mirror of
https://github.com/RetroDECK/Duckstation.git
synced 2024-11-25 23:25:41 +00:00
206 lines
7.6 KiB
C++
206 lines
7.6 KiB
C++
#ifndef FASTFLOAT_PARSE_NUMBER_H
|
|
#define FASTFLOAT_PARSE_NUMBER_H
|
|
|
|
#include "ascii_number.h"
|
|
#include "decimal_to_binary.h"
|
|
#include "digit_comparison.h"
|
|
|
|
#include <cmath>
|
|
#include <cstring>
|
|
#include <limits>
|
|
#include <system_error>
|
|
|
|
namespace fast_float {
|
|
|
|
|
|
namespace detail {
|
|
/**
|
|
* Special case +inf, -inf, nan, infinity, -infinity.
|
|
* The case comparisons could be made much faster given that we know that the
|
|
* strings a null-free and fixed.
|
|
**/
|
|
template <typename T>
|
|
from_chars_result parse_infnan(const char *first, const char *last, T &value) noexcept {
|
|
from_chars_result answer;
|
|
answer.ptr = first;
|
|
answer.ec = std::errc(); // be optimistic
|
|
bool minusSign = false;
|
|
if (*first == '-') { // assume first < last, so dereference without checks; C++17 20.19.3.(7.1) explicitly forbids '+' here
|
|
minusSign = true;
|
|
++first;
|
|
}
|
|
if (last - first >= 3) {
|
|
if (fastfloat_strncasecmp(first, "nan", 3)) {
|
|
answer.ptr = (first += 3);
|
|
value = minusSign ? -std::numeric_limits<T>::quiet_NaN() : std::numeric_limits<T>::quiet_NaN();
|
|
// Check for possible nan(n-char-seq-opt), C++17 20.19.3.7, C11 7.20.1.3.3. At least MSVC produces nan(ind) and nan(snan).
|
|
if(first != last && *first == '(') {
|
|
for(const char* ptr = first + 1; ptr != last; ++ptr) {
|
|
if (*ptr == ')') {
|
|
answer.ptr = ptr + 1; // valid nan(n-char-seq-opt)
|
|
break;
|
|
}
|
|
else if(!(('a' <= *ptr && *ptr <= 'z') || ('A' <= *ptr && *ptr <= 'Z') || ('0' <= *ptr && *ptr <= '9') || *ptr == '_'))
|
|
break; // forbidden char, not nan(n-char-seq-opt)
|
|
}
|
|
}
|
|
return answer;
|
|
}
|
|
if (fastfloat_strncasecmp(first, "inf", 3)) {
|
|
if ((last - first >= 8) && fastfloat_strncasecmp(first + 3, "inity", 5)) {
|
|
answer.ptr = first + 8;
|
|
} else {
|
|
answer.ptr = first + 3;
|
|
}
|
|
value = minusSign ? -std::numeric_limits<T>::infinity() : std::numeric_limits<T>::infinity();
|
|
return answer;
|
|
}
|
|
}
|
|
answer.ec = std::errc::invalid_argument;
|
|
return answer;
|
|
}
|
|
|
|
/**
|
|
* Returns true if the floating-pointing rounding mode is to 'nearest'.
|
|
* It is the default on most system. This function is meant to be inexpensive.
|
|
* Credit : @mwalcott3
|
|
*/
|
|
fastfloat_really_inline bool rounds_to_nearest() noexcept {
|
|
// See
|
|
// A fast function to check your floating-point rounding mode
|
|
// https://lemire.me/blog/2022/11/16/a-fast-function-to-check-your-floating-point-rounding-mode/
|
|
//
|
|
// This function is meant to be equivalent to :
|
|
// prior: #include <cfenv>
|
|
// return fegetround() == FE_TONEAREST;
|
|
// However, it is expected to be much faster than the fegetround()
|
|
// function call.
|
|
//
|
|
// The volatile keywoard prevents the compiler from computing the function
|
|
// at compile-time.
|
|
// There might be other ways to prevent compile-time optimizations (e.g., asm).
|
|
// The value does not need to be std::numeric_limits<float>::min(), any small
|
|
// value so that 1 + x should round to 1 would do (after accounting for excess
|
|
// precision, as in 387 instructions).
|
|
static volatile float fmin = std::numeric_limits<float>::min();
|
|
float fmini = fmin; // we copy it so that it gets loaded at most once.
|
|
//
|
|
// Explanation:
|
|
// Only when fegetround() == FE_TONEAREST do we have that
|
|
// fmin + 1.0f == 1.0f - fmin.
|
|
//
|
|
// FE_UPWARD:
|
|
// fmin + 1.0f > 1
|
|
// 1.0f - fmin == 1
|
|
//
|
|
// FE_DOWNWARD or FE_TOWARDZERO:
|
|
// fmin + 1.0f == 1
|
|
// 1.0f - fmin < 1
|
|
//
|
|
// Note: This may fail to be accurate if fast-math has been
|
|
// enabled, as rounding conventions may not apply.
|
|
#if FASTFLOAT_VISUAL_STUDIO
|
|
# pragma warning(push)
|
|
// todo: is there a VS warning?
|
|
// see https://stackoverflow.com/questions/46079446/is-there-a-warning-for-floating-point-equality-checking-in-visual-studio-2013
|
|
#elif defined(__clang__)
|
|
# pragma clang diagnostic push
|
|
# pragma clang diagnostic ignored "-Wfloat-equal"
|
|
#elif defined(__GNUC__)
|
|
# pragma GCC diagnostic push
|
|
# pragma GCC diagnostic ignored "-Wfloat-equal"
|
|
#endif
|
|
return (fmini + 1.0f == 1.0f - fmini);
|
|
#if FASTFLOAT_VISUAL_STUDIO
|
|
# pragma warning(pop)
|
|
#elif defined(__clang__)
|
|
# pragma clang diagnostic pop
|
|
#elif defined(__GNUC__)
|
|
# pragma GCC diagnostic pop
|
|
#endif
|
|
}
|
|
|
|
} // namespace detail
|
|
|
|
template<typename T>
|
|
from_chars_result from_chars(const char *first, const char *last,
|
|
T &value, chars_format fmt /*= chars_format::general*/) noexcept {
|
|
return from_chars_advanced(first, last, value, parse_options{fmt});
|
|
}
|
|
|
|
template<typename T>
|
|
from_chars_result from_chars_advanced(const char *first, const char *last,
|
|
T &value, parse_options options) noexcept {
|
|
|
|
static_assert (std::is_same<T, double>::value || std::is_same<T, float>::value, "only float and double are supported");
|
|
|
|
|
|
from_chars_result answer;
|
|
if (first == last) {
|
|
answer.ec = std::errc::invalid_argument;
|
|
answer.ptr = first;
|
|
return answer;
|
|
}
|
|
parsed_number_string pns = parse_number_string(first, last, options);
|
|
if (!pns.valid) {
|
|
return detail::parse_infnan(first, last, value);
|
|
}
|
|
answer.ec = std::errc(); // be optimistic
|
|
answer.ptr = pns.lastmatch;
|
|
// The implementation of the Clinger's fast path is convoluted because
|
|
// we want round-to-nearest in all cases, irrespective of the rounding mode
|
|
// selected on the thread.
|
|
// We proceed optimistically, assuming that detail::rounds_to_nearest() returns
|
|
// true.
|
|
if (binary_format<T>::min_exponent_fast_path() <= pns.exponent && pns.exponent <= binary_format<T>::max_exponent_fast_path() && !pns.too_many_digits) {
|
|
// Unfortunately, the conventional Clinger's fast path is only possible
|
|
// when the system rounds to the nearest float.
|
|
//
|
|
// We expect the next branch to almost always be selected.
|
|
// We could check it first (before the previous branch), but
|
|
// there might be performance advantages at having the check
|
|
// be last.
|
|
if(detail::rounds_to_nearest()) {
|
|
// We have that fegetround() == FE_TONEAREST.
|
|
// Next is Clinger's fast path.
|
|
if (pns.mantissa <=binary_format<T>::max_mantissa_fast_path()) {
|
|
value = T(pns.mantissa);
|
|
if (pns.exponent < 0) { value = value / binary_format<T>::exact_power_of_ten(-pns.exponent); }
|
|
else { value = value * binary_format<T>::exact_power_of_ten(pns.exponent); }
|
|
if (pns.negative) { value = -value; }
|
|
return answer;
|
|
}
|
|
} else {
|
|
// We do not have that fegetround() == FE_TONEAREST.
|
|
// Next is a modified Clinger's fast path, inspired by Jakub Jelínek's proposal
|
|
if (pns.exponent >= 0 && pns.mantissa <=binary_format<T>::max_mantissa_fast_path(pns.exponent)) {
|
|
#if defined(__clang__)
|
|
// Clang may map 0 to -0.0 when fegetround() == FE_DOWNWARD
|
|
if(pns.mantissa == 0) {
|
|
value = 0;
|
|
return answer;
|
|
}
|
|
#endif
|
|
value = T(pns.mantissa) * binary_format<T>::exact_power_of_ten(pns.exponent);
|
|
if (pns.negative) { value = -value; }
|
|
return answer;
|
|
}
|
|
}
|
|
}
|
|
adjusted_mantissa am = compute_float<binary_format<T>>(pns.exponent, pns.mantissa);
|
|
if(pns.too_many_digits && am.power2 >= 0) {
|
|
if(am != compute_float<binary_format<T>>(pns.exponent, pns.mantissa + 1)) {
|
|
am = compute_error<binary_format<T>>(pns.exponent, pns.mantissa);
|
|
}
|
|
}
|
|
// If we called compute_float<binary_format<T>>(pns.exponent, pns.mantissa) and we have an invalid power (am.power2 < 0),
|
|
// then we need to go the long way around again. This is very uncommon.
|
|
if(am.power2 < 0) { am = digit_comp<T>(pns, am); }
|
|
to_float(pns.negative, am, value);
|
|
return answer;
|
|
}
|
|
|
|
} // namespace fast_float
|
|
|
|
#endif
|