | |
|  */
 | |
| XXH_FORCE_INLINE void
 | |
| XXH3_accumulate_512_neon( void* XXH_RESTRICT acc,
 | |
|                     const void* XXH_RESTRICT input,
 | |
|                     const void* XXH_RESTRICT secret)
 | |
| {
 | |
|     XXH_ASSERT((((size_t)acc) & 15) == 0);
 | |
|     XXH_STATIC_ASSERT(XXH3_NEON_LANES > 0 && XXH3_NEON_LANES <= XXH_ACC_NB && XXH3_NEON_LANES % 2 == 0);
 | |
|     {
 | |
|         uint64x2_t* const xacc = (uint64x2_t *) acc;
 | |
|         /* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
 | |
|         uint8_t const* const xinput = (const uint8_t *) input;
 | |
|         uint8_t const* const xsecret  = (const uint8_t *) secret;
 | |
| 
 | |
|         size_t i;
 | |
|         /* NEON for the first few lanes (these loops are normally interleaved) */
 | |
|         for (i=0; i < XXH3_NEON_LANES / 2; i++) {
 | |
|             /* data_vec = xinput[i]; */
 | |
|             uint8x16_t data_vec    = vld1q_u8(xinput  + (i * 16));
 | |
|             /* key_vec  = xsecret[i];  */
 | |
|             uint8x16_t key_vec     = vld1q_u8(xsecret + (i * 16));
 | |
|             uint64x2_t data_key;
 | |
|             uint32x2_t data_key_lo, data_key_hi;
 | |
|             /* xacc[i] += swap(data_vec); */
 | |
|             uint64x2_t const data64  = vreinterpretq_u64_u8(data_vec);
 | |
|             uint64x2_t const swapped = vextq_u64(data64, data64, 1);
 | |
|             xacc[i] = vaddq_u64 (xacc[i], swapped);
 | |
|             /* data_key = data_vec ^ key_vec; */
 | |
|             data_key = vreinterpretq_u64_u8(veorq_u8(data_vec, key_vec));
 | |
|             /* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF);
 | |
|              * data_key_hi = (uint32x2_t) (data_key >> 32);
 | |
|              * data_key = UNDEFINED; */
 | |
|             XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
 | |
|             /* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */
 | |
|             xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi);
 | |
| 
 | |
|         }
 | |
|         /* Scalar for the remainder. This may be a zero iteration loop. */
 | |
|         for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) {
 | |
|             XXH3_scalarRound(acc, input, secret, i);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| XXH_FORCE_INLINE void
 | |
| XXH3_scrambleAcc_neon(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
 | |
| {
 | |
|     XXH_ASSERT((((size_t)acc) & 15) == 0);
 | |
| 
 | |
|     {   uint64x2_t* xacc       = (uint64x2_t*) acc;
 | |
|         uint8_t const* xsecret = (uint8_t const*) secret;
 | |
|         uint32x2_t prime       = vdup_n_u32 (XXH_PRIME32_1);
 | |
| 
 | |
|         size_t i;
 | |
|         /* NEON for the first few lanes (these loops are normally interleaved) */
 | |
|         for (i=0; i < XXH3_NEON_LANES / 2; i++) {
 | |
|             /* xacc[i] ^= (xacc[i] >> 47); */
 | |
|             uint64x2_t acc_vec  = xacc[i];
 | |
|             uint64x2_t shifted  = vshrq_n_u64 (acc_vec, 47);
 | |
|             uint64x2_t data_vec = veorq_u64   (acc_vec, shifted);
 | |
| 
 | |
|             /* xacc[i] ^= xsecret[i]; */
 | |
|             uint8x16_t key_vec  = vld1q_u8    (xsecret + (i * 16));
 | |
|             uint64x2_t data_key = veorq_u64   (data_vec, vreinterpretq_u64_u8(key_vec));
 | |
| 
 | |
|             /* xacc[i] *= XXH_PRIME32_1 */
 | |
|             uint32x2_t data_key_lo, data_key_hi;
 | |
|             /* data_key_lo = (uint32x2_t) (xacc[i] & 0xFFFFFFFF);
 | |
|              * data_key_hi = (uint32x2_t) (xacc[i] >> 32);
 | |
|              * xacc[i] = UNDEFINED; */
 | |
|             XXH_SPLIT_IN_PLACE(data_key, data_key_lo, data_key_hi);
 | |
|             {   /*
 | |
|                  * prod_hi = (data_key >> 32) * XXH_PRIME32_1;
 | |
|                  *
 | |
|                  * Avoid vmul_u32 + vshll_n_u32 since Clang 6 and 7 will
 | |
|                  * incorrectly "optimize" this:
 | |
|                  *   tmp     = vmul_u32(vmovn_u64(a), vmovn_u64(b));
 | |
|                  *   shifted = vshll_n_u32(tmp, 32);
 | |
|                  * to this:
 | |
|                  *   tmp     = "vmulq_u64"(a, b); // no such thing!
 | |
|                  *   shifted = vshlq_n_u64(tmp, 32);
 | |
|                  *
 | |
|                  * However, unlike SSE, Clang lacks a 64-bit multiply routine
 | |
|                  * for NEON, and it scalarizes two 64-bit multiplies instead.
 | |
|                  *
 | |
|                  * vmull_u32 has the same timing as vmul_u32, and it avoids
 | |
|                  * this bug completely.
 | |
|                  * See https://bugs.llvm.org/show_bug.cgi?id=39967
 | |
|                  */
 | |
|                 uint64x2_t prod_hi = vmull_u32 (data_key_hi, prime);
 | |
|                 /* xacc[i] = prod_hi << 32; */
 | |
|                 xacc[i] = vshlq_n_u64(prod_hi, 32);
 | |
|                 /* xacc[i] += (prod_hi & 0xFFFFFFFF) * XXH_PRIME32_1; */
 | |
|                 xacc[i] = vmlal_u32(xacc[i], data_key_lo, prime);
 | |
|             }
 | |
|         }
 | |
|         /* Scalar for the remainder. This may be a zero iteration loop. */
 | |
|         for (i = XXH3_NEON_LANES; i < XXH_ACC_NB; i++) {
 | |
|             XXH3_scalarScrambleRound(acc, secret, i);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if (XXH_VECTOR == XXH_VSX)
 | |
| 
 | |
| XXH_FORCE_INLINE void
 | |
| XXH3_accumulate_512_vsx(  void* XXH_RESTRICT acc,
 | |
|                     const void* XXH_RESTRICT input,
 | |
|                     const void* XXH_RESTRICT secret)
 | |
| {
 | |
|     /* presumed aligned */
 | |
|     unsigned int* const xacc = (unsigned int*) acc;
 | |
|     xxh_u64x2 const* const xinput   = (xxh_u64x2 const*) input;   /* no alignment restriction */
 | |
|     xxh_u64x2 const* const xsecret  = (xxh_u64x2 const*) secret;    /* no alignment restriction */
 | |
|     xxh_u64x2 const v32 = { 32, 32 };
 | |
|     size_t i;
 | |
|     for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
 | |
|         /* data_vec = xinput[i]; */
 | |
|         xxh_u64x2 const data_vec = XXH_vec_loadu(xinput + i);
 | |
|         /* key_vec = xsecret[i]; */
 | |
|         xxh_u64x2 const key_vec  = XXH_vec_loadu(xsecret + i);
 | |
|         xxh_u64x2 const data_key = data_vec ^ key_vec;
 | |
|         /* shuffled = (data_key << 32) | (data_key >> 32); */
 | |
|         xxh_u32x4 const shuffled = (xxh_u32x4)vec_rl(data_key, v32);
 | |
|         /* product = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)shuffled & 0xFFFFFFFF); */
 | |
|         xxh_u64x2 const product  = XXH_vec_mulo((xxh_u32x4)data_key, shuffled);
 | |
|         /* acc_vec = xacc[i]; */
 | |
|         xxh_u64x2 acc_vec        = (xxh_u64x2)vec_xl(0, xacc + 4 * i);
 | |
|         acc_vec += product;
 | |
| 
 | |
|         /* swap high and low halves */
 | |
| #ifdef __s390x__
 | |
|         acc_vec += vec_permi(data_vec, data_vec, 2);
 | |
| #else
 | |
|         acc_vec += vec_xxpermdi(data_vec, data_vec, 2);
 | |
| #endif
 | |
|         /* xacc[i] = acc_vec; */
 | |
|         vec_xst((xxh_u32x4)acc_vec, 0, xacc + 4 * i);
 | |
|     }
 | |
| }
 | |
| 
 | |
| XXH_FORCE_INLINE void
 | |
| XXH3_scrambleAcc_vsx(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
 | |
| {
 | |
|     XXH_ASSERT((((size_t)acc) & 15) == 0);
 | |
| 
 | |
|     {         xxh_u64x2* const xacc    =       (xxh_u64x2*) acc;
 | |
|         const xxh_u64x2* const xsecret = (const xxh_u64x2*) secret;
 | |
|         /* constants */
 | |
|         xxh_u64x2 const v32  = { 32, 32 };
 | |
|         xxh_u64x2 const v47 = { 47, 47 };
 | |
|         xxh_u32x4 const prime = { XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1, XXH_PRIME32_1 };
 | |
|         size_t i;
 | |
|         for (i = 0; i < XXH_STRIPE_LEN / sizeof(xxh_u64x2); i++) {
 | |
|             /* xacc[i] ^= (xacc[i] >> 47); */
 | |
|             xxh_u64x2 const acc_vec  = xacc[i];
 | |
|             xxh_u64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
 | |
| 
 | |
|             /* xacc[i] ^= xsecret[i]; */
 | |
|             xxh_u64x2 const key_vec  = XXH_vec_loadu(xsecret + i);
 | |
|             xxh_u64x2 const data_key = data_vec ^ key_vec;
 | |
| 
 | |
|             /* xacc[i] *= XXH_PRIME32_1 */
 | |
|             /* prod_lo = ((xxh_u64x2)data_key & 0xFFFFFFFF) * ((xxh_u64x2)prime & 0xFFFFFFFF);  */
 | |
|             xxh_u64x2 const prod_even  = XXH_vec_mule((xxh_u32x4)data_key, prime);
 | |
|             /* prod_hi = ((xxh_u64x2)data_key >> 32) * ((xxh_u64x2)prime >> 32);  */
 | |
|             xxh_u64x2 const prod_odd  = XXH_vec_mulo((xxh_u32x4)data_key, prime);
 | |
|             xacc[i] = prod_odd + (prod_even << v32);
 | |
|     }   }
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* scalar variants - universal */
 | |
| 
 | |
| /*!
 | |
|  * @internal
 | |
|  * @brief Scalar round for @ref XXH3_accumulate_512_scalar().
 | |
|  *
 | |
|  * This is extracted to its own function because the NEON path uses a combination
 | |
|  * of NEON and scalar.
 | |
|  */
 | |
| XXH_FORCE_INLINE void
 | |
| XXH3_scalarRound(void* XXH_RESTRICT acc,
 | |
|                  void const* XXH_RESTRICT input,
 | |
|                  void const* XXH_RESTRICT secret,
 | |
|                  size_t lane)
 | |
| {
 | |
|     xxh_u64* xacc = (xxh_u64*) acc;
 | |
|     xxh_u8 const* xinput  = (xxh_u8 const*) input;
 | |
|     xxh_u8 const* xsecret = (xxh_u8 const*) secret;
 | |
|     XXH_ASSERT(lane < XXH_ACC_NB);
 | |
|     XXH_ASSERT(((size_t)acc & (XXH_ACC_ALIGN-1)) == 0);
 | |
|     {
 | |
|         xxh_u64 const data_val = XXH_readLE64(xinput + lane * 8);
 | |
|         xxh_u64 const data_key = data_val ^ XXH_readLE64(xsecret + lane * 8);
 | |
|         xacc[lane ^ 1] += data_val; /* swap adjacent lanes */
 | |
|         xacc[lane] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*!
 | |
|  * @internal
 | |
|  * @brief Processes a 64 byte block of data using the scalar path.
 | |
|  */
 | |
| XXH_FORCE_INLINE void
 | |
| XXH3_accumulate_512_scalar(void* XXH_RESTRICT acc,
 | |
|                      const void* XXH_RESTRICT input,
 | |
|                      const void* XXH_RESTRICT secret)
 | |
| {
 | |
|     size_t i;
 | |
|     for (i=0; i < XXH_ACC_NB; i++) {
 | |
|         XXH3_scalarRound(acc, input, secret, i);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*!
 | |
|  * @internal
 | |
|  * @brief Scalar scramble step for @ref XXH3_scrambleAcc_scalar().
 | |
|  *
 | |
|  * This is extracted to its own function because the NEON path uses a combination
 | |
|  * of NEON and scalar.
 | |
|  */
 | |
| XXH_FORCE_INLINE void
 | |
| XXH3_scalarScrambleRound(void* XXH_RESTRICT acc,
 | |
|                          void const* XXH_RESTRICT secret,
 | |
|                          size_t lane)
 | |
| {
 | |
|     xxh_u64* const xacc = (xxh_u64*) acc;   /* presumed aligned */
 | |
|     const xxh_u8* const xsecret = (const xxh_u8*) secret;   /* no alignment restriction */
 | |
|     XXH_ASSERT((((size_t)acc) & (XXH_ACC_ALIGN-1)) == 0);
 | |
|     XXH_ASSERT(lane < XXH_ACC_NB);
 | |
|     {
 | |
|         xxh_u64 const key64 = XXH_readLE64(xsecret + lane * 8);
 | |
|         xxh_u64 acc64 = xacc[lane];
 | |
|         acc64 = XXH_xorshift64(acc64, 47);
 | |
|         acc64 ^= key64;
 | |
|         acc64 *= XXH_PRIME32_1;
 | |
|         xacc[lane] = acc64;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*!
 | |
|  * @internal
 | |
|  * @brief Scrambles the accumulators after a large chunk has been read
 | |
|  */
 | |
| XXH_FORCE_INLINE void
 | |
| XXH3_scrambleAcc_scalar(void* XXH_RESTRICT acc, const void* XXH_RESTRICT secret)
 | |
| {
 | |
|     size_t i;
 | |
|     for (i=0; i < XXH_ACC_NB; i++) {
 | |
|         XXH3_scalarScrambleRound(acc, secret, i);
 | |
|     }
 | |
| }
 | |
| 
 | |
| XXH_FORCE_INLINE void
 | |
| XXH3_initCustomSecret_scalar(void* XXH_RESTRICT customSecret, xxh_u64 seed64)
 | |
| {
 | |
|     /*
 | |
|      * We need a separate pointer for the hack below,
 | |
|      * which requires a non-const pointer.
 | |
|      * Any decent compiler will optimize this out otherwise.
 | |
|      */
 | |
|     const xxh_u8* kSecretPtr = XXH3_kSecret;
 | |
|     XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
 | |
| 
 | |
| #if defined(__clang__) && defined(__aarch64__)
 | |
|     /*
 | |
|      * UGLY HACK:
 | |
|      * Clang generates a bunch of MOV/MOVK pairs for aarch64, and they are
 | |
|      * placed sequentially, in order, at the top of the unrolled loop.
 | |
|      *
 | |
|      * While MOVK is great for generating constants (2 cycles for a 64-bit
 | |
|      * constant compared to 4 cycles for LDR), it fights for bandwidth with
 | |
|      * the arithmetic instructions.
 | |
|      *
 | |
|      *   I   L   S
 | |
|      * MOVK
 | |
|      * MOVK
 | |
|      * MOVK
 | |
|      * MOVK
 | |
|      * ADD
 | |
|      * SUB      STR
 | |
|      *          STR
 | |
|      * By forcing loads from memory (as the asm line causes Clang to assume
 | |
|      * that XXH3_kSecretPtr has been changed), the pipelines are used more
 | |
|      * efficiently:
 | |
|      *   I   L   S
 | |
|      *      LDR
 | |
|      *  ADD LDR
 | |
|      *  SUB     STR
 | |
|      *          STR
 | |
|      *
 | |
|      * See XXH3_NEON_LANES for details on the pipsline.
 | |
|      *
 | |
|      * XXH3_64bits_withSeed, len == 256, Snapdragon 835
 | |
|      *   without hack: 2654.4 MB/s
 | |
|      *   with hack:    3202.9 MB/s
 | |
|      */
 | |
|     XXH_COMPILER_GUARD(kSecretPtr);
 | |
| #endif
 | |
|     /*
 | |
|      * Note: in debug mode, this overrides the asm optimization
 | |
|      * and Clang will emit MOVK chains again.
 | |
|      */
 | |
|     XXH_ASSERT(kSecretPtr == XXH3_kSecret);
 | |
| 
 | |
|     {   int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
 | |
|         int i;
 | |
|         for (i=0; i < nbRounds; i++) {
 | |
|             /*
 | |
|              * The asm hack causes Clang to assume that kSecretPtr aliases with
 | |
|              * customSecret, and on aarch64, this prevented LDP from merging two
 | |
|              * loads together for free. Putting the loads together before the stores
 | |
|              * properly generates LDP.
 | |
|              */
 | |
|             xxh_u64 lo = XXH_readLE64(kSecretPtr + 16*i)     + seed64;
 | |
|             xxh_u64 hi = XXH_readLE64(kSecretPtr + 16*i + 8) - seed64;
 | |
|             XXH_writeLE64((xxh_u8*)customSecret + 16*i,     lo);
 | |
|             XXH_writeLE64((xxh_u8*)customSecret + 16*i + 8, hi);
 | |
|     }   }
 | |
| }
 | |
| 
 | |
| 
 | |
| typedef void (*XXH3_f_accumulate_512)(void* XXH_RESTRICT, const void*, const void*);
 | |
| typedef void (*XXH3_f_scrambleAcc)(void* XXH_RESTRICT, const void*);
 | |
| typedef void (*XXH3_f_initCustomSecret)(void* XXH_RESTRICT, xxh_u64);
 | |
| 
 | |
| 
 | |
| #if (XXH_VECTOR == XXH_AVX512)
 | |
| 
 | |
| #define XXH3_accumulate_512 XXH3_accumulate_512_avx512
 | |
| #define XXH3_scrambleAcc    XXH3_scrambleAcc_avx512
 | |
| #define XXH3_initCustomSecret XXH3_initCustomSecret_avx512
 | |
| 
 | |
| #elif (XXH_VECTOR == XXH_AVX2)
 | |
| 
 | |
| #define XXH3_accumulate_512 XXH3_accumulate_512_avx2
 | |
| #define XXH3_scrambleAcc    XXH3_scrambleAcc_avx2
 | |
| #define XXH3_initCustomSecret XXH3_initCustomSecret_avx2
 | |
| 
 | |
| #elif (XXH_VECTOR == XXH_SSE2)
 | |
| 
 | |
| #define XXH3_accumulate_512 XXH3_accumulate_512_sse2
 | |
| #define XXH3_scrambleAcc    XXH3_scrambleAcc_sse2
 | |
| #define XXH3_initCustomSecret XXH3_initCustomSecret_sse2
 | |
| 
 | |
| #elif (XXH_VECTOR == XXH_NEON)
 | |
| 
 | |
| #define XXH3_accumulate_512 XXH3_accumulate_512_neon
 | |
| #define XXH3_scrambleAcc    XXH3_scrambleAcc_neon
 | |
| #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
 | |
| 
 | |
| #elif (XXH_VECTOR == XXH_VSX)
 | |
| 
 | |
| #define XXH3_accumulate_512 XXH3_accumulate_512_vsx
 | |
| #define XXH3_scrambleAcc    XXH3_scrambleAcc_vsx
 | |
| #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
 | |
| 
 | |
| #else /* scalar */
 | |
| 
 | |
| #define XXH3_accumulate_512 XXH3_accumulate_512_scalar
 | |
| #define XXH3_scrambleAcc    XXH3_scrambleAcc_scalar
 | |
| #define XXH3_initCustomSecret XXH3_initCustomSecret_scalar
 | |
| 
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 
 | |
| #ifndef XXH_PREFETCH_DIST
 | |
| #  ifdef __clang__
 | |
| #    define XXH_PREFETCH_DIST 320
 | |
| #  else
 | |
| #    if (XXH_VECTOR == XXH_AVX512)
 | |
| #      define XXH_PREFETCH_DIST 512
 | |
| #    else
 | |
| #      define XXH_PREFETCH_DIST 384
 | |
| #    endif
 | |
| #  endif  /* __clang__ */
 | |
| #endif  /* XXH_PREFETCH_DIST */
 | |
| 
 | |
| /*
 | |
|  * XXH3_accumulate()
 | |
|  * Loops over XXH3_accumulate_512().
 | |
|  * Assumption: nbStripes will not overflow the secret size
 | |
|  */
 | |
| XXH_FORCE_INLINE void
 | |
| XXH3_accumulate(     xxh_u64* XXH_RESTRICT acc,
 | |
|                 const xxh_u8* XXH_RESTRICT input,
 | |
|                 const xxh_u8* XXH_RESTRICT secret,
 | |
|                       size_t nbStripes,
 | |
|                       XXH3_f_accumulate_512 f_acc512)
 | |
| {
 | |
|     size_t n;
 | |
|     for (n = 0; n < nbStripes; n++ ) {
 | |
|         const xxh_u8* const in = input + n*XXH_STRIPE_LEN;
 | |
|         XXH_PREFETCH(in + XXH_PREFETCH_DIST);
 | |
|         f_acc512(acc,
 | |
|                  in,
 | |
|                  secret + n*XXH_SECRET_CONSUME_RATE);
 | |
|     }
 | |
| }
 | |
| 
 | |
| XXH_FORCE_INLINE void
 | |
| XXH3_hashLong_internal_loop(xxh_u64* XXH_RESTRICT acc,
 | |
|                       const xxh_u8* XXH_RESTRICT input, size_t len,
 | |
|                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
 | |
|                             XXH3_f_accumulate_512 f_acc512,
 | |
|                             XXH3_f_scrambleAcc f_scramble)
 | |
| {
 | |
|     size_t const nbStripesPerBlock = (secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
 | |
|     size_t const block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
 | |
|     size_t const nb_blocks = (len - 1) / block_len;
 | |
| 
 | |
|     size_t n;
 | |
| 
 | |
|     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
 | |
| 
 | |
|     for (n = 0; n < nb_blocks; n++) {
 | |
|         XXH3_accumulate(acc, input + n*block_len, secret, nbStripesPerBlock, f_acc512);
 | |
|         f_scramble(acc, secret + secretSize - XXH_STRIPE_LEN);
 | |
|     }
 | |
| 
 | |
|     /* last partial block */
 | |
|     XXH_ASSERT(len > XXH_STRIPE_LEN);
 | |
|     {   size_t const nbStripes = ((len - 1) - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
 | |
|         XXH_ASSERT(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
 | |
|         XXH3_accumulate(acc, input + nb_blocks*block_len, secret, nbStripes, f_acc512);
 | |
| 
 | |
|         /* last stripe */
 | |
|         {   const xxh_u8* const p = input + len - XXH_STRIPE_LEN;
 | |
| #define XXH_SECRET_LASTACC_START 7  /* not aligned on 8, last secret is different from acc & scrambler */
 | |
|             f_acc512(acc, p, secret + secretSize - XXH_STRIPE_LEN - XXH_SECRET_LASTACC_START);
 | |
|     }   }
 | |
| }
 | |
| 
 | |
| XXH_FORCE_INLINE xxh_u64
 | |
| XXH3_mix2Accs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret)
 | |
| {
 | |
|     return XXH3_mul128_fold64(
 | |
|                acc[0] ^ XXH_readLE64(secret),
 | |
|                acc[1] ^ XXH_readLE64(secret+8) );
 | |
| }
 | |
| 
 | |
| static XXH64_hash_t
 | |
| XXH3_mergeAccs(const xxh_u64* XXH_RESTRICT acc, const xxh_u8* XXH_RESTRICT secret, xxh_u64 start)
 | |
| {
 | |
|     xxh_u64 result64 = start;
 | |
|     size_t i = 0;
 | |
| 
 | |
|     for (i = 0; i < 4; i++) {
 | |
|         result64 += XXH3_mix2Accs(acc+2*i, secret + 16*i);
 | |
| #if defined(__clang__)                                /* Clang */ \
 | |
|     && (defined(__arm__) || defined(__thumb__))       /* ARMv7 */ \
 | |
|     && (defined(__ARM_NEON) || defined(__ARM_NEON__)) /* NEON */  \
 | |
|     && !defined(XXH_ENABLE_AUTOVECTORIZE)             /* Define to disable */
 | |
|         /*
 | |
|          * UGLY HACK:
 | |
|          * Prevent autovectorization on Clang ARMv7-a. Exact same problem as
 | |
|          * the one in XXH3_len_129to240_64b. Speeds up shorter keys > 240b.
 | |
|          * XXH3_64bits, len == 256, Snapdragon 835:
 | |
|          *   without hack: 2063.7 MB/s
 | |
|          *   with hack:    2560.7 MB/s
 | |
|          */
 | |
|         XXH_COMPILER_GUARD(result64);
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     return XXH3_avalanche(result64);
 | |
| }
 | |
| 
 | |
| #define XXH3_INIT_ACC { XXH_PRIME32_3, XXH_PRIME64_1, XXH_PRIME64_2, XXH_PRIME64_3, \
 | |
|                         XXH_PRIME64_4, XXH_PRIME32_2, XXH_PRIME64_5, XXH_PRIME32_1 }
 | |
| 
 | |
| XXH_FORCE_INLINE XXH64_hash_t
 | |
| XXH3_hashLong_64b_internal(const void* XXH_RESTRICT input, size_t len,
 | |
|                            const void* XXH_RESTRICT secret, size_t secretSize,
 | |
|                            XXH3_f_accumulate_512 f_acc512,
 | |
|                            XXH3_f_scrambleAcc f_scramble)
 | |
| {
 | |
|     XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
 | |
| 
 | |
|     XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, (const xxh_u8*)secret, secretSize, f_acc512, f_scramble);
 | |
| 
 | |
|     /* converge into final hash */
 | |
|     XXH_STATIC_ASSERT(sizeof(acc) == 64);
 | |
|     /* do not align on 8, so that the secret is different from the accumulator */
 | |
| #define XXH_SECRET_MERGEACCS_START 11
 | |
|     XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
 | |
|     return XXH3_mergeAccs(acc, (const xxh_u8*)secret + XXH_SECRET_MERGEACCS_START, (xxh_u64)len * XXH_PRIME64_1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * It's important for performance to transmit secret's size (when it's static)
 | |
|  * so that the compiler can properly optimize the vectorized loop.
 | |
|  * This makes a big performance difference for "medium" keys (<1 KB) when using AVX instruction set.
 | |
|  */
 | |
| XXH_FORCE_INLINE XXH64_hash_t
 | |
| XXH3_hashLong_64b_withSecret(const void* XXH_RESTRICT input, size_t len,
 | |
|                              XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
 | |
| {
 | |
|     (void)seed64;
 | |
|     return XXH3_hashLong_64b_internal(input, len, secret, secretLen, XXH3_accumulate_512, XXH3_scrambleAcc);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * It's preferable for performance that XXH3_hashLong is not inlined,
 | |
|  * as it results in a smaller function for small data, easier to the instruction cache.
 | |
|  * Note that inside this no_inline function, we do inline the internal loop,
 | |
|  * and provide a statically defined secret size to allow optimization of vector loop.
 | |
|  */
 | |
| XXH_NO_INLINE XXH64_hash_t
 | |
| XXH3_hashLong_64b_default(const void* XXH_RESTRICT input, size_t len,
 | |
|                           XXH64_hash_t seed64, const xxh_u8* XXH_RESTRICT secret, size_t secretLen)
 | |
| {
 | |
|     (void)seed64; (void)secret; (void)secretLen;
 | |
|     return XXH3_hashLong_64b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_accumulate_512, XXH3_scrambleAcc);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * XXH3_hashLong_64b_withSeed():
 | |
|  * Generate a custom key based on alteration of default XXH3_kSecret with the seed,
 | |
|  * and then use this key for long mode hashing.
 | |
|  *
 | |
|  * This operation is decently fast but nonetheless costs a little bit of time.
 | |
|  * Try to avoid it whenever possible (typically when seed==0).
 | |
|  *
 | |
|  * It's important for performance that XXH3_hashLong is not inlined. Not sure
 | |
|  * why (uop cache maybe?), but the difference is large and easily measurable.
 | |
|  */
 | |
| XXH_FORCE_INLINE XXH64_hash_t
 | |
| XXH3_hashLong_64b_withSeed_internal(const void* input, size_t len,
 | |
|                                     XXH64_hash_t seed,
 | |
|                                     XXH3_f_accumulate_512 f_acc512,
 | |
|                                     XXH3_f_scrambleAcc f_scramble,
 | |
|                                     XXH3_f_initCustomSecret f_initSec)
 | |
| {
 | |
|     if (seed == 0)
 | |
|         return XXH3_hashLong_64b_internal(input, len,
 | |
|                                           XXH3_kSecret, sizeof(XXH3_kSecret),
 | |
|                                           f_acc512, f_scramble);
 | |
|     {   XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
 | |
|         f_initSec(secret, seed);
 | |
|         return XXH3_hashLong_64b_internal(input, len, secret, sizeof(secret),
 | |
|                                           f_acc512, f_scramble);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * It's important for performance that XXH3_hashLong is not inlined.
 | |
|  */
 | |
| XXH_NO_INLINE XXH64_hash_t
 | |
| XXH3_hashLong_64b_withSeed(const void* input, size_t len,
 | |
|                            XXH64_hash_t seed, const xxh_u8* secret, size_t secretLen)
 | |
| {
 | |
|     (void)secret; (void)secretLen;
 | |
|     return XXH3_hashLong_64b_withSeed_internal(input, len, seed,
 | |
|                 XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret);
 | |
| }
 | |
| 
 | |
| 
 | |
| typedef XXH64_hash_t (*XXH3_hashLong64_f)(const void* XXH_RESTRICT, size_t,
 | |
|                                           XXH64_hash_t, const xxh_u8* XXH_RESTRICT, size_t);
 | |
| 
 | |
| XXH_FORCE_INLINE XXH64_hash_t
 | |
| XXH3_64bits_internal(const void* XXH_RESTRICT input, size_t len,
 | |
|                      XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
 | |
|                      XXH3_hashLong64_f f_hashLong)
 | |
| {
 | |
|     XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
 | |
|     /*
 | |
|      * If an action is to be taken if `secretLen` condition is not respected,
 | |
|      * it should be done here.
 | |
|      * For now, it's a contract pre-condition.
 | |
|      * Adding a check and a branch here would cost performance at every hash.
 | |
|      * Also, note that function signature doesn't offer room to return an error.
 | |
|      */
 | |
|     if (len <= 16)
 | |
|         return XXH3_len_0to16_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
 | |
|     if (len <= 128)
 | |
|         return XXH3_len_17to128_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
 | |
|     if (len <= XXH3_MIDSIZE_MAX)
 | |
|         return XXH3_len_129to240_64b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
 | |
|     return f_hashLong(input, len, seed64, (const xxh_u8*)secret, secretLen);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===   Public entry point   === */
 | |
| 
 | |
| /*! @ingroup xxh3_family */
 | |
| XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* input, size_t len)
 | |
| {
 | |
|     return XXH3_64bits_internal(input, len, 0, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_default);
 | |
| }
 | |
| 
 | |
| /*! @ingroup xxh3_family */
 | |
| XXH_PUBLIC_API XXH64_hash_t
 | |
| XXH3_64bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
 | |
| {
 | |
|     return XXH3_64bits_internal(input, len, 0, secret, secretSize, XXH3_hashLong_64b_withSecret);
 | |
| }
 | |
| 
 | |
| /*! @ingroup xxh3_family */
 | |
| XXH_PUBLIC_API XXH64_hash_t
 | |
| XXH3_64bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
 | |
| {
 | |
|     return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), XXH3_hashLong_64b_withSeed);
 | |
| }
 | |
| 
 | |
| XXH_PUBLIC_API XXH64_hash_t
 | |
| XXH3_64bits_withSecretandSeed(const void* input, size_t len, const void* secret, size_t secretSize, XXH64_hash_t seed)
 | |
| {
 | |
|     if (len <= XXH3_MIDSIZE_MAX)
 | |
|         return XXH3_64bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
 | |
|     return XXH3_hashLong_64b_withSecret(input, len, seed, (const xxh_u8*)secret, secretSize);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===   XXH3 streaming   === */
 | |
| 
 | |
| /*
 | |
|  * Malloc's a pointer that is always aligned to align.
 | |
|  *
 | |
|  * This must be freed with `XXH_alignedFree()`.
 | |
|  *
 | |
|  * malloc typically guarantees 16 byte alignment on 64-bit systems and 8 byte
 | |
|  * alignment on 32-bit. This isn't enough for the 32 byte aligned loads in AVX2
 | |
|  * or on 32-bit, the 16 byte aligned loads in SSE2 and NEON.
 | |
|  *
 | |
|  * This underalignment previously caused a rather obvious crash which went
 | |
|  * completely unnoticed due to XXH3_createState() not actually being tested.
 | |
|  * Credit to RedSpah for noticing this bug.
 | |
|  *
 | |
|  * The alignment is done manually: Functions like posix_memalign or _mm_malloc
 | |
|  * are avoided: To maintain portability, we would have to write a fallback
 | |
|  * like this anyways, and besides, testing for the existence of library
 | |
|  * functions without relying on external build tools is impossible.
 | |
|  *
 | |
|  * The method is simple: Overallocate, manually align, and store the offset
 | |
|  * to the original behind the returned pointer.
 | |
|  *
 | |
|  * Align must be a power of 2 and 8 <= align <= 128.
 | |
|  */
 | |
| static void* XXH_alignedMalloc(size_t s, size_t align)
 | |
| {
 | |
|     XXH_ASSERT(align <= 128 && align >= 8); /* range check */
 | |
|     XXH_ASSERT((align & (align-1)) == 0);   /* power of 2 */
 | |
|     XXH_ASSERT(s != 0 && s < (s + align));  /* empty/overflow */
 | |
|     {   /* Overallocate to make room for manual realignment and an offset byte */
 | |
|         xxh_u8* base = (xxh_u8*)XXH_malloc(s + align);
 | |
|         if (base != NULL) {
 | |
|             /*
 | |
|              * Get the offset needed to align this pointer.
 | |
|              *
 | |
|              * Even if the returned pointer is aligned, there will always be
 | |
|              * at least one byte to store the offset to the original pointer.
 | |
|              */
 | |
|             size_t offset = align - ((size_t)base & (align - 1)); /* base % align */
 | |
|             /* Add the offset for the now-aligned pointer */
 | |
|             xxh_u8* ptr = base + offset;
 | |
| 
 | |
|             XXH_ASSERT((size_t)ptr % align == 0);
 | |
| 
 | |
|             /* Store the offset immediately before the returned pointer. */
 | |
|             ptr[-1] = (xxh_u8)offset;
 | |
|             return ptr;
 | |
|         }
 | |
|         return NULL;
 | |
|     }
 | |
| }
 | |
| /*
 | |
|  * Frees an aligned pointer allocated by XXH_alignedMalloc(). Don't pass
 | |
|  * normal malloc'd pointers, XXH_alignedMalloc has a specific data layout.
 | |
|  */
 | |
| static void XXH_alignedFree(void* p)
 | |
| {
 | |
|     if (p != NULL) {
 | |
|         xxh_u8* ptr = (xxh_u8*)p;
 | |
|         /* Get the offset byte we added in XXH_malloc. */
 | |
|         xxh_u8 offset = ptr[-1];
 | |
|         /* Free the original malloc'd pointer */
 | |
|         xxh_u8* base = ptr - offset;
 | |
|         XXH_free(base);
 | |
|     }
 | |
| }
 | |
| /*! @ingroup xxh3_family */
 | |
| XXH_PUBLIC_API XXH3_state_t* XXH3_createState(void)
 | |
| {
 | |
|     XXH3_state_t* const state = (XXH3_state_t*)XXH_alignedMalloc(sizeof(XXH3_state_t), 64);
 | |
|     if (state==NULL) return NULL;
 | |
|     XXH3_INITSTATE(state);
 | |
|     return state;
 | |
| }
 | |
| 
 | |
| /*! @ingroup xxh3_family */
 | |
| XXH_PUBLIC_API XXH_errorcode XXH3_freeState(XXH3_state_t* statePtr)
 | |
| {
 | |
|     XXH_alignedFree(statePtr);
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| /*! @ingroup xxh3_family */
 | |
| XXH_PUBLIC_API void
 | |
| XXH3_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state)
 | |
| {
 | |
|     XXH_memcpy(dst_state, src_state, sizeof(*dst_state));
 | |
| }
 | |
| 
 | |
| static void
 | |
| XXH3_reset_internal(XXH3_state_t* statePtr,
 | |
|                     XXH64_hash_t seed,
 | |
|                     const void* secret, size_t secretSize)
 | |
| {
 | |
|     size_t const initStart = offsetof(XXH3_state_t, bufferedSize);
 | |
|     size_t const initLength = offsetof(XXH3_state_t, nbStripesPerBlock) - initStart;
 | |
|     XXH_ASSERT(offsetof(XXH3_state_t, nbStripesPerBlock) > initStart);
 | |
|     XXH_ASSERT(statePtr != NULL);
 | |
|     /* set members from bufferedSize to nbStripesPerBlock (excluded) to 0 */
 | |
|     memset((char*)statePtr + initStart, 0, initLength);
 | |
|     statePtr->acc[0] = XXH_PRIME32_3;
 | |
|     statePtr->acc[1] = XXH_PRIME64_1;
 | |
|     statePtr->acc[2] = XXH_PRIME64_2;
 | |
|     statePtr->acc[3] = XXH_PRIME64_3;
 | |
|     statePtr->acc[4] = XXH_PRIME64_4;
 | |
|     statePtr->acc[5] = XXH_PRIME32_2;
 | |
|     statePtr->acc[6] = XXH_PRIME64_5;
 | |
|     statePtr->acc[7] = XXH_PRIME32_1;
 | |
|     statePtr->seed = seed;
 | |
|     statePtr->useSeed = (seed != 0);
 | |
|     statePtr->extSecret = (const unsigned char*)secret;
 | |
|     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
 | |
|     statePtr->secretLimit = secretSize - XXH_STRIPE_LEN;
 | |
|     statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
 | |
| }
 | |
| 
 | |
| /*! @ingroup xxh3_family */
 | |
| XXH_PUBLIC_API XXH_errorcode
 | |
| XXH3_64bits_reset(XXH3_state_t* statePtr)
 | |
| {
 | |
|     if (statePtr == NULL) return XXH_ERROR;
 | |
|     XXH3_reset_internal(statePtr, 0, XXH3_kSecret, XXH_SECRET_DEFAULT_SIZE);
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| /*! @ingroup xxh3_family */
 | |
| XXH_PUBLIC_API XXH_errorcode
 | |
| XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
 | |
| {
 | |
|     if (statePtr == NULL) return XXH_ERROR;
 | |
|     XXH3_reset_internal(statePtr, 0, secret, secretSize);
 | |
|     if (secret == NULL) return XXH_ERROR;
 | |
|     if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| /*! @ingroup xxh3_family */
 | |
| XXH_PUBLIC_API XXH_errorcode
 | |
| XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
 | |
| {
 | |
|     if (statePtr == NULL) return XXH_ERROR;
 | |
|     if (seed==0) return XXH3_64bits_reset(statePtr);
 | |
|     if ((seed != statePtr->seed) || (statePtr->extSecret != NULL))
 | |
|         XXH3_initCustomSecret(statePtr->customSecret, seed);
 | |
|     XXH3_reset_internal(statePtr, seed, NULL, XXH_SECRET_DEFAULT_SIZE);
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| /*! @ingroup xxh3_family */
 | |
| XXH_PUBLIC_API XXH_errorcode
 | |
| XXH3_64bits_reset_withSecretandSeed(XXH3_state_t* statePtr, const void* secret, size_t secretSize, XXH64_hash_t seed64)
 | |
| {
 | |
|     if (statePtr == NULL) return XXH_ERROR;
 | |
|     if (secret == NULL) return XXH_ERROR;
 | |
|     if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
 | |
|     XXH3_reset_internal(statePtr, seed64, secret, secretSize);
 | |
|     statePtr->useSeed = 1; /* always, even if seed64==0 */
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| /* Note : when XXH3_consumeStripes() is invoked,
 | |
|  * there must be a guarantee that at least one more byte must be consumed from input
 | |
|  * so that the function can blindly consume all stripes using the "normal" secret segment */
 | |
| XXH_FORCE_INLINE void
 | |
| XXH3_consumeStripes(xxh_u64* XXH_RESTRICT acc,
 | |
|                     size_t* XXH_RESTRICT nbStripesSoFarPtr, size_t nbStripesPerBlock,
 | |
|                     const xxh_u8* XXH_RESTRICT input, size_t nbStripes,
 | |
|                     const xxh_u8* XXH_RESTRICT secret, size_t secretLimit,
 | |
|                     XXH3_f_accumulate_512 f_acc512,
 | |
|                     XXH3_f_scrambleAcc f_scramble)
 | |
| {
 | |
|     XXH_ASSERT(nbStripes <= nbStripesPerBlock);  /* can handle max 1 scramble per invocation */
 | |
|     XXH_ASSERT(*nbStripesSoFarPtr < nbStripesPerBlock);
 | |
|     if (nbStripesPerBlock - *nbStripesSoFarPtr <= nbStripes) {
 | |
|         /* need a scrambling operation */
 | |
|         size_t const nbStripesToEndofBlock = nbStripesPerBlock - *nbStripesSoFarPtr;
 | |
|         size_t const nbStripesAfterBlock = nbStripes - nbStripesToEndofBlock;
 | |
|         XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripesToEndofBlock, f_acc512);
 | |
|         f_scramble(acc, secret + secretLimit);
 | |
|         XXH3_accumulate(acc, input + nbStripesToEndofBlock * XXH_STRIPE_LEN, secret, nbStripesAfterBlock, f_acc512);
 | |
|         *nbStripesSoFarPtr = nbStripesAfterBlock;
 | |
|     } else {
 | |
|         XXH3_accumulate(acc, input, secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes, f_acc512);
 | |
|         *nbStripesSoFarPtr += nbStripes;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifndef XXH3_STREAM_USE_STACK
 | |
| # ifndef __clang__ /* clang doesn't need additional stack space */
 | |
| #   define XXH3_STREAM_USE_STACK 1
 | |
| # endif
 | |
| #endif
 | |
| /*
 | |
|  * Both XXH3_64bits_update and XXH3_128bits_update use this routine.
 | |
|  */
 | |
| XXH_FORCE_INLINE XXH_errorcode
 | |
| XXH3_update(XXH3_state_t* XXH_RESTRICT const state,
 | |
|             const xxh_u8* XXH_RESTRICT input, size_t len,
 | |
|             XXH3_f_accumulate_512 f_acc512,
 | |
|             XXH3_f_scrambleAcc f_scramble)
 | |
| {
 | |
|     if (input==NULL) {
 | |
|         XXH_ASSERT(len == 0);
 | |
|         return XXH_OK;
 | |
|     }
 | |
| 
 | |
|     XXH_ASSERT(state != NULL);
 | |
|     {   const xxh_u8* const bEnd = input + len;
 | |
|         const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
 | |
| #if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1
 | |
|         /* For some reason, gcc and MSVC seem to suffer greatly
 | |
|          * when operating accumulators directly into state.
 | |
|          * Operating into stack space seems to enable proper optimization.
 | |
|          * clang, on the other hand, doesn't seem to need this trick */
 | |
|         XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[8]; memcpy(acc, state->acc, sizeof(acc));
 | |
| #else
 | |
|         xxh_u64* XXH_RESTRICT const acc = state->acc;
 | |
| #endif
 | |
|         state->totalLen += len;
 | |
|         XXH_ASSERT(state->bufferedSize <= XXH3_INTERNALBUFFER_SIZE);
 | |
| 
 | |
|         /* small input : just fill in tmp buffer */
 | |
|         if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) {
 | |
|             XXH_memcpy(state->buffer + state->bufferedSize, input, len);
 | |
|             state->bufferedSize += (XXH32_hash_t)len;
 | |
|             return XXH_OK;
 | |
|         }
 | |
| 
 | |
|         /* total input is now > XXH3_INTERNALBUFFER_SIZE */
 | |
|         #define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / XXH_STRIPE_LEN)
 | |
|         XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % XXH_STRIPE_LEN == 0);   /* clean multiple */
 | |
| 
 | |
|         /*
 | |
|          * Internal buffer is partially filled (always, except at beginning)
 | |
|          * Complete it, then consume it.
 | |
|          */
 | |
|         if (state->bufferedSize) {
 | |
|             size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
 | |
|             XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
 | |
|             input += loadSize;
 | |
|             XXH3_consumeStripes(acc,
 | |
|                                &state->nbStripesSoFar, state->nbStripesPerBlock,
 | |
|                                 state->buffer, XXH3_INTERNALBUFFER_STRIPES,
 | |
|                                 secret, state->secretLimit,
 | |
|                                 f_acc512, f_scramble);
 | |
|             state->bufferedSize = 0;
 | |
|         }
 | |
|         XXH_ASSERT(input < bEnd);
 | |
| 
 | |
|         /* large input to consume : ingest per full block */
 | |
|         if ((size_t)(bEnd - input) > state->nbStripesPerBlock * XXH_STRIPE_LEN) {
 | |
|             size_t nbStripes = (size_t)(bEnd - 1 - input) / XXH_STRIPE_LEN;
 | |
|             XXH_ASSERT(state->nbStripesPerBlock >= state->nbStripesSoFar);
 | |
|             /* join to current block's end */
 | |
|             {   size_t const nbStripesToEnd = state->nbStripesPerBlock - state->nbStripesSoFar;
 | |
|                 XXH_ASSERT(nbStripesToEnd <= nbStripes);
 | |
|                 XXH3_accumulate(acc, input, secret + state->nbStripesSoFar * XXH_SECRET_CONSUME_RATE, nbStripesToEnd, f_acc512);
 | |
|                 f_scramble(acc, secret + state->secretLimit);
 | |
|                 state->nbStripesSoFar = 0;
 | |
|                 input += nbStripesToEnd * XXH_STRIPE_LEN;
 | |
|                 nbStripes -= nbStripesToEnd;
 | |
|             }
 | |
|             /* consume per entire blocks */
 | |
|             while(nbStripes >= state->nbStripesPerBlock) {
 | |
|                 XXH3_accumulate(acc, input, secret, state->nbStripesPerBlock, f_acc512);
 | |
|                 f_scramble(acc, secret + state->secretLimit);
 | |
|                 input += state->nbStripesPerBlock * XXH_STRIPE_LEN;
 | |
|                 nbStripes -= state->nbStripesPerBlock;
 | |
|             }
 | |
|             /* consume last partial block */
 | |
|             XXH3_accumulate(acc, input, secret, nbStripes, f_acc512);
 | |
|             input += nbStripes * XXH_STRIPE_LEN;
 | |
|             XXH_ASSERT(input < bEnd);  /* at least some bytes left */
 | |
|             state->nbStripesSoFar = nbStripes;
 | |
|             /* buffer predecessor of last partial stripe */
 | |
|             XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
 | |
|             XXH_ASSERT(bEnd - input <= XXH_STRIPE_LEN);
 | |
|         } else {
 | |
|             /* content to consume <= block size */
 | |
|             /* Consume input by a multiple of internal buffer size */
 | |
|             if (bEnd - input > XXH3_INTERNALBUFFER_SIZE) {
 | |
|                 const xxh_u8* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE;
 | |
|                 do {
 | |
|                     XXH3_consumeStripes(acc,
 | |
|                                        &state->nbStripesSoFar, state->nbStripesPerBlock,
 | |
|                                         input, XXH3_INTERNALBUFFER_STRIPES,
 | |
|                                         secret, state->secretLimit,
 | |
|                                         f_acc512, f_scramble);
 | |
|                     input += XXH3_INTERNALBUFFER_SIZE;
 | |
|                 } while (input<limit);
 | |
|                 /* buffer predecessor of last partial stripe */
 | |
|                 XXH_memcpy(state->buffer + sizeof(state->buffer) - XXH_STRIPE_LEN, input - XXH_STRIPE_LEN, XXH_STRIPE_LEN);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* Some remaining input (always) : buffer it */
 | |
|         XXH_ASSERT(input < bEnd);
 | |
|         XXH_ASSERT(bEnd - input <= XXH3_INTERNALBUFFER_SIZE);
 | |
|         XXH_ASSERT(state->bufferedSize == 0);
 | |
|         XXH_memcpy(state->buffer, input, (size_t)(bEnd-input));
 | |
|         state->bufferedSize = (XXH32_hash_t)(bEnd-input);
 | |
| #if defined(XXH3_STREAM_USE_STACK) && XXH3_STREAM_USE_STACK >= 1
 | |
|         /* save stack accumulators into state */
 | |
|         memcpy(state->acc, acc, sizeof(acc));
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| /*! @ingroup xxh3_family */
 | |
| XXH_PUBLIC_API XXH_errorcode
 | |
| XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len)
 | |
| {
 | |
|     return XXH3_update(state, (const xxh_u8*)input, len,
 | |
|                        XXH3_accumulate_512, XXH3_scrambleAcc);
 | |
| }
 | |
| 
 | |
| 
 | |
| XXH_FORCE_INLINE void
 | |
| XXH3_digest_long (XXH64_hash_t* acc,
 | |
|                   const XXH3_state_t* state,
 | |
|                   const unsigned char* secret)
 | |
| {
 | |
|     /*
 | |
|      * Digest on a local copy. This way, the state remains unaltered, and it can
 | |
|      * continue ingesting more input afterwards.
 | |
|      */
 | |
|     XXH_memcpy(acc, state->acc, sizeof(state->acc));
 | |
|     if (state->bufferedSize >= XXH_STRIPE_LEN) {
 | |
|         size_t const nbStripes = (state->bufferedSize - 1) / XXH_STRIPE_LEN;
 | |
|         size_t nbStripesSoFar = state->nbStripesSoFar;
 | |
|         XXH3_consumeStripes(acc,
 | |
|                            &nbStripesSoFar, state->nbStripesPerBlock,
 | |
|                             state->buffer, nbStripes,
 | |
|                             secret, state->secretLimit,
 | |
|                             XXH3_accumulate_512, XXH3_scrambleAcc);
 | |
|         /* last stripe */
 | |
|         XXH3_accumulate_512(acc,
 | |
|                             state->buffer + state->bufferedSize - XXH_STRIPE_LEN,
 | |
|                             secret + state->secretLimit - XXH_SECRET_LASTACC_START);
 | |
|     } else {  /* bufferedSize < XXH_STRIPE_LEN */
 | |
|         xxh_u8 lastStripe[XXH_STRIPE_LEN];
 | |
|         size_t const catchupSize = XXH_STRIPE_LEN - state->bufferedSize;
 | |
|         XXH_ASSERT(state->bufferedSize > 0);  /* there is always some input buffered */
 | |
|         XXH_memcpy(lastStripe, state->buffer + sizeof(state->buffer) - catchupSize, catchupSize);
 | |
|         XXH_memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
 | |
|         XXH3_accumulate_512(acc,
 | |
|                             lastStripe,
 | |
|                             secret + state->secretLimit - XXH_SECRET_LASTACC_START);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*! @ingroup xxh3_family */
 | |
| XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state)
 | |
| {
 | |
|     const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
 | |
|     if (state->totalLen > XXH3_MIDSIZE_MAX) {
 | |
|         XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
 | |
|         XXH3_digest_long(acc, state, secret);
 | |
|         return XXH3_mergeAccs(acc,
 | |
|                               secret + XXH_SECRET_MERGEACCS_START,
 | |
|                               (xxh_u64)state->totalLen * XXH_PRIME64_1);
 | |
|     }
 | |
|     /* totalLen <= XXH3_MIDSIZE_MAX: digesting a short input */
 | |
|     if (state->useSeed)
 | |
|         return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
 | |
|     return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen),
 | |
|                                   secret, state->secretLimit + XXH_STRIPE_LEN);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /* ==========================================
 | |
|  * XXH3 128 bits (a.k.a XXH128)
 | |
|  * ==========================================
 | |
|  * XXH3's 128-bit variant has better mixing and strength than the 64-bit variant,
 | |
|  * even without counting the significantly larger output size.
 | |
|  *
 | |
|  * For example, extra steps are taken to avoid the seed-dependent collisions
 | |
|  * in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B).
 | |
|  *
 | |
|  * This strength naturally comes at the cost of some speed, especially on short
 | |
|  * lengths. Note that longer hashes are about as fast as the 64-bit version
 | |
|  * due to it using only a slight modification of the 64-bit loop.
 | |
|  *
 | |
|  * XXH128 is also more oriented towards 64-bit machines. It is still extremely
 | |
|  * fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
 | |
|  */
 | |
| 
 | |
| XXH_FORCE_INLINE XXH128_hash_t
 | |
| XXH3_len_1to3_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
 | |
| {
 | |
|     /* A doubled version of 1to3_64b with different constants. */
 | |
|     XXH_ASSERT(input != NULL);
 | |
|     XXH_ASSERT(1 <= len && len <= 3);
 | |
|     XXH_ASSERT(secret != NULL);
 | |
|     /*
 | |
|      * len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
 | |
|      * len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
 | |
|      * len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
 | |
|      */
 | |
|     {   xxh_u8 const c1 = input[0];
 | |
|         xxh_u8 const c2 = input[len >> 1];
 | |
|         xxh_u8 const c3 = input[len - 1];
 | |
|         xxh_u32 const combinedl = ((xxh_u32)c1 <<16) | ((xxh_u32)c2 << 24)
 | |
|                                 | ((xxh_u32)c3 << 0) | ((xxh_u32)len << 8);
 | |
|         xxh_u32 const combinedh = XXH_rotl32(XXH_swap32(combinedl), 13);
 | |
|         xxh_u64 const bitflipl = (XXH_readLE32(secret) ^ XXH_readLE32(secret+4)) + seed;
 | |
|         xxh_u64 const bitfliph = (XXH_readLE32(secret+8) ^ XXH_readLE32(secret+12)) - seed;
 | |
|         xxh_u64 const keyed_lo = (xxh_u64)combinedl ^ bitflipl;
 | |
|         xxh_u64 const keyed_hi = (xxh_u64)combinedh ^ bitfliph;
 | |
|         XXH128_hash_t h128;
 | |
|         h128.low64  = XXH64_avalanche(keyed_lo);
 | |
|         h128.high64 = XXH64_avalanche(keyed_hi);
 | |
|         return h128;
 | |
|     }
 | |
| }
 | |
| 
 | |
| XXH_FORCE_INLINE XXH128_hash_t
 | |
| XXH3_len_4to8_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
 | |
| {
 | |
|     XXH_ASSERT(input != NULL);
 | |
|     XXH_ASSERT(secret != NULL);
 | |
|     XXH_ASSERT(4 <= len && len <= 8);
 | |
|     seed ^= (xxh_u64)XXH_swap32((xxh_u32)seed) << 32;
 | |
|     {   xxh_u32 const input_lo = XXH_readLE32(input);
 | |
|         xxh_u32 const input_hi = XXH_readLE32(input + len - 4);
 | |
|         xxh_u64 const input_64 = input_lo + ((xxh_u64)input_hi << 32);
 | |
|         xxh_u64 const bitflip = (XXH_readLE64(secret+16) ^ XXH_readLE64(secret+24)) + seed;
 | |
|         xxh_u64 const keyed = input_64 ^ bitflip;
 | |
| 
 | |
|         /* Shift len to the left to ensure it is even, this avoids even multiplies. */
 | |
|         XXH128_hash_t m128 = XXH_mult64to128(keyed, XXH_PRIME64_1 + (len << 2));
 | |
| 
 | |
|         m128.high64 += (m128.low64 << 1);
 | |
|         m128.low64  ^= (m128.high64 >> 3);
 | |
| 
 | |
|         m128.low64   = XXH_xorshift64(m128.low64, 35);
 | |
|         m128.low64  *= 0x9FB21C651E98DF25ULL;
 | |
|         m128.low64   = XXH_xorshift64(m128.low64, 28);
 | |
|         m128.high64  = XXH3_avalanche(m128.high64);
 | |
|         return m128;
 | |
|     }
 | |
| }
 | |
| 
 | |
| XXH_FORCE_INLINE XXH128_hash_t
 | |
| XXH3_len_9to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
 | |
| {
 | |
|     XXH_ASSERT(input != NULL);
 | |
|     XXH_ASSERT(secret != NULL);
 | |
|     XXH_ASSERT(9 <= len && len <= 16);
 | |
|     {   xxh_u64 const bitflipl = (XXH_readLE64(secret+32) ^ XXH_readLE64(secret+40)) - seed;
 | |
|         xxh_u64 const bitfliph = (XXH_readLE64(secret+48) ^ XXH_readLE64(secret+56)) + seed;
 | |
|         xxh_u64 const input_lo = XXH_readLE64(input);
 | |
|         xxh_u64       input_hi = XXH_readLE64(input + len - 8);
 | |
|         XXH128_hash_t m128 = XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, XXH_PRIME64_1);
 | |
|         /*
 | |
|          * Put len in the middle of m128 to ensure that the length gets mixed to
 | |
|          * both the low and high bits in the 128x64 multiply below.
 | |
|          */
 | |
|         m128.low64 += (xxh_u64)(len - 1) << 54;
 | |
|         input_hi   ^= bitfliph;
 | |
|         /*
 | |
|          * Add the high 32 bits of input_hi to the high 32 bits of m128, then
 | |
|          * add the long product of the low 32 bits of input_hi and XXH_PRIME32_2 to
 | |
|          * the high 64 bits of m128.
 | |
|          *
 | |
|          * The best approach to this operation is different on 32-bit and 64-bit.
 | |
|          */
 | |
|         if (sizeof(void *) < sizeof(xxh_u64)) { /* 32-bit */
 | |
|             /*
 | |
|              * 32-bit optimized version, which is more readable.
 | |
|              *
 | |
|              * On 32-bit, it removes an ADC and delays a dependency between the two
 | |
|              * halves of m128.high64, but it generates an extra mask on 64-bit.
 | |
|              */
 | |
|             m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2);
 | |
|         } else {
 | |
|             /*
 | |
|              * 64-bit optimized (albeit more confusing) version.
 | |
|              *
 | |
|              * Uses some properties of addition and multiplication to remove the mask:
 | |
|              *
 | |
|              * Let:
 | |
|              *    a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
 | |
|              *    b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
 | |
|              *    c = XXH_PRIME32_2
 | |
|              *
 | |
|              *    a + (b * c)
 | |
|              * Inverse Property: x + y - x == y
 | |
|              *    a + (b * (1 + c - 1))
 | |
|              * Distributive Property: x * (y + z) == (x * y) + (x * z)
 | |
|              *    a + (b * 1) + (b * (c - 1))
 | |
|              * Identity Property: x * 1 == x
 | |
|              *    a + b + (b * (c - 1))
 | |
|              *
 | |
|              * Substitute a, b, and c:
 | |
|              *    input_hi.hi + input_hi.lo + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
 | |
|              *
 | |
|              * Since input_hi.hi + input_hi.lo == input_hi, we get this:
 | |
|              *    input_hi + ((xxh_u64)input_hi.lo * (XXH_PRIME32_2 - 1))
 | |
|              */
 | |
|             m128.high64 += input_hi + XXH_mult32to64((xxh_u32)input_hi, XXH_PRIME32_2 - 1);
 | |
|         }
 | |
|         /* m128 ^= XXH_swap64(m128 >> 64); */
 | |
|         m128.low64  ^= XXH_swap64(m128.high64);
 | |
| 
 | |
|         {   /* 128x64 multiply: h128 = m128 * XXH_PRIME64_2; */
 | |
|             XXH128_hash_t h128 = XXH_mult64to128(m128.low64, XXH_PRIME64_2);
 | |
|             h128.high64 += m128.high64 * XXH_PRIME64_2;
 | |
| 
 | |
|             h128.low64   = XXH3_avalanche(h128.low64);
 | |
|             h128.high64  = XXH3_avalanche(h128.high64);
 | |
|             return h128;
 | |
|     }   }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
 | |
|  */
 | |
| XXH_FORCE_INLINE XXH128_hash_t
 | |
| XXH3_len_0to16_128b(const xxh_u8* input, size_t len, const xxh_u8* secret, XXH64_hash_t seed)
 | |
| {
 | |
|     XXH_ASSERT(len <= 16);
 | |
|     {   if (len > 8) return XXH3_len_9to16_128b(input, len, secret, seed);
 | |
|         if (len >= 4) return XXH3_len_4to8_128b(input, len, secret, seed);
 | |
|         if (len) return XXH3_len_1to3_128b(input, len, secret, seed);
 | |
|         {   XXH128_hash_t h128;
 | |
|             xxh_u64 const bitflipl = XXH_readLE64(secret+64) ^ XXH_readLE64(secret+72);
 | |
|             xxh_u64 const bitfliph = XXH_readLE64(secret+80) ^ XXH_readLE64(secret+88);
 | |
|             h128.low64 = XXH64_avalanche(seed ^ bitflipl);
 | |
|             h128.high64 = XXH64_avalanche( seed ^ bitfliph);
 | |
|             return h128;
 | |
|     }   }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A bit slower than XXH3_mix16B, but handles multiply by zero better.
 | |
|  */
 | |
| XXH_FORCE_INLINE XXH128_hash_t
 | |
| XXH128_mix32B(XXH128_hash_t acc, const xxh_u8* input_1, const xxh_u8* input_2,
 | |
|               const xxh_u8* secret, XXH64_hash_t seed)
 | |
| {
 | |
|     acc.low64  += XXH3_mix16B (input_1, secret+0, seed);
 | |
|     acc.low64  ^= XXH_readLE64(input_2) + XXH_readLE64(input_2 + 8);
 | |
|     acc.high64 += XXH3_mix16B (input_2, secret+16, seed);
 | |
|     acc.high64 ^= XXH_readLE64(input_1) + XXH_readLE64(input_1 + 8);
 | |
|     return acc;
 | |
| }
 | |
| 
 | |
| 
 | |
| XXH_FORCE_INLINE XXH128_hash_t
 | |
| XXH3_len_17to128_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
 | |
|                       const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
 | |
|                       XXH64_hash_t seed)
 | |
| {
 | |
|     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
 | |
|     XXH_ASSERT(16 < len && len <= 128);
 | |
| 
 | |
|     {   XXH128_hash_t acc;
 | |
|         acc.low64 = len * XXH_PRIME64_1;
 | |
|         acc.high64 = 0;
 | |
|         if (len > 32) {
 | |
|             if (len > 64) {
 | |
|                 if (len > 96) {
 | |
|                     acc = XXH128_mix32B(acc, input+48, input+len-64, secret+96, seed);
 | |
|                 }
 | |
|                 acc = XXH128_mix32B(acc, input+32, input+len-48, secret+64, seed);
 | |
|             }
 | |
|             acc = XXH128_mix32B(acc, input+16, input+len-32, secret+32, seed);
 | |
|         }
 | |
|         acc = XXH128_mix32B(acc, input, input+len-16, secret, seed);
 | |
|         {   XXH128_hash_t h128;
 | |
|             h128.low64  = acc.low64 + acc.high64;
 | |
|             h128.high64 = (acc.low64    * XXH_PRIME64_1)
 | |
|                         + (acc.high64   * XXH_PRIME64_4)
 | |
|                         + ((len - seed) * XXH_PRIME64_2);
 | |
|             h128.low64  = XXH3_avalanche(h128.low64);
 | |
|             h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
 | |
|             return h128;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| XXH_NO_INLINE XXH128_hash_t
 | |
| XXH3_len_129to240_128b(const xxh_u8* XXH_RESTRICT input, size_t len,
 | |
|                        const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
 | |
|                        XXH64_hash_t seed)
 | |
| {
 | |
|     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
 | |
|     XXH_ASSERT(128 < len && len <= XXH3_MIDSIZE_MAX);
 | |
| 
 | |
|     {   XXH128_hash_t acc;
 | |
|         int const nbRounds = (int)len / 32;
 | |
|         int i;
 | |
|         acc.low64 = len * XXH_PRIME64_1;
 | |
|         acc.high64 = 0;
 | |
|         for (i=0; i<4; i++) {
 | |
|             acc = XXH128_mix32B(acc,
 | |
|                                 input  + (32 * i),
 | |
|                                 input  + (32 * i) + 16,
 | |
|                                 secret + (32 * i),
 | |
|                                 seed);
 | |
|         }
 | |
|         acc.low64 = XXH3_avalanche(acc.low64);
 | |
|         acc.high64 = XXH3_avalanche(acc.high64);
 | |
|         XXH_ASSERT(nbRounds >= 4);
 | |
|         for (i=4 ; i < nbRounds; i++) {
 | |
|             acc = XXH128_mix32B(acc,
 | |
|                                 input + (32 * i),
 | |
|                                 input + (32 * i) + 16,
 | |
|                                 secret + XXH3_MIDSIZE_STARTOFFSET + (32 * (i - 4)),
 | |
|                                 seed);
 | |
|         }
 | |
|         /* last bytes */
 | |
|         acc = XXH128_mix32B(acc,
 | |
|                             input + len - 16,
 | |
|                             input + len - 32,
 | |
|                             secret + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16,
 | |
|                             0ULL - seed);
 | |
| 
 | |
|         {   XXH128_hash_t h128;
 | |
|             h128.low64  = acc.low64 + acc.high64;
 | |
|             h128.high64 = (acc.low64    * XXH_PRIME64_1)
 | |
|                         + (acc.high64   * XXH_PRIME64_4)
 | |
|                         + ((len - seed) * XXH_PRIME64_2);
 | |
|             h128.low64  = XXH3_avalanche(h128.low64);
 | |
|             h128.high64 = (XXH64_hash_t)0 - XXH3_avalanche(h128.high64);
 | |
|             return h128;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| XXH_FORCE_INLINE XXH128_hash_t
 | |
| XXH3_hashLong_128b_internal(const void* XXH_RESTRICT input, size_t len,
 | |
|                             const xxh_u8* XXH_RESTRICT secret, size_t secretSize,
 | |
|                             XXH3_f_accumulate_512 f_acc512,
 | |
|                             XXH3_f_scrambleAcc f_scramble)
 | |
| {
 | |
|     XXH_ALIGN(XXH_ACC_ALIGN) xxh_u64 acc[XXH_ACC_NB] = XXH3_INIT_ACC;
 | |
| 
 | |
|     XXH3_hashLong_internal_loop(acc, (const xxh_u8*)input, len, secret, secretSize, f_acc512, f_scramble);
 | |
| 
 | |
|     /* converge into final hash */
 | |
|     XXH_STATIC_ASSERT(sizeof(acc) == 64);
 | |
|     XXH_ASSERT(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
 | |
|     {   XXH128_hash_t h128;
 | |
|         h128.low64  = XXH3_mergeAccs(acc,
 | |
|                                      secret + XXH_SECRET_MERGEACCS_START,
 | |
|                                      (xxh_u64)len * XXH_PRIME64_1);
 | |
|         h128.high64 = XXH3_mergeAccs(acc,
 | |
|                                      secret + secretSize
 | |
|                                             - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
 | |
|                                      ~((xxh_u64)len * XXH_PRIME64_2));
 | |
|         return h128;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * It's important for performance that XXH3_hashLong is not inlined.
 | |
|  */
 | |
| XXH_NO_INLINE XXH128_hash_t
 | |
| XXH3_hashLong_128b_default(const void* XXH_RESTRICT input, size_t len,
 | |
|                            XXH64_hash_t seed64,
 | |
|                            const void* XXH_RESTRICT secret, size_t secretLen)
 | |
| {
 | |
|     (void)seed64; (void)secret; (void)secretLen;
 | |
|     return XXH3_hashLong_128b_internal(input, len, XXH3_kSecret, sizeof(XXH3_kSecret),
 | |
|                                        XXH3_accumulate_512, XXH3_scrambleAcc);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * It's important for performance to pass @secretLen (when it's static)
 | |
|  * to the compiler, so that it can properly optimize the vectorized loop.
 | |
|  */
 | |
| XXH_FORCE_INLINE XXH128_hash_t
 | |
| XXH3_hashLong_128b_withSecret(const void* XXH_RESTRICT input, size_t len,
 | |
|                               XXH64_hash_t seed64,
 | |
|                               const void* XXH_RESTRICT secret, size_t secretLen)
 | |
| {
 | |
|     (void)seed64;
 | |
|     return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, secretLen,
 | |
|                                        XXH3_accumulate_512, XXH3_scrambleAcc);
 | |
| }
 | |
| 
 | |
| XXH_FORCE_INLINE XXH128_hash_t
 | |
| XXH3_hashLong_128b_withSeed_internal(const void* XXH_RESTRICT input, size_t len,
 | |
|                                 XXH64_hash_t seed64,
 | |
|                                 XXH3_f_accumulate_512 f_acc512,
 | |
|                                 XXH3_f_scrambleAcc f_scramble,
 | |
|                                 XXH3_f_initCustomSecret f_initSec)
 | |
| {
 | |
|     if (seed64 == 0)
 | |
|         return XXH3_hashLong_128b_internal(input, len,
 | |
|                                            XXH3_kSecret, sizeof(XXH3_kSecret),
 | |
|                                            f_acc512, f_scramble);
 | |
|     {   XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
 | |
|         f_initSec(secret, seed64);
 | |
|         return XXH3_hashLong_128b_internal(input, len, (const xxh_u8*)secret, sizeof(secret),
 | |
|                                            f_acc512, f_scramble);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * It's important for performance that XXH3_hashLong is not inlined.
 | |
|  */
 | |
| XXH_NO_INLINE XXH128_hash_t
 | |
| XXH3_hashLong_128b_withSeed(const void* input, size_t len,
 | |
|                             XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen)
 | |
| {
 | |
|     (void)secret; (void)secretLen;
 | |
|     return XXH3_hashLong_128b_withSeed_internal(input, len, seed64,
 | |
|                 XXH3_accumulate_512, XXH3_scrambleAcc, XXH3_initCustomSecret);
 | |
| }
 | |
| 
 | |
| typedef XXH128_hash_t (*XXH3_hashLong128_f)(const void* XXH_RESTRICT, size_t,
 | |
|                                             XXH64_hash_t, const void* XXH_RESTRICT, size_t);
 | |
| 
 | |
| XXH_FORCE_INLINE XXH128_hash_t
 | |
| XXH3_128bits_internal(const void* input, size_t len,
 | |
|                       XXH64_hash_t seed64, const void* XXH_RESTRICT secret, size_t secretLen,
 | |
|                       XXH3_hashLong128_f f_hl128)
 | |
| {
 | |
|     XXH_ASSERT(secretLen >= XXH3_SECRET_SIZE_MIN);
 | |
|     /*
 | |
|      * If an action is to be taken if `secret` conditions are not respected,
 | |
|      * it should be done here.
 | |
|      * For now, it's a contract pre-condition.
 | |
|      * Adding a check and a branch here would cost performance at every hash.
 | |
|      */
 | |
|     if (len <= 16)
 | |
|         return XXH3_len_0to16_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, seed64);
 | |
|     if (len <= 128)
 | |
|         return XXH3_len_17to128_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
 | |
|     if (len <= XXH3_MIDSIZE_MAX)
 | |
|         return XXH3_len_129to240_128b((const xxh_u8*)input, len, (const xxh_u8*)secret, secretLen, seed64);
 | |
|     return f_hl128(input, len, seed64, secret, secretLen);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===   Public XXH128 API   === */
 | |
| 
 | |
| /*! @ingroup xxh3_family */
 | |
| XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* input, size_t len)
 | |
| {
 | |
|     return XXH3_128bits_internal(input, len, 0,
 | |
|                                  XXH3_kSecret, sizeof(XXH3_kSecret),
 | |
|                                  XXH3_hashLong_128b_default);
 | |
| }
 | |
| 
 | |
| /*! @ingroup xxh3_family */
 | |
| XXH_PUBLIC_API XXH128_hash_t
 | |
| XXH3_128bits_withSecret(const void* input, size_t len, const void* secret, size_t secretSize)
 | |
| {
 | |
|     return XXH3_128bits_internal(input, len, 0,
 | |
|                                  (const xxh_u8*)secret, secretSize,
 | |
|                                  XXH3_hashLong_128b_withSecret);
 | |
| }
 | |
| 
 | |
| /*! @ingroup xxh3_family */
 | |
| XXH_PUBLIC_API XXH128_hash_t
 | |
| XXH3_128bits_withSeed(const void* input, size_t len, XXH64_hash_t seed)
 | |
| {
 | |
|     return XXH3_128bits_internal(input, len, seed,
 | |
|                                  XXH3_kSecret, sizeof(XXH3_kSecret),
 | |
|                                  XXH3_hashLong_128b_withSeed);
 | |
| }
 | |
| 
 | |
| /*! @ingroup xxh3_family */
 | |
| XXH_PUBLIC_API XXH128_hash_t
 | |
| XXH3_128bits_withSecretandSeed(const void* input, size_t len, const void* secret, size_t secretSize, XXH64_hash_t seed)
 | |
| {
 | |
|     if (len <= XXH3_MIDSIZE_MAX)
 | |
|         return XXH3_128bits_internal(input, len, seed, XXH3_kSecret, sizeof(XXH3_kSecret), NULL);
 | |
|     return XXH3_hashLong_128b_withSecret(input, len, seed, secret, secretSize);
 | |
| }
 | |
| 
 | |
| /*! @ingroup xxh3_family */
 | |
| XXH_PUBLIC_API XXH128_hash_t
 | |
| XXH128(const void* input, size_t len, XXH64_hash_t seed)
 | |
| {
 | |
|     return XXH3_128bits_withSeed(input, len, seed);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===   XXH3 128-bit streaming   === */
 | |
| 
 | |
| /*
 | |
|  * All initialization and update functions are identical to 64-bit streaming variant.
 | |
|  * The only difference is the finalization routine.
 | |
|  */
 | |
| 
 | |
| /*! @ingroup xxh3_family */
 | |
| XXH_PUBLIC_API XXH_errorcode
 | |
| XXH3_128bits_reset(XXH3_state_t* statePtr)
 | |
| {
 | |
|     return XXH3_64bits_reset(statePtr);
 | |
| }
 | |
| 
 | |
| /*! @ingroup xxh3_family */
 | |
| XXH_PUBLIC_API XXH_errorcode
 | |
| XXH3_128bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
 | |
| {
 | |
|     return XXH3_64bits_reset_withSecret(statePtr, secret, secretSize);
 | |
| }
 | |
| 
 | |
| /*! @ingroup xxh3_family */
 | |
| XXH_PUBLIC_API XXH_errorcode
 | |
| XXH3_128bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
 | |
| {
 | |
|     return XXH3_64bits_reset_withSeed(statePtr, seed);
 | |
| }
 | |
| 
 | |
| /*! @ingroup xxh3_family */
 | |
| XXH_PUBLIC_API XXH_errorcode
 | |
| XXH3_128bits_reset_withSecretandSeed(XXH3_state_t* statePtr, const void* secret, size_t secretSize, XXH64_hash_t seed)
 | |
| {
 | |
|     return XXH3_64bits_reset_withSecretandSeed(statePtr, secret, secretSize, seed);
 | |
| }
 | |
| 
 | |
| /*! @ingroup xxh3_family */
 | |
| XXH_PUBLIC_API XXH_errorcode
 | |
| XXH3_128bits_update(XXH3_state_t* state, const void* input, size_t len)
 | |
| {
 | |
|     return XXH3_update(state, (const xxh_u8*)input, len,
 | |
|                        XXH3_accumulate_512, XXH3_scrambleAcc);
 | |
| }
 | |
| 
 | |
| /*! @ingroup xxh3_family */
 | |
| XXH_PUBLIC_API XXH128_hash_t XXH3_128bits_digest (const XXH3_state_t* state)
 | |
| {
 | |
|     const unsigned char* const secret = (state->extSecret == NULL) ? state->customSecret : state->extSecret;
 | |
|     if (state->totalLen > XXH3_MIDSIZE_MAX) {
 | |
|         XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[XXH_ACC_NB];
 | |
|         XXH3_digest_long(acc, state, secret);
 | |
|         XXH_ASSERT(state->secretLimit + XXH_STRIPE_LEN >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
 | |
|         {   XXH128_hash_t h128;
 | |
|             h128.low64  = XXH3_mergeAccs(acc,
 | |
|                                          secret + XXH_SECRET_MERGEACCS_START,
 | |
|                                          (xxh_u64)state->totalLen * XXH_PRIME64_1);
 | |
|             h128.high64 = XXH3_mergeAccs(acc,
 | |
|                                          secret + state->secretLimit + XXH_STRIPE_LEN
 | |
|                                                 - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
 | |
|                                          ~((xxh_u64)state->totalLen * XXH_PRIME64_2));
 | |
|             return h128;
 | |
|         }
 | |
|     }
 | |
|     /* len <= XXH3_MIDSIZE_MAX : short code */
 | |
|     if (state->seed)
 | |
|         return XXH3_128bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
 | |
|     return XXH3_128bits_withSecret(state->buffer, (size_t)(state->totalLen),
 | |
|                                    secret, state->secretLimit + XXH_STRIPE_LEN);
 | |
| }
 | |
| 
 | |
| /* 128-bit utility functions */
 | |
| 
 | |
| #include <string.h>   /* memcmp, memcpy */
 | |
| 
 | |
| /* return : 1 is equal, 0 if different */
 | |
| /*! @ingroup xxh3_family */
 | |
| XXH_PUBLIC_API int XXH128_isEqual(XXH128_hash_t h1, XXH128_hash_t h2)
 | |
| {
 | |
|     /* note : XXH128_hash_t is compact, it has no padding byte */
 | |
|     return !(memcmp(&h1, &h2, sizeof(h1)));
 | |
| }
 | |
| 
 | |
| /* This prototype is compatible with stdlib's qsort().
 | |
|  * return : >0 if *h128_1  > *h128_2
 | |
|  *          <0 if *h128_1  < *h128_2
 | |
|  *          =0 if *h128_1 == *h128_2  */
 | |
| /*! @ingroup xxh3_family */
 | |
| XXH_PUBLIC_API int XXH128_cmp(const void* h128_1, const void* h128_2)
 | |
| {
 | |
|     XXH128_hash_t const h1 = *(const XXH128_hash_t*)h128_1;
 | |
|     XXH128_hash_t const h2 = *(const XXH128_hash_t*)h128_2;
 | |
|     int const hcmp = (h1.high64 > h2.high64) - (h2.high64 > h1.high64);
 | |
|     /* note : bets that, in most cases, hash values are different */
 | |
|     if (hcmp) return hcmp;
 | |
|     return (h1.low64 > h2.low64) - (h2.low64 > h1.low64);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*======   Canonical representation   ======*/
 | |
| /*! @ingroup xxh3_family */
 | |
| XXH_PUBLIC_API void
 | |
| XXH128_canonicalFromHash(XXH128_canonical_t* dst, XXH128_hash_t hash)
 | |
| {
 | |
|     XXH_STATIC_ASSERT(sizeof(XXH128_canonical_t) == sizeof(XXH128_hash_t));
 | |
|     if (XXH_CPU_LITTLE_ENDIAN) {
 | |
|         hash.high64 = XXH_swap64(hash.high64);
 | |
|         hash.low64  = XXH_swap64(hash.low64);
 | |
|     }
 | |
|     XXH_memcpy(dst, &hash.high64, sizeof(hash.high64));
 | |
|     XXH_memcpy((char*)dst + sizeof(hash.high64), &hash.low64, sizeof(hash.low64));
 | |
| }
 | |
| 
 | |
| /*! @ingroup xxh3_family */
 | |
| XXH_PUBLIC_API XXH128_hash_t
 | |
| XXH128_hashFromCanonical(const XXH128_canonical_t* src)
 | |
| {
 | |
|     XXH128_hash_t h;
 | |
|     h.high64 = XXH_readBE64(src);
 | |
|     h.low64  = XXH_readBE64(src->digest + 8);
 | |
|     return h;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /* ==========================================
 | |
|  * Secret generators
 | |
|  * ==========================================
 | |
|  */
 | |
| #define XXH_MIN(x, y) (((x) > (y)) ? (y) : (x))
 | |
| 
 | |
| XXH_FORCE_INLINE void XXH3_combine16(void* dst, XXH128_hash_t h128)
 | |
| {
 | |
|     XXH_writeLE64( dst, XXH_readLE64(dst) ^ h128.low64 );
 | |
|     XXH_writeLE64( (char*)dst+8, XXH_readLE64((char*)dst+8) ^ h128.high64 );
 | |
| }
 | |
| 
 | |
| /*! @ingroup xxh3_family */
 | |
| XXH_PUBLIC_API XXH_errorcode
 | |
| XXH3_generateSecret(void* secretBuffer, size_t secretSize, const void* customSeed, size_t customSeedSize)
 | |
| {
 | |
| #if (XXH_DEBUGLEVEL >= 1)
 | |
|     XXH_ASSERT(secretBuffer != NULL);
 | |
|     XXH_ASSERT(secretSize >= XXH3_SECRET_SIZE_MIN);
 | |
| #else
 | |
|     /* production mode, assert() are disabled */
 | |
|     if (secretBuffer == NULL) return XXH_ERROR;
 | |
|     if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
 | |
| #endif
 | |
| 
 | |
|     if (customSeedSize == 0) {
 | |
|         customSeed = XXH3_kSecret;
 | |
|         customSeedSize = XXH_SECRET_DEFAULT_SIZE;
 | |
|     }
 | |
| #if (XXH_DEBUGLEVEL >= 1)
 | |
|     XXH_ASSERT(customSeed != NULL);
 | |
| #else
 | |
|     if (customSeed == NULL) return XXH_ERROR;
 | |
| #endif
 | |
| 
 | |
|     /* Fill secretBuffer with a copy of customSeed - repeat as needed */
 | |
|     {   size_t pos = 0;
 | |
|         while (pos < secretSize) {
 | |
|             size_t const toCopy = XXH_MIN((secretSize - pos), customSeedSize);
 | |
|             memcpy((char*)secretBuffer + pos, customSeed, toCopy);
 | |
|             pos += toCopy;
 | |
|     }   }
 | |
| 
 | |
|     {   size_t const nbSeg16 = secretSize / 16;
 | |
|         size_t n;
 | |
|         XXH128_canonical_t scrambler;
 | |
|         XXH128_canonicalFromHash(&scrambler, XXH128(customSeed, customSeedSize, 0));
 | |
|         for (n=0; n<nbSeg16; n++) {
 | |
|             XXH128_hash_t const h128 = XXH128(&scrambler, sizeof(scrambler), n);
 | |
|             XXH3_combine16((char*)secretBuffer + n*16, h128);
 | |
|         }
 | |
|         /* last segment */
 | |
|         XXH3_combine16((char*)secretBuffer + secretSize - 16, XXH128_hashFromCanonical(&scrambler));
 | |
|     }
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| /*! @ingroup xxh3_family */
 | |
| XXH_PUBLIC_API void
 | |
| XXH3_generateSecret_fromSeed(void* secretBuffer, XXH64_hash_t seed)
 | |
| {
 | |
|     XXH_ALIGN(XXH_SEC_ALIGN) xxh_u8 secret[XXH_SECRET_DEFAULT_SIZE];
 | |
|     XXH3_initCustomSecret(secret, seed);
 | |
|     XXH_ASSERT(secretBuffer != NULL);
 | |
|     memcpy(secretBuffer, secret, XXH_SECRET_DEFAULT_SIZE);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Pop our optimization override from above */
 | |
| #if XXH_VECTOR == XXH_AVX2 /* AVX2 */ \
 | |
|   && defined(__GNUC__) && !defined(__clang__) /* GCC, not Clang */ \
 | |
|   && defined(__OPTIMIZE__) && !defined(__OPTIMIZE_SIZE__) /* respect -O0 and -Os */
 | |
| #  pragma GCC pop_options
 | |
| #endif
 | |
| 
 | |
| #endif  /* XXH_NO_LONG_LONG */
 | |
| 
 | |
| #endif  /* XXH_NO_XXH3 */
 | |
| 
 | |
| /*!
 | |
|  * @}
 | |
|  */
 | |
| #endif  /* XXH_IMPLEMENTATION */
 | |
| 
 | |
| 
 | |
| #if defined (__cplusplus)
 | |
| }
 | |
| #endif
 | 
