Duckstation/dep/cubeb/src/cubeb_utils.h
Stenzek 872cee908c
dep/cubeb: Sync to 19fcbef
And apply PR #740 (Re-enable and polish IAudioClient3 to achieve lower
latencies).

`*latency_frames = min_period;` in wasapi_get_min_latency was changed to
`*latency_frames = hns_to_frames(params.rate, min_period_rt);`, as
otherwise it reports in mixer frames, not stream frames.
2024-05-12 17:10:03 +10:00

319 lines
7.9 KiB
C++

/*
* Copyright © 2016 Mozilla Foundation
*
* This program is made available under an ISC-style license. See the
* accompanying file LICENSE for details.
*/
#if !defined(CUBEB_UTILS)
#define CUBEB_UTILS
#include "cubeb/cubeb.h"
#ifdef __cplusplus
#include <assert.h>
#include <mutex>
#include <stdint.h>
#include <string.h>
#include <type_traits>
#if defined(_WIN32)
#include "cubeb_utils_win.h"
#else
#include "cubeb_utils_unix.h"
#endif
/** Similar to memcpy, but accounts for the size of an element. */
template <typename T>
void
PodCopy(T * destination, const T * source, size_t count)
{
static_assert(std::is_trivial<T>::value, "Requires trivial type");
assert(destination && source);
memcpy(destination, source, count * sizeof(T));
}
/** Similar to memmove, but accounts for the size of an element. */
template <typename T>
void
PodMove(T * destination, const T * source, size_t count)
{
static_assert(std::is_trivial<T>::value, "Requires trivial type");
assert(destination && source);
memmove(destination, source, count * sizeof(T));
}
/** Similar to a memset to zero, but accounts for the size of an element. */
template <typename T>
void
PodZero(T * destination, size_t count)
{
static_assert(std::is_trivial<T>::value, "Requires trivial type");
assert(destination);
memset(destination, 0, count * sizeof(T));
}
namespace {
template <typename T, typename Trait>
void
Copy(T * destination, const T * source, size_t count, Trait)
{
for (size_t i = 0; i < count; i++) {
destination[i] = source[i];
}
}
template <typename T>
void
Copy(T * destination, const T * source, size_t count, std::true_type)
{
PodCopy(destination, source, count);
}
} // namespace
/**
* This allows copying a number of elements from a `source` pointer to a
* `destination` pointer, using `memcpy` if it is safe to do so, or a loop that
* calls the constructors and destructors otherwise.
*/
template <typename T>
void
Copy(T * destination, const T * source, size_t count)
{
assert(destination && source);
Copy(destination, source, count, typename std::is_trivial<T>::type());
}
namespace {
template <typename T, typename Trait>
void
ConstructDefault(T * destination, size_t count, Trait)
{
for (size_t i = 0; i < count; i++) {
destination[i] = T();
}
}
template <typename T>
void
ConstructDefault(T * destination, size_t count, std::true_type)
{
PodZero(destination, count);
}
} // namespace
/**
* This allows zeroing (using memset) or default-constructing a number of
* elements calling the constructors and destructors if necessary.
*/
template <typename T>
void
ConstructDefault(T * destination, size_t count)
{
assert(destination);
ConstructDefault(destination, count, typename std::is_arithmetic<T>::type());
}
template <typename T> class auto_array {
public:
explicit auto_array(uint32_t capacity = 0)
: data_(capacity ? new T[capacity] : nullptr), capacity_(capacity),
length_(0)
{
}
~auto_array() { delete[] data_; }
/** Get a constant pointer to the underlying data. */
T * data() const { return data_; }
T * end() const { return data_ + length_; }
const T & at(size_t index) const
{
assert(index < length_ && "out of range");
return data_[index];
}
T & at(size_t index)
{
assert(index < length_ && "out of range");
return data_[index];
}
/** Get how much underlying storage this auto_array has. */
size_t capacity() const { return capacity_; }
/** Get how much elements this auto_array contains. */
size_t length() const { return length_; }
/** Keeps the storage, but removes all the elements from the array. */
void clear() { length_ = 0; }
/** Change the storage of this auto array, copying the elements to the new
* storage.
* @returns true in case of success
* @returns false if the new capacity is not big enough to accomodate for the
* elements in the array.
*/
bool reserve(size_t new_capacity)
{
if (new_capacity < length_) {
return false;
}
T * new_data = new T[new_capacity];
if (data_ && length_) {
PodCopy(new_data, data_, length_);
}
capacity_ = new_capacity;
delete[] data_;
data_ = new_data;
return true;
}
/** Append `length` elements to the end of the array, resizing the array if
* needed.
* @parameter elements the elements to append to the array.
* @parameter length the number of elements to append to the array.
*/
void push(const T * elements, size_t length)
{
if (length_ + length > capacity_) {
reserve(length_ + length);
}
if (data_) {
PodCopy(data_ + length_, elements, length);
}
length_ += length;
}
/** Append `length` zero-ed elements to the end of the array, resizing the
* array if needed.
* @parameter length the number of elements to append to the array.
*/
void push_silence(size_t length)
{
if (length_ + length > capacity_) {
reserve(length + length_);
}
if (data_) {
PodZero(data_ + length_, length);
}
length_ += length;
}
/** Prepend `length` zero-ed elements to the front of the array, resizing and
* shifting the array if needed.
* @parameter length the number of elements to prepend to the array.
*/
void push_front_silence(size_t length)
{
if (length_ + length > capacity_) {
reserve(length + length_);
}
if (data_) {
PodMove(data_ + length, data_, length_);
PodZero(data_, length);
}
length_ += length;
}
/** Return the number of free elements in the array. */
size_t available() const { return capacity_ - length_; }
/** Copies `length` elements to `elements` if it is not null, and shift
* the remaining elements of the `auto_array` to the beginning.
* @parameter elements a buffer to copy the elements to, or nullptr.
* @parameter length the number of elements to copy.
* @returns true in case of success.
* @returns false if the auto_array contains less than `length` elements. */
bool pop(T * elements, size_t length)
{
if (length > length_) {
return false;
}
if (!data_) {
return true;
}
if (elements) {
PodCopy(elements, data_, length);
}
PodMove(data_, data_ + length, length_ - length);
length_ -= length;
return true;
}
void set_length(size_t length)
{
assert(length <= capacity_);
length_ = length;
}
private:
/** The underlying storage */
T * data_;
/** The size, in number of elements, of the storage. */
size_t capacity_;
/** The number of elements the array contains. */
size_t length_;
};
struct auto_array_wrapper {
virtual void push(void * elements, size_t length) = 0;
virtual size_t length() = 0;
virtual void push_silence(size_t length) = 0;
virtual bool pop(size_t length) = 0;
virtual void * data() = 0;
virtual void * end() = 0;
virtual void clear() = 0;
virtual bool reserve(size_t capacity) = 0;
virtual void set_length(size_t length) = 0;
virtual ~auto_array_wrapper() {}
};
template <typename T>
struct auto_array_wrapper_impl : public auto_array_wrapper {
auto_array_wrapper_impl() {}
explicit auto_array_wrapper_impl(uint32_t size) : ar(size) {}
void push(void * elements, size_t length) override
{
ar.push(static_cast<T *>(elements), length);
}
size_t length() override { return ar.length(); }
void push_silence(size_t length) override { ar.push_silence(length); }
bool pop(size_t length) override { return ar.pop(nullptr, length); }
void * data() override { return ar.data(); }
void * end() override { return ar.end(); }
void clear() override { ar.clear(); }
bool reserve(size_t capacity) override { return ar.reserve(capacity); }
void set_length(size_t length) override { ar.set_length(length); }
~auto_array_wrapper_impl() { ar.clear(); }
private:
auto_array<T> ar;
};
extern "C" {
size_t
cubeb_sample_size(cubeb_sample_format format);
}
using auto_lock = std::lock_guard<owned_critical_section>;
#endif // __cplusplus
#endif /* CUBEB_UTILS */