Duckstation/src/core/gpu_sw.cpp
2024-07-03 15:44:12 +10:00

812 lines
27 KiB
C++

// SPDX-FileCopyrightText: 2019-2024 Connor McLaughlin <stenzek@gmail.com>
// SPDX-License-Identifier: (GPL-3.0 OR CC-BY-NC-ND-4.0)
#include "gpu_sw.h"
#include "system.h"
#include "util/gpu_device.h"
#include "common/align.h"
#include "common/assert.h"
#include "common/gsvector.h"
#include "common/log.h"
#include <algorithm>
Log_SetChannel(GPU_SW);
template<typename T>
ALWAYS_INLINE static constexpr std::tuple<T, T> MinMax(T v1, T v2)
{
if (v1 > v2)
return std::tie(v2, v1);
else
return std::tie(v1, v2);
}
GPU_SW::GPU_SW() = default;
GPU_SW::~GPU_SW()
{
g_gpu_device->RecycleTexture(std::move(m_upload_texture));
m_backend.Shutdown();
}
const Threading::Thread* GPU_SW::GetSWThread() const
{
return m_backend.GetThread();
}
bool GPU_SW::IsHardwareRenderer() const
{
return false;
}
bool GPU_SW::Initialize()
{
if (!GPU::Initialize() || !m_backend.Initialize(false))
return false;
static constexpr const std::array formats_for_16bit = {GPUTexture::Format::RGB565, GPUTexture::Format::RGBA5551,
GPUTexture::Format::RGBA8, GPUTexture::Format::BGRA8};
static constexpr const std::array formats_for_24bit = {GPUTexture::Format::RGBA8, GPUTexture::Format::BGRA8,
GPUTexture::Format::RGB565, GPUTexture::Format::RGBA5551};
for (const GPUTexture::Format format : formats_for_16bit)
{
if (g_gpu_device->SupportsTextureFormat(format))
{
m_16bit_display_format = format;
break;
}
}
for (const GPUTexture::Format format : formats_for_24bit)
{
if (g_gpu_device->SupportsTextureFormat(format))
{
m_24bit_display_format = format;
break;
}
}
return true;
}
bool GPU_SW::DoState(StateWrapper& sw, GPUTexture** host_texture, bool update_display)
{
// need to ensure the worker thread is done
m_backend.Sync(true);
// ignore the host texture for software mode, since we want to save vram here
return GPU::DoState(sw, nullptr, update_display);
}
void GPU_SW::Reset(bool clear_vram)
{
GPU::Reset(clear_vram);
m_backend.Reset();
}
void GPU_SW::UpdateSettings(const Settings& old_settings)
{
GPU::UpdateSettings(old_settings);
m_backend.UpdateSettings();
}
GPUTexture* GPU_SW::GetDisplayTexture(u32 width, u32 height, GPUTexture::Format format)
{
if (!m_upload_texture || m_upload_texture->GetWidth() != width || m_upload_texture->GetHeight() != height ||
m_upload_texture->GetFormat() != format)
{
ClearDisplayTexture();
g_gpu_device->RecycleTexture(std::move(m_upload_texture));
m_upload_texture =
g_gpu_device->FetchTexture(width, height, 1, 1, 1, GPUTexture::Type::DynamicTexture, format, nullptr, 0);
if (!m_upload_texture) [[unlikely]]
ERROR_LOG("Failed to create {}x{} {} texture", width, height, static_cast<u32>(format));
}
return m_upload_texture.get();
}
template<GPUTexture::Format out_format, typename out_type>
static void CopyOutRow16(const u16* src_ptr, out_type* dst_ptr, u32 width);
template<GPUTexture::Format out_format, typename out_type>
static out_type VRAM16ToOutput(u16 value);
template<>
ALWAYS_INLINE u16 VRAM16ToOutput<GPUTexture::Format::RGBA5551, u16>(u16 value)
{
return (value & 0x3E0) | ((value >> 10) & 0x1F) | ((value & 0x1F) << 10);
}
template<>
ALWAYS_INLINE u16 VRAM16ToOutput<GPUTexture::Format::RGB565, u16>(u16 value)
{
return ((value & 0x3E0) << 1) | ((value & 0x20) << 1) | ((value >> 10) & 0x1F) | ((value & 0x1F) << 11);
}
template<>
ALWAYS_INLINE u32 VRAM16ToOutput<GPUTexture::Format::RGBA8, u32>(u16 value)
{
const u32 value32 = ZeroExtend32(value);
const u32 r = (value32 & 31u) << 3;
const u32 g = ((value32 >> 5) & 31u) << 3;
const u32 b = ((value32 >> 10) & 31u) << 3;
const u32 a = ((value >> 15) != 0) ? 255 : 0;
return ZeroExtend32(r) | (ZeroExtend32(g) << 8) | (ZeroExtend32(b) << 16) | (ZeroExtend32(a) << 24);
}
template<>
ALWAYS_INLINE u32 VRAM16ToOutput<GPUTexture::Format::BGRA8, u32>(u16 value)
{
const u32 value32 = ZeroExtend32(value);
const u32 r = (value32 & 31u) << 3;
const u32 g = ((value32 >> 5) & 31u) << 3;
const u32 b = ((value32 >> 10) & 31u) << 3;
return ZeroExtend32(b) | (ZeroExtend32(g) << 8) | (ZeroExtend32(r) << 16) | (0xFF000000u);
}
template<>
ALWAYS_INLINE void CopyOutRow16<GPUTexture::Format::RGBA5551, u16>(const u16* src_ptr, u16* dst_ptr, u32 width)
{
u32 col = 0;
const u32 aligned_width = Common::AlignDownPow2(width, 8);
for (; col < aligned_width; col += 8)
{
constexpr GSVector4i single_mask = GSVector4i::cxpr16(0x1F);
GSVector4i value = GSVector4i::load<false>(src_ptr);
src_ptr += 8;
GSVector4i a = value & GSVector4i::cxpr16(0x3E0);
GSVector4i b = value.srl16<10>() & single_mask;
GSVector4i c = (value & single_mask).sll16<10>();
value = (a | b) | c;
GSVector4i::store<false>(dst_ptr, value);
dst_ptr += 8;
}
for (; col < width; col++)
*(dst_ptr++) = VRAM16ToOutput<GPUTexture::Format::RGBA5551, u16>(*(src_ptr++));
}
template<>
ALWAYS_INLINE void CopyOutRow16<GPUTexture::Format::RGB565, u16>(const u16* src_ptr, u16* dst_ptr, u32 width)
{
u32 col = 0;
const u32 aligned_width = Common::AlignDownPow2(width, 8);
for (; col < aligned_width; col += 8)
{
constexpr GSVector4i single_mask = GSVector4i::cxpr16(0x1F);
GSVector4i value = GSVector4i::load<false>(src_ptr);
src_ptr += 8;
GSVector4i a = (value & GSVector4i::cxpr16(0x3E0)).sll16<1>(); // (value & 0x3E0) << 1
GSVector4i b = (value & GSVector4i::cxpr16(0x20)).sll16<1>(); // (value & 0x20) << 1
GSVector4i c = (value.srl16<10>() & single_mask); // ((value >> 10) & 0x1F)
GSVector4i d = (value & single_mask).sll16<11>(); // ((value & 0x1F) << 11)
value = (((a | b) | c) | d);
GSVector4i::store<false>(dst_ptr, value);
dst_ptr += 8;
}
for (; col < width; col++)
*(dst_ptr++) = VRAM16ToOutput<GPUTexture::Format::RGB565, u16>(*(src_ptr++));
}
template<>
ALWAYS_INLINE void CopyOutRow16<GPUTexture::Format::RGBA8, u32>(const u16* src_ptr, u32* dst_ptr, u32 width)
{
for (u32 col = 0; col < width; col++)
*(dst_ptr++) = VRAM16ToOutput<GPUTexture::Format::RGBA8, u32>(*(src_ptr++));
}
template<>
ALWAYS_INLINE void CopyOutRow16<GPUTexture::Format::BGRA8, u32>(const u16* src_ptr, u32* dst_ptr, u32 width)
{
for (u32 col = 0; col < width; col++)
*(dst_ptr++) = VRAM16ToOutput<GPUTexture::Format::BGRA8, u32>(*(src_ptr++));
}
template<GPUTexture::Format display_format>
ALWAYS_INLINE_RELEASE bool GPU_SW::CopyOut15Bit(u32 src_x, u32 src_y, u32 width, u32 height, u32 line_skip)
{
using OutputPixelType =
std::conditional_t<display_format == GPUTexture::Format::RGBA8 || display_format == GPUTexture::Format::BGRA8, u32,
u16>;
GPUTexture* texture = GetDisplayTexture(width, height, display_format);
if (!texture) [[unlikely]]
return false;
u32 dst_stride = width * sizeof(OutputPixelType);
u8* dst_ptr = m_upload_buffer.data();
const bool mapped = texture->Map(reinterpret_cast<void**>(&dst_ptr), &dst_stride, 0, 0, width, height);
// Fast path when not wrapping around.
if ((src_x + width) <= VRAM_WIDTH && (src_y + height) <= VRAM_HEIGHT)
{
const u16* src_ptr = &g_vram[src_y * VRAM_WIDTH + src_x];
const u32 src_step = VRAM_WIDTH << line_skip;
for (u32 row = 0; row < height; row++)
{
CopyOutRow16<display_format>(src_ptr, reinterpret_cast<OutputPixelType*>(dst_ptr), width);
src_ptr += src_step;
dst_ptr += dst_stride;
}
}
else
{
const u32 end_x = src_x + width;
const u32 y_step = (1 << line_skip);
for (u32 row = 0; row < height; row++)
{
const u16* src_row_ptr = &g_vram[(src_y % VRAM_HEIGHT) * VRAM_WIDTH];
OutputPixelType* dst_row_ptr = reinterpret_cast<OutputPixelType*>(dst_ptr);
for (u32 col = src_x; col < end_x; col++)
*(dst_row_ptr++) = VRAM16ToOutput<display_format, OutputPixelType>(src_row_ptr[col % VRAM_WIDTH]);
src_y += y_step;
dst_ptr += dst_stride;
}
}
if (mapped)
texture->Unmap();
else
texture->Update(0, 0, width, height, m_upload_buffer.data(), dst_stride);
return true;
}
template<GPUTexture::Format display_format>
ALWAYS_INLINE_RELEASE bool GPU_SW::CopyOut24Bit(u32 src_x, u32 src_y, u32 skip_x, u32 width, u32 height, u32 line_skip)
{
using OutputPixelType =
std::conditional_t<display_format == GPUTexture::Format::RGBA8 || display_format == GPUTexture::Format::BGRA8, u32,
u16>;
GPUTexture* texture = GetDisplayTexture(width, height, display_format);
if (!texture) [[unlikely]]
return false;
u32 dst_stride = Common::AlignUpPow2<u32>(width * sizeof(OutputPixelType), 4);
u8* dst_ptr = m_upload_buffer.data();
const bool mapped = texture->Map(reinterpret_cast<void**>(&dst_ptr), &dst_stride, 0, 0, width, height);
if ((src_x + width) <= VRAM_WIDTH && (src_y + (height << line_skip)) <= VRAM_HEIGHT)
{
const u8* src_ptr = reinterpret_cast<const u8*>(&g_vram[src_y * VRAM_WIDTH + src_x]) + (skip_x * 3);
const u32 src_stride = (VRAM_WIDTH << line_skip) * sizeof(u16);
for (u32 row = 0; row < height; row++)
{
if constexpr (display_format == GPUTexture::Format::RGBA8)
{
const u8* src_row_ptr = src_ptr;
u8* dst_row_ptr = reinterpret_cast<u8*>(dst_ptr);
for (u32 col = 0; col < width; col++)
{
*(dst_row_ptr++) = *(src_row_ptr++);
*(dst_row_ptr++) = *(src_row_ptr++);
*(dst_row_ptr++) = *(src_row_ptr++);
*(dst_row_ptr++) = 0xFF;
}
}
else if constexpr (display_format == GPUTexture::Format::BGRA8)
{
const u8* src_row_ptr = src_ptr;
u8* dst_row_ptr = reinterpret_cast<u8*>(dst_ptr);
for (u32 col = 0; col < width; col++)
{
*(dst_row_ptr++) = src_row_ptr[2];
*(dst_row_ptr++) = src_row_ptr[1];
*(dst_row_ptr++) = src_row_ptr[0];
*(dst_row_ptr++) = 0xFF;
src_row_ptr += 3;
}
}
else if constexpr (display_format == GPUTexture::Format::RGB565)
{
const u8* src_row_ptr = src_ptr;
u16* dst_row_ptr = reinterpret_cast<u16*>(dst_ptr);
for (u32 col = 0; col < width; col++)
{
*(dst_row_ptr++) = ((static_cast<u16>(src_row_ptr[0]) >> 3) << 11) |
((static_cast<u16>(src_row_ptr[1]) >> 2) << 5) | (static_cast<u16>(src_row_ptr[2]) >> 3);
src_row_ptr += 3;
}
}
else if constexpr (display_format == GPUTexture::Format::RGBA5551)
{
const u8* src_row_ptr = src_ptr;
u16* dst_row_ptr = reinterpret_cast<u16*>(dst_ptr);
for (u32 col = 0; col < width; col++)
{
*(dst_row_ptr++) = ((static_cast<u16>(src_row_ptr[0]) >> 3) << 10) |
((static_cast<u16>(src_row_ptr[1]) >> 3) << 5) | (static_cast<u16>(src_row_ptr[2]) >> 3);
src_row_ptr += 3;
}
}
src_ptr += src_stride;
dst_ptr += dst_stride;
}
}
else
{
const u32 y_step = (1 << line_skip);
for (u32 row = 0; row < height; row++)
{
const u16* src_row_ptr = &g_vram[(src_y % VRAM_HEIGHT) * VRAM_WIDTH];
OutputPixelType* dst_row_ptr = reinterpret_cast<OutputPixelType*>(dst_ptr);
for (u32 col = 0; col < width; col++)
{
const u32 offset = (src_x + (((skip_x + col) * 3) / 2));
const u16 s0 = src_row_ptr[offset % VRAM_WIDTH];
const u16 s1 = src_row_ptr[(offset + 1) % VRAM_WIDTH];
const u8 shift = static_cast<u8>(col & 1u) * 8;
const u32 rgb = (((ZeroExtend32(s1) << 16) | ZeroExtend32(s0)) >> shift);
if constexpr (display_format == GPUTexture::Format::RGBA8)
{
*(dst_row_ptr++) = rgb | 0xFF000000u;
}
else if constexpr (display_format == GPUTexture::Format::BGRA8)
{
*(dst_row_ptr++) = (rgb & 0x00FF00) | ((rgb & 0xFF) << 16) | ((rgb >> 16) & 0xFF) | 0xFF000000u;
}
else if constexpr (display_format == GPUTexture::Format::RGB565)
{
*(dst_row_ptr++) = ((rgb >> 3) & 0x1F) | (((rgb >> 10) << 5) & 0x7E0) | (((rgb >> 19) << 11) & 0x3E0000);
}
else if constexpr (display_format == GPUTexture::Format::RGBA5551)
{
*(dst_row_ptr++) = ((rgb >> 3) & 0x1F) | (((rgb >> 11) << 5) & 0x3E0) | (((rgb >> 19) << 10) & 0x1F0000);
}
}
src_y += y_step;
dst_ptr += dst_stride;
}
}
if (mapped)
texture->Unmap();
else
texture->Update(0, 0, width, height, m_upload_buffer.data(), dst_stride);
return true;
}
bool GPU_SW::CopyOut(u32 src_x, u32 src_y, u32 skip_x, u32 width, u32 height, u32 line_skip, bool is_24bit)
{
if (!is_24bit)
{
DebugAssert(skip_x == 0);
switch (m_16bit_display_format)
{
case GPUTexture::Format::RGBA5551:
return CopyOut15Bit<GPUTexture::Format::RGBA5551>(src_x, src_y, width, height, line_skip);
case GPUTexture::Format::RGB565:
return CopyOut15Bit<GPUTexture::Format::RGB565>(src_x, src_y, width, height, line_skip);
case GPUTexture::Format::RGBA8:
return CopyOut15Bit<GPUTexture::Format::RGBA8>(src_x, src_y, width, height, line_skip);
case GPUTexture::Format::BGRA8:
return CopyOut15Bit<GPUTexture::Format::BGRA8>(src_x, src_y, width, height, line_skip);
default:
UnreachableCode();
}
}
else
{
switch (m_24bit_display_format)
{
case GPUTexture::Format::RGBA5551:
return CopyOut24Bit<GPUTexture::Format::RGBA5551>(src_x, src_y, skip_x, width, height, line_skip);
case GPUTexture::Format::RGB565:
return CopyOut24Bit<GPUTexture::Format::RGB565>(src_x, src_y, skip_x, width, height, line_skip);
case GPUTexture::Format::RGBA8:
return CopyOut24Bit<GPUTexture::Format::RGBA8>(src_x, src_y, skip_x, width, height, line_skip);
case GPUTexture::Format::BGRA8:
return CopyOut24Bit<GPUTexture::Format::BGRA8>(src_x, src_y, skip_x, width, height, line_skip);
default:
UnreachableCode();
}
}
}
void GPU_SW::UpdateDisplay()
{
// fill display texture
m_backend.Sync(true);
if (!g_settings.debugging.show_vram)
{
if (IsDisplayDisabled())
{
ClearDisplayTexture();
return;
}
const bool is_24bit = m_GPUSTAT.display_area_color_depth_24;
const bool interlaced = IsInterlacedDisplayEnabled();
const u32 field = GetInterlacedDisplayField();
const u32 vram_offset_x = is_24bit ? m_crtc_state.regs.X : m_crtc_state.display_vram_left;
const u32 vram_offset_y =
m_crtc_state.display_vram_top + ((interlaced && m_GPUSTAT.vertical_resolution) ? field : 0);
const u32 skip_x = is_24bit ? (m_crtc_state.display_vram_left - m_crtc_state.regs.X) : 0;
const u32 read_width = m_crtc_state.display_vram_width;
const u32 read_height = interlaced ? (m_crtc_state.display_vram_height / 2) : m_crtc_state.display_vram_height;
if (IsInterlacedDisplayEnabled())
{
const u32 line_skip = m_GPUSTAT.vertical_resolution;
if (CopyOut(vram_offset_x, vram_offset_y, skip_x, read_width, read_height, line_skip, is_24bit))
{
SetDisplayTexture(m_upload_texture.get(), nullptr, 0, 0, read_width, read_height);
if (is_24bit && g_settings.gpu_24bit_chroma_smoothing)
{
if (ApplyChromaSmoothing())
Deinterlace(field, 0);
}
else
{
Deinterlace(field, 0);
}
}
}
else
{
if (CopyOut(vram_offset_x, vram_offset_y, skip_x, read_width, read_height, 0, is_24bit))
{
SetDisplayTexture(m_upload_texture.get(), nullptr, 0, 0, read_width, read_height);
if (is_24bit && g_settings.gpu_24bit_chroma_smoothing)
ApplyChromaSmoothing();
}
}
}
else
{
if (CopyOut(0, 0, 0, VRAM_WIDTH, VRAM_HEIGHT, 0, false))
SetDisplayTexture(m_upload_texture.get(), nullptr, 0, 0, VRAM_WIDTH, VRAM_HEIGHT);
}
}
void GPU_SW::FillBackendCommandParameters(GPUBackendCommand* cmd) const
{
cmd->params.bits = 0;
cmd->params.check_mask_before_draw = m_GPUSTAT.check_mask_before_draw;
cmd->params.set_mask_while_drawing = m_GPUSTAT.set_mask_while_drawing;
cmd->params.active_line_lsb = m_crtc_state.active_line_lsb;
cmd->params.interlaced_rendering = IsInterlacedRenderingEnabled();
}
void GPU_SW::FillDrawCommand(GPUBackendDrawCommand* cmd, GPURenderCommand rc) const
{
FillBackendCommandParameters(cmd);
cmd->rc.bits = rc.bits;
cmd->draw_mode.bits = m_draw_mode.mode_reg.bits;
cmd->palette.bits = m_draw_mode.palette_reg.bits;
cmd->window = m_draw_mode.texture_window;
}
void GPU_SW::DispatchRenderCommand()
{
if (m_drawing_area_changed)
{
GPUBackendSetDrawingAreaCommand* cmd = m_backend.NewSetDrawingAreaCommand();
cmd->new_area = m_drawing_area;
m_backend.PushCommand(cmd);
m_drawing_area_changed = false;
}
const GPURenderCommand rc{m_render_command.bits};
switch (rc.primitive)
{
case GPUPrimitive::Polygon:
{
const u32 num_vertices = rc.quad_polygon ? 4 : 3;
GPUBackendDrawPolygonCommand* cmd = m_backend.NewDrawPolygonCommand(num_vertices);
FillDrawCommand(cmd, rc);
std::array<GSVector4i, 4> positions;
const u32 first_color = rc.color_for_first_vertex;
const bool shaded = rc.shading_enable;
const bool textured = rc.texture_enable;
for (u32 i = 0; i < num_vertices; i++)
{
GPUBackendDrawPolygonCommand::Vertex* vert = &cmd->vertices[i];
vert->color = (shaded && i > 0) ? (FifoPop() & UINT32_C(0x00FFFFFF)) : first_color;
const u64 maddr_and_pos = m_fifo.Pop();
const GPUVertexPosition vp{Truncate32(maddr_and_pos)};
vert->x = m_drawing_offset.x + vp.x;
vert->y = m_drawing_offset.y + vp.y;
vert->texcoord = textured ? Truncate16(FifoPop()) : 0;
positions[i] = GSVector4i::loadl(&vert->x);
}
if (!IsDrawingAreaIsValid())
return;
// Cull polygons which are too large.
const GSVector4i min_pos_12 = positions[1].min_i32(positions[2]);
const GSVector4i max_pos_12 = positions[1].max_i32(positions[2]);
const GSVector4i draw_rect_012 =
min_pos_12.min_i32(positions[0]).upl64(max_pos_12.max_i32(positions[0])).add32(GSVector4i::cxpr(0, 0, 1, 1));
const bool first_tri_culled =
(draw_rect_012.width() > MAX_PRIMITIVE_WIDTH || draw_rect_012.height() > MAX_PRIMITIVE_HEIGHT ||
!m_clamped_drawing_area.rintersects(draw_rect_012));
if (first_tri_culled)
{
DEBUG_LOG("Culling off-screen/too-large polygon: {},{} {},{} {},{}", cmd->vertices[0].x, cmd->vertices[0].y,
cmd->vertices[1].x, cmd->vertices[1].y, cmd->vertices[2].x, cmd->vertices[2].y);
if (!rc.quad_polygon)
return;
}
else
{
AddDrawTriangleTicks(positions[0], positions[1], positions[2], rc.shading_enable, rc.texture_enable,
rc.transparency_enable);
}
// quads
if (rc.quad_polygon)
{
const GSVector4i draw_rect_123 =
min_pos_12.min_i32(positions[3]).upl64(max_pos_12.max_i32(positions[3])).add32(GSVector4i::cxpr(0, 0, 1, 1));
// Cull polygons which are too large.
const bool second_tri_culled =
(draw_rect_123.width() > MAX_PRIMITIVE_WIDTH || draw_rect_123.height() > MAX_PRIMITIVE_HEIGHT ||
!m_clamped_drawing_area.rintersects(draw_rect_123));
if (second_tri_culled)
{
DEBUG_LOG("Culling too-large polygon (quad second half): {},{} {},{} {},{}", cmd->vertices[2].x,
cmd->vertices[2].y, cmd->vertices[1].x, cmd->vertices[1].y, cmd->vertices[0].x, cmd->vertices[0].y);
if (first_tri_culled)
return;
}
else
{
AddDrawTriangleTicks(positions[2], positions[1], positions[3], rc.shading_enable, rc.texture_enable,
rc.transparency_enable);
}
}
m_backend.PushCommand(cmd);
}
break;
case GPUPrimitive::Rectangle:
{
GPUBackendDrawRectangleCommand* cmd = m_backend.NewDrawRectangleCommand();
FillDrawCommand(cmd, rc);
cmd->color = rc.color_for_first_vertex;
const GPUVertexPosition vp{FifoPop()};
cmd->x = TruncateGPUVertexPosition(m_drawing_offset.x + vp.x);
cmd->y = TruncateGPUVertexPosition(m_drawing_offset.y + vp.y);
if (rc.texture_enable)
{
const u32 texcoord_and_palette = FifoPop();
cmd->palette.bits = Truncate16(texcoord_and_palette >> 16);
cmd->texcoord = Truncate16(texcoord_and_palette);
}
else
{
cmd->palette.bits = 0;
cmd->texcoord = 0;
}
switch (rc.rectangle_size)
{
case GPUDrawRectangleSize::R1x1:
cmd->width = 1;
cmd->height = 1;
break;
case GPUDrawRectangleSize::R8x8:
cmd->width = 8;
cmd->height = 8;
break;
case GPUDrawRectangleSize::R16x16:
cmd->width = 16;
cmd->height = 16;
break;
default:
{
const u32 width_and_height = FifoPop();
cmd->width = static_cast<u16>(width_and_height & VRAM_WIDTH_MASK);
cmd->height = static_cast<u16>((width_and_height >> 16) & VRAM_HEIGHT_MASK);
}
break;
}
if (!IsDrawingAreaIsValid())
return;
AddDrawRectangleTicks(cmd->x, cmd->y, cmd->width, cmd->height, rc.texture_enable, rc.transparency_enable);
m_backend.PushCommand(cmd);
}
break;
case GPUPrimitive::Line:
{
if (!rc.polyline)
{
GPUBackendDrawLineCommand* cmd = m_backend.NewDrawLineCommand(2);
FillDrawCommand(cmd, rc);
cmd->palette.bits = 0;
if (rc.shading_enable)
{
cmd->vertices[0].color = rc.color_for_first_vertex;
const GPUVertexPosition start_pos{FifoPop()};
cmd->vertices[0].x = m_drawing_offset.x + start_pos.x;
cmd->vertices[0].y = m_drawing_offset.y + start_pos.y;
cmd->vertices[1].color = FifoPop() & UINT32_C(0x00FFFFFF);
const GPUVertexPosition end_pos{FifoPop()};
cmd->vertices[1].x = m_drawing_offset.x + end_pos.x;
cmd->vertices[1].y = m_drawing_offset.y + end_pos.y;
}
else
{
cmd->vertices[0].color = rc.color_for_first_vertex;
cmd->vertices[1].color = rc.color_for_first_vertex;
const GPUVertexPosition start_pos{FifoPop()};
cmd->vertices[0].x = m_drawing_offset.x + start_pos.x;
cmd->vertices[0].y = m_drawing_offset.y + start_pos.y;
const GPUVertexPosition end_pos{FifoPop()};
cmd->vertices[1].x = m_drawing_offset.x + end_pos.x;
cmd->vertices[1].y = m_drawing_offset.y + end_pos.y;
}
if (!IsDrawingAreaIsValid())
return;
const auto [min_x, max_x] = MinMax(cmd->vertices[0].x, cmd->vertices[1].x);
const auto [min_y, max_y] = MinMax(cmd->vertices[0].y, cmd->vertices[1].y);
if ((max_x - min_x) >= MAX_PRIMITIVE_WIDTH || (max_y - min_y) >= MAX_PRIMITIVE_HEIGHT)
{
DEBUG_LOG("Culling too-large line: {},{} - {},{}", cmd->vertices[0].y, cmd->vertices[0].y, cmd->vertices[1].x,
cmd->vertices[1].y);
return;
}
AddDrawLineTicks(min_x, min_y, max_x, max_y, rc.shading_enable);
m_backend.PushCommand(cmd);
}
else
{
const u32 num_vertices = GetPolyLineVertexCount();
GPUBackendDrawLineCommand* cmd = m_backend.NewDrawLineCommand(num_vertices);
FillDrawCommand(cmd, m_render_command);
u32 buffer_pos = 0;
const GPUVertexPosition start_vp{m_blit_buffer[buffer_pos++]};
cmd->vertices[0].x = start_vp.x + m_drawing_offset.x;
cmd->vertices[0].y = start_vp.y + m_drawing_offset.y;
cmd->vertices[0].color = m_render_command.color_for_first_vertex;
const bool shaded = m_render_command.shading_enable;
for (u32 i = 1; i < num_vertices; i++)
{
cmd->vertices[i].color =
shaded ? (m_blit_buffer[buffer_pos++] & UINT32_C(0x00FFFFFF)) : m_render_command.color_for_first_vertex;
const GPUVertexPosition vp{m_blit_buffer[buffer_pos++]};
cmd->vertices[i].x = m_drawing_offset.x + vp.x;
cmd->vertices[i].y = m_drawing_offset.y + vp.y;
const auto [min_x, max_x] = MinMax(cmd->vertices[i - 1].x, cmd->vertices[i].x);
const auto [min_y, max_y] = MinMax(cmd->vertices[i - 1].y, cmd->vertices[i].y);
if ((max_x - min_x) >= MAX_PRIMITIVE_WIDTH || (max_y - min_y) >= MAX_PRIMITIVE_HEIGHT)
{
DEBUG_LOG("Culling too-large line: {},{} - {},{}", cmd->vertices[i - 1].x, cmd->vertices[i - 1].y,
cmd->vertices[i].x, cmd->vertices[i].y);
}
else
{
AddDrawLineTicks(min_x, min_y, max_x, max_y, rc.shading_enable);
}
}
m_backend.PushCommand(cmd);
}
}
break;
default:
UnreachableCode();
break;
}
}
void GPU_SW::ReadVRAM(u32 x, u32 y, u32 width, u32 height)
{
m_backend.Sync(false);
}
void GPU_SW::FillVRAM(u32 x, u32 y, u32 width, u32 height, u32 color)
{
GPUBackendFillVRAMCommand* cmd = m_backend.NewFillVRAMCommand();
FillBackendCommandParameters(cmd);
cmd->x = static_cast<u16>(x);
cmd->y = static_cast<u16>(y);
cmd->width = static_cast<u16>(width);
cmd->height = static_cast<u16>(height);
cmd->color = color;
m_backend.PushCommand(cmd);
}
void GPU_SW::UpdateVRAM(u32 x, u32 y, u32 width, u32 height, const void* data, bool set_mask, bool check_mask)
{
const u32 num_words = width * height;
GPUBackendUpdateVRAMCommand* cmd = m_backend.NewUpdateVRAMCommand(num_words);
FillBackendCommandParameters(cmd);
cmd->params.set_mask_while_drawing = set_mask;
cmd->params.check_mask_before_draw = check_mask;
cmd->x = static_cast<u16>(x);
cmd->y = static_cast<u16>(y);
cmd->width = static_cast<u16>(width);
cmd->height = static_cast<u16>(height);
std::memcpy(cmd->data, data, sizeof(u16) * num_words);
m_backend.PushCommand(cmd);
}
void GPU_SW::CopyVRAM(u32 src_x, u32 src_y, u32 dst_x, u32 dst_y, u32 width, u32 height)
{
GPUBackendCopyVRAMCommand* cmd = m_backend.NewCopyVRAMCommand();
FillBackendCommandParameters(cmd);
cmd->src_x = static_cast<u16>(src_x);
cmd->src_y = static_cast<u16>(src_y);
cmd->dst_x = static_cast<u16>(dst_x);
cmd->dst_y = static_cast<u16>(dst_y);
cmd->width = static_cast<u16>(width);
cmd->height = static_cast<u16>(height);
m_backend.PushCommand(cmd);
}
void GPU_SW::FlushRender()
{
}
void GPU_SW::UpdateCLUT(GPUTexturePaletteReg reg, bool clut_is_8bit)
{
GPUBackendUpdateCLUTCommand* cmd = m_backend.NewUpdateCLUTCommand();
FillBackendCommandParameters(cmd);
cmd->reg.bits = reg.bits;
cmd->clut_is_8bit = clut_is_8bit;
m_backend.PushCommand(cmd);
}
std::unique_ptr<GPU> GPU::CreateSoftwareRenderer()
{
std::unique_ptr<GPU_SW> gpu(std::make_unique<GPU_SW>());
if (!gpu->Initialize())
return nullptr;
return gpu;
}