Duckstation/src/util/audio_stream.cpp
2022-12-20 21:25:15 +10:00

687 lines
19 KiB
C++

// SPDX-FileCopyrightText: 2019-2022 Connor McLaughlin <stenzek@gmail.com>
// SPDX-License-Identifier: (GPL-3.0 OR CC-BY-NC-ND-4.0)
#include "audio_stream.h"
#include "SoundTouch.h"
#include "common/align.h"
#include "common/assert.h"
#include "common/log.h"
#include "common/make_array.h"
#include "common/platform.h"
#include "common/timer.h"
#include <algorithm>
#include <cmath>
#include <cstring>
#ifdef __APPLE__
#include <stdlib.h> // alloca
#else
#include <malloc.h> // alloca
#endif
#if defined(_M_ARM64)
#include <arm64_neon.h>
#elif defined(__aarch64__)
#include <arm_neon.h>
#elif defined(CPU_X86) || defined(CPU_X64)
#include <emmintrin.h>
#endif
Log_SetChannel(AudioStream);
static constexpr bool LOG_TIMESTRETCH_STATS = false;
AudioStream::AudioStream(u32 sample_rate, u32 channels, u32 buffer_ms, AudioStretchMode stretch)
: m_sample_rate(sample_rate), m_channels(channels), m_buffer_ms(buffer_ms), m_stretch_mode(stretch)
{
}
AudioStream::~AudioStream()
{
DestroyBuffer();
}
std::unique_ptr<AudioStream> AudioStream::CreateNullStream(u32 sample_rate, u32 channels, u32 buffer_ms)
{
std::unique_ptr<AudioStream> stream(new AudioStream(sample_rate, channels, buffer_ms, AudioStretchMode::Off));
stream->BaseInitialize();
return stream;
}
u32 AudioStream::GetAlignedBufferSize(u32 size)
{
static_assert(Common::IsPow2(CHUNK_SIZE));
return Common::AlignUpPow2(size, CHUNK_SIZE);
}
u32 AudioStream::GetBufferSizeForMS(u32 sample_rate, u32 ms)
{
return GetAlignedBufferSize((ms * sample_rate) / 1000u);
}
u32 AudioStream::GetMSForBufferSize(u32 sample_rate, u32 buffer_size)
{
buffer_size = GetAlignedBufferSize(buffer_size);
return (buffer_size * 1000u) / sample_rate;
}
static constexpr const auto s_stretch_mode_names = make_array("None", "Resample", "TimeStretch");
static constexpr const auto s_stretch_mode_display_names = make_array("None", "Resampling", "Time Stretching");
const char* AudioStream::GetStretchModeName(AudioStretchMode mode)
{
return (static_cast<u32>(mode) < s_stretch_mode_names.size()) ? s_stretch_mode_names[static_cast<u32>(mode)] : "";
}
const char* AudioStream::GetStretchModeDisplayName(AudioStretchMode mode)
{
return (static_cast<u32>(mode) < s_stretch_mode_display_names.size()) ?
s_stretch_mode_display_names[static_cast<u32>(mode)] :
"";
}
std::optional<AudioStretchMode> AudioStream::ParseStretchMode(const char* name)
{
for (u8 i = 0; i < static_cast<u8>(AudioStretchMode::Count); i++)
{
if (std::strcmp(name, s_stretch_mode_names[i]) == 0)
return static_cast<AudioStretchMode>(i);
}
return std::nullopt;
}
u32 AudioStream::GetBufferedFramesRelaxed() const
{
const u32 rpos = m_rpos.load(std::memory_order_relaxed);
const u32 wpos = m_wpos.load(std::memory_order_relaxed);
return (wpos + m_buffer_size - rpos) % m_buffer_size;
}
void AudioStream::ReadFrames(s16* bData, u32 nFrames)
{
const u32 available_frames = GetBufferedFramesRelaxed();
u32 frames_to_read = nFrames;
u32 silence_frames = 0;
if (m_filling)
{
u32 toFill = m_buffer_size / ((m_stretch_mode != AudioStretchMode::TimeStretch) ? 32 : 400);
toFill = GetAlignedBufferSize(toFill);
if (available_frames < toFill)
{
silence_frames = nFrames;
frames_to_read = 0;
}
else
{
m_filling = false;
Log_VerbosePrintf("Underrun compensation done (%d frames buffered)", toFill);
}
}
if (available_frames < frames_to_read)
{
silence_frames = frames_to_read - available_frames;
frames_to_read = available_frames;
m_filling = true;
if (m_stretch_mode == AudioStretchMode::TimeStretch)
StretchUnderrun();
}
if (frames_to_read > 0)
{
u32 rpos = m_rpos.load(std::memory_order_acquire);
u32 end = m_buffer_size - rpos;
if (end > frames_to_read)
end = frames_to_read;
// towards the end of the buffer
if (end > 0)
{
std::memcpy(bData, &m_buffer[rpos], sizeof(s32) * end);
rpos += end;
rpos = (rpos == m_buffer_size) ? 0 : rpos;
}
// after wrapping around
const u32 start = frames_to_read - end;
if (start > 0)
{
std::memcpy(&bData[end * 2], &m_buffer[0], sizeof(s32) * start);
rpos = start;
}
m_rpos.store(rpos, std::memory_order_release);
}
if (silence_frames > 0)
{
if (frames_to_read > 0)
{
// super basic resampler - spread the input samples evenly across the output samples. will sound like ass and have
// aliasing, but better than popping by inserting silence.
const u32 increment =
static_cast<u32>(65536.0f * (static_cast<float>(frames_to_read / m_channels) / static_cast<float>(nFrames)));
s16* resample_ptr = static_cast<s16*>(alloca(sizeof(s16) * frames_to_read));
std::memcpy(resample_ptr, bData, sizeof(s16) * frames_to_read);
s16* out_ptr = bData;
const u32 copy_stride = sizeof(SampleType) * m_channels;
u32 resample_subpos = 0;
for (u32 i = 0; i < nFrames; i++)
{
std::memcpy(out_ptr, resample_ptr, copy_stride);
out_ptr += m_channels;
resample_subpos += increment;
resample_ptr += (resample_subpos >> 16) * m_channels;
resample_subpos %= 65536u;
}
Log_VerbosePrintf("Audio buffer underflow, resampled %u frames to %u", frames_to_read, nFrames);
}
else
{
// no data, fall back to silence
std::memset(bData + frames_to_read, 0, sizeof(s32) * silence_frames);
}
}
}
void AudioStream::InternalWriteFrames(s32* bData, u32 nSamples)
{
const u32 free = m_buffer_size - GetBufferedFramesRelaxed();
if (free <= nSamples)
{
if (m_stretch_mode == AudioStretchMode::TimeStretch)
{
StretchOverrun();
}
else
{
Log_DebugPrintf("Buffer overrun, chunk dropped");
return;
}
}
u32 wpos = m_wpos.load(std::memory_order_acquire);
// wrapping around the end of the buffer?
if ((m_buffer_size - wpos) <= nSamples)
{
// needs to be written in two parts
const u32 end = m_buffer_size - wpos;
const u32 start = nSamples - end;
// start is zero when this chunk reaches exactly the end
std::memcpy(&m_buffer[wpos], bData, end * sizeof(s32));
if (start > 0)
std::memcpy(&m_buffer[0], bData + end, start * sizeof(s32));
wpos = start;
}
else
{
// no split
std::memcpy(&m_buffer[wpos], bData, nSamples * sizeof(s32));
wpos += nSamples;
}
m_wpos.store(wpos, std::memory_order_release);
}
void AudioStream::BaseInitialize()
{
AllocateBuffer();
StretchAllocate();
}
void AudioStream::AllocateBuffer()
{
// use a larger buffer when time stretching, since we need more input
const u32 multplier =
(m_stretch_mode == AudioStretchMode::TimeStretch) ? 16 : ((m_stretch_mode == AudioStretchMode::Off) ? 1 : 2);
m_buffer_size = GetAlignedBufferSize(((m_buffer_ms * multplier) * m_sample_rate) / 1000);
m_target_buffer_size = GetAlignedBufferSize((m_sample_rate * m_buffer_ms) / 1000u);
m_buffer = std::unique_ptr<s32[]>(new s32[m_buffer_size]);
Log_DevPrintf("Allocated buffer of %u frames for buffer of %u ms [stretch %s, target size %u].", m_buffer_size,
m_buffer_ms, GetStretchModeName(m_stretch_mode), m_target_buffer_size);
}
void AudioStream::DestroyBuffer()
{
m_buffer.reset();
m_buffer_size = 0;
m_wpos.store(0, std::memory_order_release);
m_rpos.store(0, std::memory_order_release);
}
void AudioStream::EmptyBuffer()
{
if (m_stretch_mode != AudioStretchMode::Off)
{
m_soundtouch->clear();
if (m_stretch_mode == AudioStretchMode::TimeStretch)
m_soundtouch->setTempo(m_nominal_rate);
}
m_wpos.store(m_rpos.load(std::memory_order_acquire), std::memory_order_release);
}
void AudioStream::SetNominalRate(float tempo)
{
m_nominal_rate = tempo;
if (m_stretch_mode == AudioStretchMode::Resample)
m_soundtouch->setRate(tempo);
}
void AudioStream::UpdateTargetTempo(float tempo)
{
if (m_stretch_mode != AudioStretchMode::TimeStretch)
return;
// undo sqrt()
if (tempo)
tempo *= tempo;
m_average_position = AVERAGING_WINDOW;
m_average_available = AVERAGING_WINDOW;
std::fill_n(m_average_fullness.data(), AVERAGING_WINDOW, tempo);
m_soundtouch->setTempo(tempo);
m_stretch_reset = 0;
m_stretch_inactive = false;
m_stretch_ok_count = 0;
m_dynamic_target_usage = static_cast<float>(m_target_buffer_size) * m_nominal_rate;
}
void AudioStream::SetStretchMode(AudioStretchMode mode)
{
if (m_stretch_mode == mode)
return;
// can't resize the buffers while paused
bool paused = m_paused;
if (!paused)
SetPaused(true);
DestroyBuffer();
StretchDestroy();
m_stretch_mode = mode;
AllocateBuffer();
if (m_stretch_mode != AudioStretchMode::Off)
StretchAllocate();
if (!paused)
SetPaused(false);
}
void AudioStream::SetPaused(bool paused)
{
m_paused = paused;
}
void AudioStream::SetOutputVolume(u32 volume)
{
m_volume = volume;
}
void AudioStream::BeginWrite(SampleType** buffer_ptr, u32* num_frames)
{
// TODO: Write directly to buffer when not using stretching.
*buffer_ptr = reinterpret_cast<s16*>(&m_staging_buffer[m_staging_buffer_pos]);
*num_frames = CHUNK_SIZE - m_staging_buffer_pos;
}
void AudioStream::WriteFrames(const SampleType* frames, u32 num_frames)
{
Panic("not implemented");
}
void AudioStream::EndWrite(u32 num_frames)
{
// don't bother committing anything when muted
if (m_volume == 0)
return;
m_staging_buffer_pos += num_frames;
DebugAssert(m_staging_buffer_pos <= CHUNK_SIZE);
if (m_staging_buffer_pos < CHUNK_SIZE)
return;
m_staging_buffer_pos = 0;
if (m_stretch_mode != AudioStretchMode::Off)
StretchWrite();
else
InternalWriteFrames(m_staging_buffer.data(), CHUNK_SIZE);
}
static constexpr float S16_TO_FLOAT = 1.0f / 32767.0f;
static constexpr float FLOAT_TO_S16 = 32767.0f;
#if defined(CPU_AARCH64)
static void S16ChunkToFloat(const s32* src, float* dst)
{
static_assert((AudioStream::CHUNK_SIZE % 4) == 0);
constexpr u32 iterations = AudioStream::CHUNK_SIZE / 4;
const float32x4_t S16_TO_FLOAT_V = vdupq_n_f32(S16_TO_FLOAT);
for (u32 i = 0; i < iterations; i++)
{
const int16x8_t sv = vreinterpretq_s16_s32(vld1q_s32(src));
src += 4;
int32x4_t iv1 = vreinterpretq_s32_s16(vzip1q_s16(sv, sv)); // [0, 0, 1, 1, 2, 2, 3, 3]
int32x4_t iv2 = vreinterpretq_s32_s16(vzip2q_s16(sv, sv)); // [4, 4, 5, 5, 6, 6, 7, 7]
iv1 = vshrq_n_s32(iv1, 16); // [0, 1, 2, 3]
iv2 = vshrq_n_s32(iv2, 16); // [4, 5, 6, 7]
float32x4_t fv1 = vcvtq_f32_s32(iv1); // [f0, f1, f2, f3]
float32x4_t fv2 = vcvtq_f32_s32(iv2); // [f4, f5, f6, f7]
fv1 = vmulq_f32(fv1, S16_TO_FLOAT_V);
fv2 = vmulq_f32(fv2, S16_TO_FLOAT_V);
vst1q_f32(dst + 0, fv1);
vst1q_f32(dst + 4, fv2);
dst += 8;
}
}
static void FloatChunkToS16(s32* dst, const float* src, uint size)
{
static_assert((AudioStream::CHUNK_SIZE % 4) == 0);
constexpr u32 iterations = AudioStream::CHUNK_SIZE / 4;
const float32x4_t FLOAT_TO_S16_V = vdupq_n_f32(FLOAT_TO_S16);
for (u32 i = 0; i < iterations; i++)
{
float32x4_t fv1 = vld1q_f32(src + 0);
float32x4_t fv2 = vld1q_f32(src + 4);
src += 8;
fv1 = vmulq_f32(fv1, FLOAT_TO_S16_V);
fv2 = vmulq_f32(fv2, FLOAT_TO_S16_V);
int32x4_t iv1 = vcvtq_s32_f32(fv1);
int32x4_t iv2 = vcvtq_s32_f32(fv2);
int16x8_t iv = vcombine_s16(vqmovn_s32(iv1), vqmovn_s32(iv2));
vst1q_s32(dst, vreinterpretq_s32_s16(iv));
dst += 4;
}
}
#elif defined(CPU_X86) || defined(CPU_X64)
static void S16ChunkToFloat(const s32* src, float* dst)
{
static_assert((AudioStream::CHUNK_SIZE % 4) == 0);
constexpr u32 iterations = AudioStream::CHUNK_SIZE / 4;
const __m128 S16_TO_FLOAT_V = _mm_set1_ps(S16_TO_FLOAT);
for (u32 i = 0; i < iterations; i++)
{
const __m128i sv = _mm_load_si128(reinterpret_cast<const __m128i*>(src));
src += 4;
__m128i iv1 = _mm_unpacklo_epi16(sv, sv); // [0, 0, 1, 1, 2, 2, 3, 3]
__m128i iv2 = _mm_unpackhi_epi16(sv, sv); // [4, 4, 5, 5, 6, 6, 7, 7]
iv1 = _mm_srai_epi32(iv1, 16); // [0, 1, 2, 3]
iv2 = _mm_srai_epi32(iv2, 16); // [4, 5, 6, 7]
__m128 fv1 = _mm_cvtepi32_ps(iv1); // [f0, f1, f2, f3]
__m128 fv2 = _mm_cvtepi32_ps(iv2); // [f4, f5, f6, f7]
fv1 = _mm_mul_ps(fv1, S16_TO_FLOAT_V);
fv2 = _mm_mul_ps(fv2, S16_TO_FLOAT_V);
_mm_store_ps(dst + 0, fv1);
_mm_store_ps(dst + 4, fv2);
dst += 8;
}
}
static void FloatChunkToS16(s32* dst, const float* src, uint size)
{
static_assert((AudioStream::CHUNK_SIZE % 4) == 0);
constexpr u32 iterations = AudioStream::CHUNK_SIZE / 4;
const __m128 FLOAT_TO_S16_V = _mm_set1_ps(FLOAT_TO_S16);
for (u32 i = 0; i < iterations; i++)
{
__m128 fv1 = _mm_load_ps(src + 0);
__m128 fv2 = _mm_load_ps(src + 4);
src += 8;
fv1 = _mm_mul_ps(fv1, FLOAT_TO_S16_V);
fv2 = _mm_mul_ps(fv2, FLOAT_TO_S16_V);
__m128i iv1 = _mm_cvtps_epi32(fv1);
__m128i iv2 = _mm_cvtps_epi32(fv2);
__m128i iv = _mm_packs_epi32(iv1, iv2);
_mm_store_si128(reinterpret_cast<__m128i*>(dst), iv);
dst += 4;
}
}
#else
static void S16ChunkToFloat(const s32* src, float* dst)
{
for (uint i = 0; i < AudioStream::CHUNK_SIZE; ++i)
{
*(dst++) = static_cast<float>(static_cast<s16>((u32)*src)) / 32767.0f;
*(dst++) = static_cast<float>(static_cast<s16>(((u32)*src) >> 16)) / 32767.0f;
src++;
}
}
static void FloatChunkToS16(s32* dst, const float* src, uint size)
{
for (uint i = 0; i < size; ++i)
{
const s16 left = static_cast<s16>((*(src++) * 32767.0f));
const s16 right = static_cast<s16>((*(src++) * 32767.0f));
*(dst++) = (static_cast<u32>(left) & 0xFFFFu) | (static_cast<u32>(right) << 16);
}
}
#endif
// Time stretching algorithm based on PCSX2 implementation.
template<class T>
ALWAYS_INLINE static bool IsInRange(const T& val, const T& min, const T& max)
{
return (min <= val && val <= max);
}
void AudioStream::StretchAllocate()
{
if (m_stretch_mode == AudioStretchMode::Off)
return;
m_soundtouch = std::make_unique<soundtouch::SoundTouch>();
m_soundtouch->setSampleRate(m_sample_rate);
m_soundtouch->setChannels(m_channels);
m_soundtouch->setSetting(SETTING_USE_QUICKSEEK, 0);
m_soundtouch->setSetting(SETTING_USE_AA_FILTER, 0);
m_soundtouch->setSetting(SETTING_SEQUENCE_MS, 30);
m_soundtouch->setSetting(SETTING_SEEKWINDOW_MS, 20);
m_soundtouch->setSetting(SETTING_OVERLAP_MS, 10);
if (m_stretch_mode == AudioStretchMode::Resample)
m_soundtouch->setRate(m_nominal_rate);
else
m_soundtouch->setTempo(m_nominal_rate);
m_stretch_reset = STRETCH_RESET_THRESHOLD;
m_stretch_inactive = false;
m_stretch_ok_count = 0;
m_dynamic_target_usage = 0.0f;
m_average_position = 0;
m_average_available = 0;
m_staging_buffer_pos = 0;
}
void AudioStream::StretchDestroy()
{
m_soundtouch.reset();
}
void AudioStream::StretchWrite()
{
S16ChunkToFloat(m_staging_buffer.data(), m_float_buffer.data());
m_soundtouch->putSamples(m_float_buffer.data(), CHUNK_SIZE);
int tempProgress;
while (tempProgress = m_soundtouch->receiveSamples((float*)m_float_buffer.data(), CHUNK_SIZE), tempProgress != 0)
{
FloatChunkToS16(m_staging_buffer.data(), m_float_buffer.data(), tempProgress);
InternalWriteFrames(m_staging_buffer.data(), tempProgress);
}
if (m_stretch_mode == AudioStretchMode::TimeStretch)
UpdateStretchTempo();
}
float AudioStream::AddAndGetAverageTempo(float val)
{
if (m_stretch_reset >= STRETCH_RESET_THRESHOLD)
m_average_available = 0;
if (m_average_available < AVERAGING_BUFFER_SIZE)
m_average_available++;
m_average_fullness[m_average_position] = val;
m_average_position = (m_average_position + 1U) % AVERAGING_BUFFER_SIZE;
const u32 actual_window = std::min<u32>(m_average_available, AVERAGING_WINDOW);
const u32 first_index = (m_average_position - actual_window + AVERAGING_BUFFER_SIZE) % AVERAGING_BUFFER_SIZE;
float sum = 0;
for (u32 i = first_index; i < first_index + actual_window; i++)
sum += m_average_fullness[i % AVERAGING_BUFFER_SIZE];
sum = sum / actual_window;
return (sum != 0.0f) ? sum : 1.0f;
}
void AudioStream::UpdateStretchTempo()
{
static constexpr float MIN_TEMPO = 0.05f;
static constexpr float MAX_TEMPO = 50.0f;
// Which range we will run in 1:1 mode for.
static constexpr float INACTIVE_GOOD_FACTOR = 1.04f;
static constexpr float INACTIVE_BAD_FACTOR = 1.2f;
static constexpr u32 INACTIVE_MIN_OK_COUNT = 50;
static constexpr u32 COMPENSATION_DIVIDER = 100;
float base_target_usage = static_cast<float>(m_target_buffer_size) * m_nominal_rate;
// state vars
if (m_stretch_reset >= STRETCH_RESET_THRESHOLD)
{
Log_VerbosePrintf("___ Stretcher is being reset.");
m_stretch_inactive = false;
m_stretch_ok_count = 0;
m_dynamic_target_usage = base_target_usage;
}
const u32 ibuffer_usage = GetBufferedFramesRelaxed();
float buffer_usage = static_cast<float>(ibuffer_usage);
float tempo = buffer_usage / m_dynamic_target_usage;
tempo = AddAndGetAverageTempo(tempo);
// Dampening when we get close to target.
if (tempo < 2.0f)
tempo = std::sqrt(tempo);
tempo = std::clamp(tempo, MIN_TEMPO, MAX_TEMPO);
if (tempo < 1.0f)
base_target_usage /= std::sqrt(tempo);
m_dynamic_target_usage +=
static_cast<float>(base_target_usage / tempo - m_dynamic_target_usage) / static_cast<float>(COMPENSATION_DIVIDER);
if (IsInRange(tempo, 0.9f, 1.1f) &&
IsInRange(m_dynamic_target_usage, base_target_usage * 0.9f, base_target_usage * 1.1f))
{
m_dynamic_target_usage = base_target_usage;
}
if (!m_stretch_inactive)
{
if (IsInRange(tempo, 1.0f / INACTIVE_GOOD_FACTOR, INACTIVE_GOOD_FACTOR))
m_stretch_ok_count++;
else
m_stretch_ok_count = 0;
if (m_stretch_ok_count >= INACTIVE_MIN_OK_COUNT)
{
Log_VerbosePrintf("=== Stretcher is now inactive.");
m_stretch_inactive = true;
}
}
else if (!IsInRange(tempo, 1.0f / INACTIVE_BAD_FACTOR, INACTIVE_BAD_FACTOR))
{
Log_VerbosePrintf("~~~ Stretcher is now active @ tempo %f.", tempo);
m_stretch_inactive = false;
m_stretch_ok_count = 0;
}
if (m_stretch_inactive)
tempo = m_nominal_rate;
if constexpr (LOG_TIMESTRETCH_STATS)
{
static int iterations = 0;
static u64 last_log_time = 0;
const u64 now = Common::Timer::GetCurrentValue();
if (Common::Timer::ConvertValueToSeconds(now - last_log_time) > 1.0f)
{
Log_VerbosePrintf("buffers: %4u ms (%3.0f%%), tempo: %f, comp: %2.3f, iters: %d, reset:%d",
(ibuffer_usage * 1000u) / m_sample_rate, 100.0f * buffer_usage / base_target_usage, tempo,
m_dynamic_target_usage / base_target_usage, iterations, m_stretch_reset);
last_log_time = now;
iterations = 0;
}
iterations++;
}
m_soundtouch->setTempo(tempo);
if (m_stretch_reset >= STRETCH_RESET_THRESHOLD)
m_stretch_reset = 0;
}
void AudioStream::StretchUnderrun()
{
// Didn't produce enough frames in time.
m_stretch_reset++;
}
void AudioStream::StretchOverrun()
{
// Produced more frames than can fit in the buffer.
m_stretch_reset++;
// Drop two packets to give the time stretcher a bit more time to slow things down.
const u32 discard = CHUNK_SIZE * 2;
m_rpos.store((m_rpos.load(std::memory_order_acquire) + discard) % m_buffer_size, std::memory_order_release);
}