mirror of
				https://github.com/RetroDECK/Duckstation.git
				synced 2025-04-10 19:15:14 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1282 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1282 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2015, VIXL authors
 | |
| // All rights reserved.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistributions of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //   * Redistributions in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //   * Neither the name of ARM Limited nor the names of its contributors may be
 | |
| //     used to endorse or promote products derived from this software without
 | |
| //     specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
 | |
| // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 | |
| // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 | |
| // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
 | |
| // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
| // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 | |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | |
| // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 | |
| // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| 
 | |
| #ifndef VIXL_UTILS_H
 | |
| #define VIXL_UTILS_H
 | |
| 
 | |
| #include <cmath>
 | |
| #include <cstring>
 | |
| #include <limits>
 | |
| #include <vector>
 | |
| 
 | |
| #include "compiler-intrinsics-vixl.h"
 | |
| #include "globals-vixl.h"
 | |
| 
 | |
| namespace vixl {
 | |
| 
 | |
| // Macros for compile-time format checking.
 | |
| #if GCC_VERSION_OR_NEWER(4, 4, 0)
 | |
| #define PRINTF_CHECK(format_index, varargs_index) \
 | |
|   __attribute__((format(gnu_printf, format_index, varargs_index)))
 | |
| #else
 | |
| #define PRINTF_CHECK(format_index, varargs_index)
 | |
| #endif
 | |
| 
 | |
| #ifdef __GNUC__
 | |
| #define VIXL_HAS_DEPRECATED_WITH_MSG
 | |
| #elif defined(__clang__)
 | |
| #ifdef __has_extension(attribute_deprecated_with_message)
 | |
| #define VIXL_HAS_DEPRECATED_WITH_MSG
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #ifdef VIXL_HAS_DEPRECATED_WITH_MSG
 | |
| #define VIXL_DEPRECATED(replaced_by, declarator) \
 | |
|   __attribute__((deprecated("Use \"" replaced_by "\" instead"))) declarator
 | |
| #else
 | |
| #define VIXL_DEPRECATED(replaced_by, declarator) declarator
 | |
| #endif
 | |
| 
 | |
| #ifdef VIXL_DEBUG
 | |
| #define VIXL_UNREACHABLE_OR_FALLTHROUGH() VIXL_UNREACHABLE()
 | |
| #else
 | |
| #define VIXL_UNREACHABLE_OR_FALLTHROUGH() VIXL_FALLTHROUGH()
 | |
| #endif
 | |
| 
 | |
| template <typename T, size_t n>
 | |
| size_t ArrayLength(const T (&)[n]) {
 | |
|   return n;
 | |
| }
 | |
| 
 | |
| // Check number width.
 | |
| // TODO: Refactor these using templates.
 | |
| inline bool IsIntN(unsigned n, uint32_t x) {
 | |
|   VIXL_ASSERT((0 < n) && (n < 32));
 | |
|   uint32_t limit = UINT32_C(1) << (n - 1);
 | |
|   return x < limit;
 | |
| }
 | |
| inline bool IsIntN(unsigned n, int32_t x) {
 | |
|   VIXL_ASSERT((0 < n) && (n < 32));
 | |
|   int32_t limit = INT32_C(1) << (n - 1);
 | |
|   return (-limit <= x) && (x < limit);
 | |
| }
 | |
| inline bool IsIntN(unsigned n, uint64_t x) {
 | |
|   VIXL_ASSERT((0 < n) && (n < 64));
 | |
|   uint64_t limit = UINT64_C(1) << (n - 1);
 | |
|   return x < limit;
 | |
| }
 | |
| inline bool IsIntN(unsigned n, int64_t x) {
 | |
|   VIXL_ASSERT((0 < n) && (n < 64));
 | |
|   int64_t limit = INT64_C(1) << (n - 1);
 | |
|   return (-limit <= x) && (x < limit);
 | |
| }
 | |
| VIXL_DEPRECATED("IsIntN", inline bool is_intn(unsigned n, int64_t x)) {
 | |
|   return IsIntN(n, x);
 | |
| }
 | |
| 
 | |
| inline bool IsUintN(unsigned n, uint32_t x) {
 | |
|   VIXL_ASSERT((0 < n) && (n < 32));
 | |
|   return !(x >> n);
 | |
| }
 | |
| inline bool IsUintN(unsigned n, int32_t x) {
 | |
|   VIXL_ASSERT((0 < n) && (n < 32));
 | |
|   // Convert to an unsigned integer to avoid implementation-defined behavior.
 | |
|   return !(static_cast<uint32_t>(x) >> n);
 | |
| }
 | |
| inline bool IsUintN(unsigned n, uint64_t x) {
 | |
|   VIXL_ASSERT((0 < n) && (n < 64));
 | |
|   return !(x >> n);
 | |
| }
 | |
| inline bool IsUintN(unsigned n, int64_t x) {
 | |
|   VIXL_ASSERT((0 < n) && (n < 64));
 | |
|   // Convert to an unsigned integer to avoid implementation-defined behavior.
 | |
|   return !(static_cast<uint64_t>(x) >> n);
 | |
| }
 | |
| VIXL_DEPRECATED("IsUintN", inline bool is_uintn(unsigned n, int64_t x)) {
 | |
|   return IsUintN(n, x);
 | |
| }
 | |
| 
 | |
| inline uint64_t TruncateToUintN(unsigned n, uint64_t x) {
 | |
|   VIXL_ASSERT((0 < n) && (n < 64));
 | |
|   return static_cast<uint64_t>(x) & ((UINT64_C(1) << n) - 1);
 | |
| }
 | |
| VIXL_DEPRECATED("TruncateToUintN",
 | |
|                 inline uint64_t truncate_to_intn(unsigned n, int64_t x)) {
 | |
|   return TruncateToUintN(n, x);
 | |
| }
 | |
| 
 | |
| // clang-format off
 | |
| #define INT_1_TO_32_LIST(V)                                                    \
 | |
| V(1)  V(2)  V(3)  V(4)  V(5)  V(6)  V(7)  V(8)                                 \
 | |
| V(9)  V(10) V(11) V(12) V(13) V(14) V(15) V(16)                                \
 | |
| V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24)                                \
 | |
| V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32)
 | |
| 
 | |
| #define INT_33_TO_63_LIST(V)                                                   \
 | |
| V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40)                                \
 | |
| V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48)                                \
 | |
| V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56)                                \
 | |
| V(57) V(58) V(59) V(60) V(61) V(62) V(63)
 | |
| 
 | |
| #define INT_1_TO_63_LIST(V) INT_1_TO_32_LIST(V) INT_33_TO_63_LIST(V)
 | |
| 
 | |
| // clang-format on
 | |
| 
 | |
| #define DECLARE_IS_INT_N(N)                                       \
 | |
|   inline bool IsInt##N(int64_t x) { return IsIntN(N, x); }        \
 | |
|   VIXL_DEPRECATED("IsInt" #N, inline bool is_int##N(int64_t x)) { \
 | |
|     return IsIntN(N, x);                                          \
 | |
|   }
 | |
| 
 | |
| #define DECLARE_IS_UINT_N(N)                                        \
 | |
|   inline bool IsUint##N(int64_t x) { return IsUintN(N, x); }        \
 | |
|   VIXL_DEPRECATED("IsUint" #N, inline bool is_uint##N(int64_t x)) { \
 | |
|     return IsUintN(N, x);                                           \
 | |
|   }
 | |
| 
 | |
| #define DECLARE_TRUNCATE_TO_UINT_32(N)                             \
 | |
|   inline uint32_t TruncateToUint##N(uint64_t x) {                  \
 | |
|     return static_cast<uint32_t>(TruncateToUintN(N, x));           \
 | |
|   }                                                                \
 | |
|   VIXL_DEPRECATED("TruncateToUint" #N,                             \
 | |
|                   inline uint32_t truncate_to_int##N(int64_t x)) { \
 | |
|     return TruncateToUint##N(x);                                   \
 | |
|   }
 | |
| 
 | |
| INT_1_TO_63_LIST(DECLARE_IS_INT_N)
 | |
| INT_1_TO_63_LIST(DECLARE_IS_UINT_N)
 | |
| INT_1_TO_32_LIST(DECLARE_TRUNCATE_TO_UINT_32)
 | |
| 
 | |
| #undef DECLARE_IS_INT_N
 | |
| #undef DECLARE_IS_UINT_N
 | |
| #undef DECLARE_TRUNCATE_TO_INT_N
 | |
| 
 | |
| // Bit field extraction.
 | |
| inline uint64_t ExtractUnsignedBitfield64(int msb, int lsb, uint64_t x) {
 | |
|   VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
 | |
|               (msb >= lsb));
 | |
|   if ((msb == 63) && (lsb == 0)) return x;
 | |
|   return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1);
 | |
| }
 | |
| 
 | |
| 
 | |
| inline uint32_t ExtractUnsignedBitfield32(int msb, int lsb, uint32_t x) {
 | |
|   VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
 | |
|               (msb >= lsb));
 | |
|   return TruncateToUint32(ExtractUnsignedBitfield64(msb, lsb, x));
 | |
| }
 | |
| 
 | |
| 
 | |
| inline int64_t ExtractSignedBitfield64(int msb, int lsb, int64_t x) {
 | |
|   VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
 | |
|               (msb >= lsb));
 | |
|   uint64_t temp = ExtractUnsignedBitfield64(msb, lsb, x);
 | |
|   // If the highest extracted bit is set, sign extend.
 | |
|   if ((temp >> (msb - lsb)) == 1) {
 | |
|     temp |= ~UINT64_C(0) << (msb - lsb);
 | |
|   }
 | |
|   int64_t result;
 | |
|   memcpy(&result, &temp, sizeof(result));
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline int32_t ExtractSignedBitfield32(int msb, int lsb, int32_t x) {
 | |
|   VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
 | |
|               (msb >= lsb));
 | |
|   uint32_t temp = TruncateToUint32(ExtractSignedBitfield64(msb, lsb, x));
 | |
|   int32_t result;
 | |
|   memcpy(&result, &temp, sizeof(result));
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline uint64_t RotateRight(uint64_t value,
 | |
|                             unsigned int rotate,
 | |
|                             unsigned int width) {
 | |
|   VIXL_ASSERT((width > 0) && (width <= 64));
 | |
|   uint64_t width_mask = ~UINT64_C(0) >> (64 - width);
 | |
|   rotate &= 63;
 | |
|   if (rotate > 0) {
 | |
|     value &= width_mask;
 | |
|     value = (value << (width - rotate)) | (value >> rotate);
 | |
|   }
 | |
|   return value & width_mask;
 | |
| }
 | |
| 
 | |
| 
 | |
| // Wrapper class for passing FP16 values through the assembler.
 | |
| // This is purely to aid with type checking/casting.
 | |
| class Float16 {
 | |
|  public:
 | |
|   explicit Float16(double dvalue);
 | |
|   Float16() : rawbits_(0x0) {}
 | |
|   friend uint16_t Float16ToRawbits(Float16 value);
 | |
|   friend Float16 RawbitsToFloat16(uint16_t bits);
 | |
| 
 | |
|  protected:
 | |
|   uint16_t rawbits_;
 | |
| };
 | |
| 
 | |
| // Floating point representation.
 | |
| uint16_t Float16ToRawbits(Float16 value);
 | |
| 
 | |
| 
 | |
| uint32_t FloatToRawbits(float value);
 | |
| VIXL_DEPRECATED("FloatToRawbits",
 | |
|                 inline uint32_t float_to_rawbits(float value)) {
 | |
|   return FloatToRawbits(value);
 | |
| }
 | |
| 
 | |
| uint64_t DoubleToRawbits(double value);
 | |
| VIXL_DEPRECATED("DoubleToRawbits",
 | |
|                 inline uint64_t double_to_rawbits(double value)) {
 | |
|   return DoubleToRawbits(value);
 | |
| }
 | |
| 
 | |
| Float16 RawbitsToFloat16(uint16_t bits);
 | |
| 
 | |
| float RawbitsToFloat(uint32_t bits);
 | |
| VIXL_DEPRECATED("RawbitsToFloat",
 | |
|                 inline float rawbits_to_float(uint32_t bits)) {
 | |
|   return RawbitsToFloat(bits);
 | |
| }
 | |
| 
 | |
| double RawbitsToDouble(uint64_t bits);
 | |
| VIXL_DEPRECATED("RawbitsToDouble",
 | |
|                 inline double rawbits_to_double(uint64_t bits)) {
 | |
|   return RawbitsToDouble(bits);
 | |
| }
 | |
| 
 | |
| namespace internal {
 | |
| 
 | |
| // Internal simulation class used solely by the simulator to
 | |
| // provide an abstraction layer for any half-precision arithmetic.
 | |
| class SimFloat16 : public Float16 {
 | |
|  public:
 | |
|   // TODO: We should investigate making this constructor explicit.
 | |
|   // This is currently difficult to do due to a number of templated
 | |
|   // functions in the simulator which rely on returning double values.
 | |
|   SimFloat16(double dvalue) : Float16(dvalue) {}  // NOLINT(runtime/explicit)
 | |
|   SimFloat16(Float16 f) {                         // NOLINT(runtime/explicit)
 | |
|     this->rawbits_ = Float16ToRawbits(f);
 | |
|   }
 | |
|   SimFloat16() : Float16() {}
 | |
|   SimFloat16 operator-() const;
 | |
|   SimFloat16 operator+(SimFloat16 rhs) const;
 | |
|   SimFloat16 operator-(SimFloat16 rhs) const;
 | |
|   SimFloat16 operator*(SimFloat16 rhs) const;
 | |
|   SimFloat16 operator/(SimFloat16 rhs) const;
 | |
|   bool operator<(SimFloat16 rhs) const;
 | |
|   bool operator>(SimFloat16 rhs) const;
 | |
|   bool operator==(SimFloat16 rhs) const;
 | |
|   bool operator!=(SimFloat16 rhs) const;
 | |
|   // This is necessary for conversions peformed in (macro asm) Fmov.
 | |
|   bool operator==(double rhs) const;
 | |
|   operator double() const;
 | |
| };
 | |
| }  // namespace internal
 | |
| 
 | |
| uint32_t Float16Sign(internal::SimFloat16 value);
 | |
| 
 | |
| uint32_t Float16Exp(internal::SimFloat16 value);
 | |
| 
 | |
| uint32_t Float16Mantissa(internal::SimFloat16 value);
 | |
| 
 | |
| uint32_t FloatSign(float value);
 | |
| VIXL_DEPRECATED("FloatSign", inline uint32_t float_sign(float value)) {
 | |
|   return FloatSign(value);
 | |
| }
 | |
| 
 | |
| uint32_t FloatExp(float value);
 | |
| VIXL_DEPRECATED("FloatExp", inline uint32_t float_exp(float value)) {
 | |
|   return FloatExp(value);
 | |
| }
 | |
| 
 | |
| uint32_t FloatMantissa(float value);
 | |
| VIXL_DEPRECATED("FloatMantissa", inline uint32_t float_mantissa(float value)) {
 | |
|   return FloatMantissa(value);
 | |
| }
 | |
| 
 | |
| uint32_t DoubleSign(double value);
 | |
| VIXL_DEPRECATED("DoubleSign", inline uint32_t double_sign(double value)) {
 | |
|   return DoubleSign(value);
 | |
| }
 | |
| 
 | |
| uint32_t DoubleExp(double value);
 | |
| VIXL_DEPRECATED("DoubleExp", inline uint32_t double_exp(double value)) {
 | |
|   return DoubleExp(value);
 | |
| }
 | |
| 
 | |
| uint64_t DoubleMantissa(double value);
 | |
| VIXL_DEPRECATED("DoubleMantissa",
 | |
|                 inline uint64_t double_mantissa(double value)) {
 | |
|   return DoubleMantissa(value);
 | |
| }
 | |
| 
 | |
| internal::SimFloat16 Float16Pack(uint16_t sign,
 | |
|                                  uint16_t exp,
 | |
|                                  uint16_t mantissa);
 | |
| 
 | |
| float FloatPack(uint32_t sign, uint32_t exp, uint32_t mantissa);
 | |
| VIXL_DEPRECATED("FloatPack",
 | |
|                 inline float float_pack(uint32_t sign,
 | |
|                                         uint32_t exp,
 | |
|                                         uint32_t mantissa)) {
 | |
|   return FloatPack(sign, exp, mantissa);
 | |
| }
 | |
| 
 | |
| double DoublePack(uint64_t sign, uint64_t exp, uint64_t mantissa);
 | |
| VIXL_DEPRECATED("DoublePack",
 | |
|                 inline double double_pack(uint32_t sign,
 | |
|                                           uint32_t exp,
 | |
|                                           uint64_t mantissa)) {
 | |
|   return DoublePack(sign, exp, mantissa);
 | |
| }
 | |
| 
 | |
| // An fpclassify() function for 16-bit half-precision floats.
 | |
| int Float16Classify(Float16 value);
 | |
| VIXL_DEPRECATED("Float16Classify", inline int float16classify(uint16_t value)) {
 | |
|   return Float16Classify(RawbitsToFloat16(value));
 | |
| }
 | |
| 
 | |
| bool IsZero(Float16 value);
 | |
| 
 | |
| inline bool IsNaN(float value) { return std::isnan(value); }
 | |
| 
 | |
| inline bool IsNaN(double value) { return std::isnan(value); }
 | |
| 
 | |
| inline bool IsNaN(Float16 value) { return Float16Classify(value) == FP_NAN; }
 | |
| 
 | |
| inline bool IsInf(float value) { return std::isinf(value); }
 | |
| 
 | |
| inline bool IsInf(double value) { return std::isinf(value); }
 | |
| 
 | |
| inline bool IsInf(Float16 value) {
 | |
|   return Float16Classify(value) == FP_INFINITE;
 | |
| }
 | |
| 
 | |
| 
 | |
| // NaN tests.
 | |
| inline bool IsSignallingNaN(double num) {
 | |
|   const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
 | |
|   uint64_t raw = DoubleToRawbits(num);
 | |
|   if (IsNaN(num) && ((raw & kFP64QuietNaNMask) == 0)) {
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline bool IsSignallingNaN(float num) {
 | |
|   const uint32_t kFP32QuietNaNMask = 0x00400000;
 | |
|   uint32_t raw = FloatToRawbits(num);
 | |
|   if (IsNaN(num) && ((raw & kFP32QuietNaNMask) == 0)) {
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| inline bool IsSignallingNaN(Float16 num) {
 | |
|   const uint16_t kFP16QuietNaNMask = 0x0200;
 | |
|   return IsNaN(num) && ((Float16ToRawbits(num) & kFP16QuietNaNMask) == 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| template <typename T>
 | |
| inline bool IsQuietNaN(T num) {
 | |
|   return IsNaN(num) && !IsSignallingNaN(num);
 | |
| }
 | |
| 
 | |
| 
 | |
| // Convert the NaN in 'num' to a quiet NaN.
 | |
| inline double ToQuietNaN(double num) {
 | |
|   const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
 | |
|   VIXL_ASSERT(IsNaN(num));
 | |
|   return RawbitsToDouble(DoubleToRawbits(num) | kFP64QuietNaNMask);
 | |
| }
 | |
| 
 | |
| 
 | |
| inline float ToQuietNaN(float num) {
 | |
|   const uint32_t kFP32QuietNaNMask = 0x00400000;
 | |
|   VIXL_ASSERT(IsNaN(num));
 | |
|   return RawbitsToFloat(FloatToRawbits(num) | kFP32QuietNaNMask);
 | |
| }
 | |
| 
 | |
| 
 | |
| inline internal::SimFloat16 ToQuietNaN(internal::SimFloat16 num) {
 | |
|   const uint16_t kFP16QuietNaNMask = 0x0200;
 | |
|   VIXL_ASSERT(IsNaN(num));
 | |
|   return internal::SimFloat16(
 | |
|       RawbitsToFloat16(Float16ToRawbits(num) | kFP16QuietNaNMask));
 | |
| }
 | |
| 
 | |
| 
 | |
| // Fused multiply-add.
 | |
| inline double FusedMultiplyAdd(double op1, double op2, double a) {
 | |
|   return fma(op1, op2, a);
 | |
| }
 | |
| 
 | |
| 
 | |
| inline float FusedMultiplyAdd(float op1, float op2, float a) {
 | |
|   return fmaf(op1, op2, a);
 | |
| }
 | |
| 
 | |
| 
 | |
| inline uint64_t LowestSetBit(uint64_t value) { return value & static_cast<uint64_t>(-static_cast<int64_t>(value)); }
 | |
| 
 | |
| 
 | |
| template <typename T>
 | |
| inline int HighestSetBitPosition(T value) {
 | |
|   VIXL_ASSERT(value != 0);
 | |
|   return (sizeof(value) * 8 - 1) - CountLeadingZeros(value);
 | |
| }
 | |
| 
 | |
| 
 | |
| template <typename V>
 | |
| inline int WhichPowerOf2(V value) {
 | |
|   VIXL_ASSERT(IsPowerOf2(value));
 | |
|   return CountTrailingZeros(value);
 | |
| }
 | |
| 
 | |
| 
 | |
| unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);
 | |
| 
 | |
| 
 | |
| int BitCount(uint64_t value);
 | |
| 
 | |
| 
 | |
| template <typename T>
 | |
| T ReverseBits(T value) {
 | |
|   VIXL_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) ||
 | |
|               (sizeof(value) == 4) || (sizeof(value) == 8));
 | |
|   T result = 0;
 | |
|   for (unsigned i = 0; i < (sizeof(value) * 8); i++) {
 | |
|     result = (result << 1) | (value & 1);
 | |
|     value >>= 1;
 | |
|   }
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| template <typename T>
 | |
| inline T SignExtend(T val, int bitSize) {
 | |
|   VIXL_ASSERT(bitSize > 0);
 | |
|   T mask = (T(2) << (bitSize - 1)) - T(1);
 | |
|   val &= mask;
 | |
|   T sign_bits = -((val >> (bitSize - 1)) << bitSize);
 | |
|   val |= sign_bits;
 | |
|   return val;
 | |
| }
 | |
| 
 | |
| 
 | |
| template <typename T>
 | |
| T ReverseBytes(T value, int block_bytes_log2) {
 | |
|   VIXL_ASSERT((sizeof(value) == 4) || (sizeof(value) == 8));
 | |
|   VIXL_ASSERT((1U << block_bytes_log2) <= sizeof(value));
 | |
|   // Split the 64-bit value into an 8-bit array, where b[0] is the least
 | |
|   // significant byte, and b[7] is the most significant.
 | |
|   uint8_t bytes[8];
 | |
|   uint64_t mask = UINT64_C(0xff00000000000000);
 | |
|   for (int i = 7; i >= 0; i--) {
 | |
|     bytes[i] = (static_cast<uint64_t>(value) & mask) >> (i * 8);
 | |
|     mask >>= 8;
 | |
|   }
 | |
| 
 | |
|   // Permutation tables for REV instructions.
 | |
|   //  permute_table[0] is used by REV16_x, REV16_w
 | |
|   //  permute_table[1] is used by REV32_x, REV_w
 | |
|   //  permute_table[2] is used by REV_x
 | |
|   VIXL_ASSERT((0 < block_bytes_log2) && (block_bytes_log2 < 4));
 | |
|   static const uint8_t permute_table[3][8] = {{6, 7, 4, 5, 2, 3, 0, 1},
 | |
|                                               {4, 5, 6, 7, 0, 1, 2, 3},
 | |
|                                               {0, 1, 2, 3, 4, 5, 6, 7}};
 | |
|   uint64_t temp = 0;
 | |
|   for (int i = 0; i < 8; i++) {
 | |
|     temp <<= 8;
 | |
|     temp |= bytes[permute_table[block_bytes_log2 - 1][i]];
 | |
|   }
 | |
| 
 | |
|   T result;
 | |
|   VIXL_STATIC_ASSERT(sizeof(result) <= sizeof(temp));
 | |
|   memcpy(&result, &temp, sizeof(result));
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| template <unsigned MULTIPLE, typename T>
 | |
| inline bool IsMultiple(T value) {
 | |
|   VIXL_ASSERT(IsPowerOf2(MULTIPLE));
 | |
|   return (value & (MULTIPLE - 1)) == 0;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline bool IsMultiple(T value, unsigned multiple) {
 | |
|   VIXL_ASSERT(IsPowerOf2(multiple));
 | |
|   return (value & (multiple - 1)) == 0;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline bool IsAligned(T pointer, int alignment) {
 | |
|   VIXL_ASSERT(IsPowerOf2(alignment));
 | |
|   return (pointer & (alignment - 1)) == 0;
 | |
| }
 | |
| 
 | |
| // Pointer alignment
 | |
| // TODO: rename/refactor to make it specific to instructions.
 | |
| template <unsigned ALIGN, typename T>
 | |
| inline bool IsAligned(T pointer) {
 | |
|   VIXL_ASSERT(sizeof(pointer) == sizeof(intptr_t));  // NOLINT(runtime/sizeof)
 | |
|   // Use C-style casts to get static_cast behaviour for integral types (T), and
 | |
|   // reinterpret_cast behaviour for other types.
 | |
|   return IsAligned((intptr_t)(pointer), ALIGN);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| bool IsWordAligned(T pointer) {
 | |
|   return IsAligned<4>(pointer);
 | |
| }
 | |
| 
 | |
| // Increment a pointer until it has the specified alignment. The alignment must
 | |
| // be a power of two.
 | |
| template <class T>
 | |
| T AlignUp(T pointer,
 | |
|           typename Unsigned<sizeof(T) * kBitsPerByte>::type alignment) {
 | |
|   VIXL_ASSERT(IsPowerOf2(alignment));
 | |
|   // Use C-style casts to get static_cast behaviour for integral types (T), and
 | |
|   // reinterpret_cast behaviour for other types.
 | |
| 
 | |
|   typename Unsigned<sizeof(T)* kBitsPerByte>::type pointer_raw =
 | |
|       (typename Unsigned<sizeof(T) * kBitsPerByte>::type)pointer;
 | |
|   VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw));
 | |
| 
 | |
|   size_t mask = alignment - 1;
 | |
|   T result = (T)((pointer_raw + mask) & ~mask);
 | |
|   VIXL_ASSERT(result >= pointer);
 | |
| 
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| // Decrement a pointer until it has the specified alignment. The alignment must
 | |
| // be a power of two.
 | |
| template <class T>
 | |
| T AlignDown(T pointer,
 | |
|             typename Unsigned<sizeof(T) * kBitsPerByte>::type alignment) {
 | |
|   VIXL_ASSERT(IsPowerOf2(alignment));
 | |
|   // Use C-style casts to get static_cast behaviour for integral types (T), and
 | |
|   // reinterpret_cast behaviour for other types.
 | |
| 
 | |
|   typename Unsigned<sizeof(T)* kBitsPerByte>::type pointer_raw =
 | |
|       (typename Unsigned<sizeof(T) * kBitsPerByte>::type)pointer;
 | |
|   VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw));
 | |
| 
 | |
|   size_t mask = alignment - 1;
 | |
|   return (T)(pointer_raw & ~mask);
 | |
| }
 | |
| 
 | |
| 
 | |
| template <typename T>
 | |
| inline T ExtractBit(T value, unsigned bit) {
 | |
|   return (value >> bit) & T(1);
 | |
| }
 | |
| 
 | |
| template <typename Ts, typename Td>
 | |
| inline Td ExtractBits(Ts value, int least_significant_bit, Td mask) {
 | |
|   return Td((value >> least_significant_bit) & Ts(mask));
 | |
| }
 | |
| 
 | |
| template <typename Ts, typename Td>
 | |
| inline void AssignBit(Td& dst,  // NOLINT(runtime/references)
 | |
|                       int bit,
 | |
|                       Ts value) {
 | |
|   VIXL_ASSERT((value == Ts(0)) || (value == Ts(1)));
 | |
|   VIXL_ASSERT(bit >= 0);
 | |
|   VIXL_ASSERT(bit < static_cast<int>(sizeof(Td) * 8));
 | |
|   Td mask(1);
 | |
|   dst &= ~(mask << bit);
 | |
|   dst |= Td(value) << bit;
 | |
| }
 | |
| 
 | |
| template <typename Td, typename Ts>
 | |
| inline void AssignBits(Td& dst,  // NOLINT(runtime/references)
 | |
|                        int least_significant_bit,
 | |
|                        Ts mask,
 | |
|                        Ts value) {
 | |
|   VIXL_ASSERT(least_significant_bit >= 0);
 | |
|   VIXL_ASSERT(least_significant_bit < static_cast<int>(sizeof(Td) * 8));
 | |
|   VIXL_ASSERT(((Td(mask) << least_significant_bit) >> least_significant_bit) ==
 | |
|               Td(mask));
 | |
|   VIXL_ASSERT((value & mask) == value);
 | |
|   dst &= ~(Td(mask) << least_significant_bit);
 | |
|   dst |= Td(value) << least_significant_bit;
 | |
| }
 | |
| 
 | |
| class VFP {
 | |
|  public:
 | |
|   static uint32_t FP32ToImm8(float imm) {
 | |
|     // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
 | |
|     uint32_t bits = FloatToRawbits(imm);
 | |
|     // bit7: a000.0000
 | |
|     uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
 | |
|     // bit6: 0b00.0000
 | |
|     uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
 | |
|     // bit5_to_0: 00cd.efgh
 | |
|     uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
 | |
|     return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0);
 | |
|   }
 | |
|   static uint32_t FP64ToImm8(double imm) {
 | |
|     // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
 | |
|     //       0000.0000.0000.0000.0000.0000.0000.0000
 | |
|     uint64_t bits = DoubleToRawbits(imm);
 | |
|     // bit7: a000.0000
 | |
|     uint64_t bit7 = ((bits >> 63) & 0x1) << 7;
 | |
|     // bit6: 0b00.0000
 | |
|     uint64_t bit6 = ((bits >> 61) & 0x1) << 6;
 | |
|     // bit5_to_0: 00cd.efgh
 | |
|     uint64_t bit5_to_0 = (bits >> 48) & 0x3f;
 | |
| 
 | |
|     return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0);
 | |
|   }
 | |
|   static float Imm8ToFP32(uint32_t imm8) {
 | |
|     //   Imm8: abcdefgh (8 bits)
 | |
|     // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
 | |
|     // where B is b ^ 1
 | |
|     uint32_t bits = imm8;
 | |
|     uint32_t bit7 = (bits >> 7) & 0x1;
 | |
|     uint32_t bit6 = (bits >> 6) & 0x1;
 | |
|     uint32_t bit5_to_0 = bits & 0x3f;
 | |
|     uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
 | |
| 
 | |
|     return RawbitsToFloat(result);
 | |
|   }
 | |
|   static double Imm8ToFP64(uint32_t imm8) {
 | |
|     //   Imm8: abcdefgh (8 bits)
 | |
|     // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
 | |
|     //         0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
 | |
|     // where B is b ^ 1
 | |
|     uint32_t bits = imm8;
 | |
|     uint64_t bit7 = (bits >> 7) & 0x1;
 | |
|     uint64_t bit6 = (bits >> 6) & 0x1;
 | |
|     uint64_t bit5_to_0 = bits & 0x3f;
 | |
|     uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
 | |
|     return RawbitsToDouble(result);
 | |
|   }
 | |
|   static bool IsImmFP32(float imm) {
 | |
|     // Valid values will have the form:
 | |
|     // aBbb.bbbc.defg.h000.0000.0000.0000.0000
 | |
|     uint32_t bits = FloatToRawbits(imm);
 | |
|     // bits[19..0] are cleared.
 | |
|     if ((bits & 0x7ffff) != 0) {
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // bits[29..25] are all set or all cleared.
 | |
|     uint32_t b_pattern = (bits >> 16) & 0x3e00;
 | |
|     if (b_pattern != 0 && b_pattern != 0x3e00) {
 | |
|       return false;
 | |
|     }
 | |
|     // bit[30] and bit[29] are opposite.
 | |
|     if (((bits ^ (bits << 1)) & 0x40000000) == 0) {
 | |
|       return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   static bool IsImmFP64(double imm) {
 | |
|     // Valid values will have the form:
 | |
|     // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
 | |
|     // 0000.0000.0000.0000.0000.0000.0000.0000
 | |
|     uint64_t bits = DoubleToRawbits(imm);
 | |
|     // bits[47..0] are cleared.
 | |
|     if ((bits & 0x0000ffffffffffff) != 0) {
 | |
|       return false;
 | |
|     }
 | |
|     // bits[61..54] are all set or all cleared.
 | |
|     uint32_t b_pattern = (bits >> 48) & 0x3fc0;
 | |
|     if ((b_pattern != 0) && (b_pattern != 0x3fc0)) {
 | |
|       return false;
 | |
|     }
 | |
|     // bit[62] and bit[61] are opposite.
 | |
|     if (((bits ^ (bits << 1)) & (UINT64_C(1) << 62)) == 0) {
 | |
|       return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class BitField {
 | |
|   // ForEachBitHelper is a functor that will call
 | |
|   // bool ForEachBitHelper::execute(ElementType id) const
 | |
|   //   and expects a boolean in return whether to continue (if true)
 | |
|   //   or stop (if false)
 | |
|   // check_set will check if the bits are on (true) or off(false)
 | |
|   template <typename ForEachBitHelper, bool check_set>
 | |
|   bool ForEachBit(const ForEachBitHelper& helper) {
 | |
|     for (int i = 0; static_cast<size_t>(i) < bitfield_.size(); i++) {
 | |
|       if (bitfield_[i] == check_set)
 | |
|         if (!helper.execute(i)) return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|  public:
 | |
|   explicit BitField(unsigned size) : bitfield_(size, 0) {}
 | |
| 
 | |
|   void Set(int i) {
 | |
|     VIXL_ASSERT((i >= 0) && (static_cast<size_t>(i) < bitfield_.size()));
 | |
|     bitfield_[i] = true;
 | |
|   }
 | |
| 
 | |
|   void Unset(int i) {
 | |
|     VIXL_ASSERT((i >= 0) && (static_cast<size_t>(i) < bitfield_.size()));
 | |
|     bitfield_[i] = true;
 | |
|   }
 | |
| 
 | |
|   bool IsSet(int i) const { return bitfield_[i]; }
 | |
| 
 | |
|   // For each bit not set in the bitfield call the execute functor
 | |
|   // execute.
 | |
|   // ForEachBitSetHelper::execute returns true if the iteration through
 | |
|   // the bits can continue, otherwise it will stop.
 | |
|   // struct ForEachBitSetHelper {
 | |
|   //   bool execute(int /*id*/) { return false; }
 | |
|   // };
 | |
|   template <typename ForEachBitNotSetHelper>
 | |
|   bool ForEachBitNotSet(const ForEachBitNotSetHelper& helper) {
 | |
|     return ForEachBit<ForEachBitNotSetHelper, false>(helper);
 | |
|   }
 | |
| 
 | |
|   // For each bit set in the bitfield call the execute functor
 | |
|   // execute.
 | |
|   template <typename ForEachBitSetHelper>
 | |
|   bool ForEachBitSet(const ForEachBitSetHelper& helper) {
 | |
|     return ForEachBit<ForEachBitSetHelper, true>(helper);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   std::vector<bool> bitfield_;
 | |
| };
 | |
| 
 | |
| namespace internal {
 | |
| 
 | |
| typedef int64_t Int64;
 | |
| class Uint64;
 | |
| class Uint128;
 | |
| 
 | |
| class Uint32 {
 | |
|   uint32_t data_;
 | |
| 
 | |
|  public:
 | |
|   // Unlike uint32_t, Uint32 has a default constructor.
 | |
|   Uint32() { data_ = 0; }
 | |
|   explicit Uint32(uint32_t data) : data_(data) {}
 | |
|   inline explicit Uint32(Uint64 data);
 | |
|   uint32_t Get() const { return data_; }
 | |
|   template <int N>
 | |
|   int32_t GetSigned() const {
 | |
|     return ExtractSignedBitfield32(N - 1, 0, data_);
 | |
|   }
 | |
|   int32_t GetSigned() const { return data_; }
 | |
|   Uint32 operator~() const { return Uint32(~data_); }
 | |
|   Uint32 operator-() const { return Uint32(static_cast<uint32_t>(-static_cast<int32_t>(data_))); }
 | |
|   bool operator==(Uint32 value) const { return data_ == value.data_; }
 | |
|   bool operator!=(Uint32 value) const { return data_ != value.data_; }
 | |
|   bool operator>(Uint32 value) const { return data_ > value.data_; }
 | |
|   Uint32 operator+(Uint32 value) const { return Uint32(data_ + value.data_); }
 | |
|   Uint32 operator-(Uint32 value) const { return Uint32(data_ - value.data_); }
 | |
|   Uint32 operator&(Uint32 value) const { return Uint32(data_ & value.data_); }
 | |
|   Uint32 operator&=(Uint32 value) {
 | |
|     data_ &= value.data_;
 | |
|     return *this;
 | |
|   }
 | |
|   Uint32 operator^(Uint32 value) const { return Uint32(data_ ^ value.data_); }
 | |
|   Uint32 operator^=(Uint32 value) {
 | |
|     data_ ^= value.data_;
 | |
|     return *this;
 | |
|   }
 | |
|   Uint32 operator|(Uint32 value) const { return Uint32(data_ | value.data_); }
 | |
|   Uint32 operator|=(Uint32 value) {
 | |
|     data_ |= value.data_;
 | |
|     return *this;
 | |
|   }
 | |
|   // Unlike uint32_t, the shift functions can accept negative shift and
 | |
|   // return 0 when the shift is too big.
 | |
|   Uint32 operator>>(int shift) const {
 | |
|     if (shift == 0) return *this;
 | |
|     if (shift < 0) {
 | |
|       int tmp = -shift;
 | |
|       if (tmp >= 32) return Uint32(0);
 | |
|       return Uint32(data_ << tmp);
 | |
|     }
 | |
|     int tmp = shift;
 | |
|     if (tmp >= 32) return Uint32(0);
 | |
|     return Uint32(data_ >> tmp);
 | |
|   }
 | |
|   Uint32 operator<<(int shift) const {
 | |
|     if (shift == 0) return *this;
 | |
|     if (shift < 0) {
 | |
|       int tmp = -shift;
 | |
|       if (tmp >= 32) return Uint32(0);
 | |
|       return Uint32(data_ >> tmp);
 | |
|     }
 | |
|     int tmp = shift;
 | |
|     if (tmp >= 32) return Uint32(0);
 | |
|     return Uint32(data_ << tmp);
 | |
|   }
 | |
| };
 | |
| 
 | |
| class Uint64 {
 | |
|   uint64_t data_;
 | |
| 
 | |
|  public:
 | |
|   // Unlike uint64_t, Uint64 has a default constructor.
 | |
|   Uint64() { data_ = 0; }
 | |
|   explicit Uint64(uint64_t data) : data_(data) {}
 | |
|   explicit Uint64(Uint32 data) : data_(data.Get()) {}
 | |
|   inline explicit Uint64(Uint128 data);
 | |
|   uint64_t Get() const { return data_; }
 | |
|   int64_t GetSigned(int N) const {
 | |
|     return ExtractSignedBitfield64(N - 1, 0, data_);
 | |
|   }
 | |
|   int64_t GetSigned() const { return data_; }
 | |
|   Uint32 ToUint32() const {
 | |
|     VIXL_ASSERT((data_ >> 32) == 0);
 | |
|     return Uint32(static_cast<uint32_t>(data_));
 | |
|   }
 | |
|   Uint32 GetHigh32() const { return Uint32(data_ >> 32); }
 | |
|   Uint32 GetLow32() const { return Uint32(data_ & 0xffffffff); }
 | |
|   Uint64 operator~() const { return Uint64(~data_); }
 | |
|   Uint64 operator-() const { return Uint64(static_cast<uint64_t>(-static_cast<int64_t>(data_))); }
 | |
|   bool operator==(Uint64 value) const { return data_ == value.data_; }
 | |
|   bool operator!=(Uint64 value) const { return data_ != value.data_; }
 | |
|   Uint64 operator+(Uint64 value) const { return Uint64(data_ + value.data_); }
 | |
|   Uint64 operator-(Uint64 value) const { return Uint64(data_ - value.data_); }
 | |
|   Uint64 operator&(Uint64 value) const { return Uint64(data_ & value.data_); }
 | |
|   Uint64 operator&=(Uint64 value) {
 | |
|     data_ &= value.data_;
 | |
|     return *this;
 | |
|   }
 | |
|   Uint64 operator^(Uint64 value) const { return Uint64(data_ ^ value.data_); }
 | |
|   Uint64 operator^=(Uint64 value) {
 | |
|     data_ ^= value.data_;
 | |
|     return *this;
 | |
|   }
 | |
|   Uint64 operator|(Uint64 value) const { return Uint64(data_ | value.data_); }
 | |
|   Uint64 operator|=(Uint64 value) {
 | |
|     data_ |= value.data_;
 | |
|     return *this;
 | |
|   }
 | |
|   // Unlike uint64_t, the shift functions can accept negative shift and
 | |
|   // return 0 when the shift is too big.
 | |
|   Uint64 operator>>(int shift) const {
 | |
|     if (shift == 0) return *this;
 | |
|     if (shift < 0) {
 | |
|       int tmp = -shift;
 | |
|       if (tmp >= 64) return Uint64(0);
 | |
|       return Uint64(data_ << tmp);
 | |
|     }
 | |
|     int tmp = shift;
 | |
|     if (tmp >= 64) return Uint64(0);
 | |
|     return Uint64(data_ >> tmp);
 | |
|   }
 | |
|   Uint64 operator<<(int shift) const {
 | |
|     if (shift == 0) return *this;
 | |
|     if (shift < 0) {
 | |
|       int tmp = -shift;
 | |
|       if (tmp >= 64) return Uint64(0);
 | |
|       return Uint64(data_ >> tmp);
 | |
|     }
 | |
|     int tmp = shift;
 | |
|     if (tmp >= 64) return Uint64(0);
 | |
|     return Uint64(data_ << tmp);
 | |
|   }
 | |
| };
 | |
| 
 | |
| class Uint128 {
 | |
|   uint64_t data_high_;
 | |
|   uint64_t data_low_;
 | |
| 
 | |
|  public:
 | |
|   Uint128() : data_high_(0), data_low_(0) {}
 | |
|   explicit Uint128(uint64_t data_low) : data_high_(0), data_low_(data_low) {}
 | |
|   explicit Uint128(Uint64 data_low)
 | |
|       : data_high_(0), data_low_(data_low.Get()) {}
 | |
|   Uint128(uint64_t data_high, uint64_t data_low)
 | |
|       : data_high_(data_high), data_low_(data_low) {}
 | |
|   Uint64 ToUint64() const {
 | |
|     VIXL_ASSERT(data_high_ == 0);
 | |
|     return Uint64(data_low_);
 | |
|   }
 | |
|   Uint64 GetHigh64() const { return Uint64(data_high_); }
 | |
|   Uint64 GetLow64() const { return Uint64(data_low_); }
 | |
|   Uint128 operator~() const { return Uint128(~data_high_, ~data_low_); }
 | |
|   bool operator==(Uint128 value) const {
 | |
|     return (data_high_ == value.data_high_) && (data_low_ == value.data_low_);
 | |
|   }
 | |
|   Uint128 operator&(Uint128 value) const {
 | |
|     return Uint128(data_high_ & value.data_high_, data_low_ & value.data_low_);
 | |
|   }
 | |
|   Uint128 operator&=(Uint128 value) {
 | |
|     data_high_ &= value.data_high_;
 | |
|     data_low_ &= value.data_low_;
 | |
|     return *this;
 | |
|   }
 | |
|   Uint128 operator|=(Uint128 value) {
 | |
|     data_high_ |= value.data_high_;
 | |
|     data_low_ |= value.data_low_;
 | |
|     return *this;
 | |
|   }
 | |
|   Uint128 operator>>(int shift) const {
 | |
|     VIXL_ASSERT((shift >= 0) && (shift < 128));
 | |
|     if (shift == 0) return *this;
 | |
|     if (shift >= 64) {
 | |
|       return Uint128(0, data_high_ >> (shift - 64));
 | |
|     }
 | |
|     uint64_t tmp = (data_high_ << (64 - shift)) | (data_low_ >> shift);
 | |
|     return Uint128(data_high_ >> shift, tmp);
 | |
|   }
 | |
|   Uint128 operator<<(int shift) const {
 | |
|     VIXL_ASSERT((shift >= 0) && (shift < 128));
 | |
|     if (shift == 0) return *this;
 | |
|     if (shift >= 64) {
 | |
|       return Uint128(data_low_ << (shift - 64), 0);
 | |
|     }
 | |
|     uint64_t tmp = (data_high_ << shift) | (data_low_ >> (64 - shift));
 | |
|     return Uint128(tmp, data_low_ << shift);
 | |
|   }
 | |
| };
 | |
| 
 | |
| Uint32::Uint32(Uint64 data) : data_(data.ToUint32().Get()) {}
 | |
| Uint64::Uint64(Uint128 data) : data_(data.ToUint64().Get()) {}
 | |
| 
 | |
| Int64 BitCount(Uint32 value);
 | |
| 
 | |
| }  // namespace internal
 | |
| 
 | |
| // The default NaN values (for FPCR.DN=1).
 | |
| extern const double kFP64DefaultNaN;
 | |
| extern const float kFP32DefaultNaN;
 | |
| extern const Float16 kFP16DefaultNaN;
 | |
| 
 | |
| // Floating-point infinity values.
 | |
| extern const Float16 kFP16PositiveInfinity;
 | |
| extern const Float16 kFP16NegativeInfinity;
 | |
| extern const float kFP32PositiveInfinity;
 | |
| extern const float kFP32NegativeInfinity;
 | |
| extern const double kFP64PositiveInfinity;
 | |
| extern const double kFP64NegativeInfinity;
 | |
| 
 | |
| // Floating-point zero values.
 | |
| extern const Float16 kFP16PositiveZero;
 | |
| extern const Float16 kFP16NegativeZero;
 | |
| 
 | |
| // AArch64 floating-point specifics. These match IEEE-754.
 | |
| const unsigned kDoubleMantissaBits = 52;
 | |
| const unsigned kDoubleExponentBits = 11;
 | |
| const unsigned kFloatMantissaBits = 23;
 | |
| const unsigned kFloatExponentBits = 8;
 | |
| const unsigned kFloat16MantissaBits = 10;
 | |
| const unsigned kFloat16ExponentBits = 5;
 | |
| 
 | |
| enum FPRounding {
 | |
|   // The first four values are encodable directly by FPCR<RMode>.
 | |
|   FPTieEven = 0x0,
 | |
|   FPPositiveInfinity = 0x1,
 | |
|   FPNegativeInfinity = 0x2,
 | |
|   FPZero = 0x3,
 | |
| 
 | |
|   // The final rounding modes are only available when explicitly specified by
 | |
|   // the instruction (such as with fcvta). It cannot be set in FPCR.
 | |
|   FPTieAway,
 | |
|   FPRoundOdd
 | |
| };
 | |
| 
 | |
| enum UseDefaultNaN { kUseDefaultNaN, kIgnoreDefaultNaN };
 | |
| 
 | |
| // Assemble the specified IEEE-754 components into the target type and apply
 | |
| // appropriate rounding.
 | |
| //  sign:     0 = positive, 1 = negative
 | |
| //  exponent: Unbiased IEEE-754 exponent.
 | |
| //  mantissa: The mantissa of the input. The top bit (which is not encoded for
 | |
| //            normal IEEE-754 values) must not be omitted. This bit has the
 | |
| //            value 'pow(2, exponent)'.
 | |
| //
 | |
| // The input value is assumed to be a normalized value. That is, the input may
 | |
| // not be infinity or NaN. If the source value is subnormal, it must be
 | |
| // normalized before calling this function such that the highest set bit in the
 | |
| // mantissa has the value 'pow(2, exponent)'.
 | |
| //
 | |
| // Callers should use FPRoundToFloat or FPRoundToDouble directly, rather than
 | |
| // calling a templated FPRound.
 | |
| template <class T, int ebits, int mbits>
 | |
| T FPRound(int64_t sign,
 | |
|           int64_t exponent,
 | |
|           uint64_t mantissa,
 | |
|           FPRounding round_mode) {
 | |
|   VIXL_ASSERT((sign == 0) || (sign == 1));
 | |
| 
 | |
|   // Only FPTieEven and FPRoundOdd rounding modes are implemented.
 | |
|   VIXL_ASSERT((round_mode == FPTieEven) || (round_mode == FPRoundOdd));
 | |
| 
 | |
|   // Rounding can promote subnormals to normals, and normals to infinities. For
 | |
|   // example, a double with exponent 127 (FLT_MAX_EXP) would appear to be
 | |
|   // encodable as a float, but rounding based on the low-order mantissa bits
 | |
|   // could make it overflow. With ties-to-even rounding, this value would become
 | |
|   // an infinity.
 | |
| 
 | |
|   // ---- Rounding Method ----
 | |
|   //
 | |
|   // The exponent is irrelevant in the rounding operation, so we treat the
 | |
|   // lowest-order bit that will fit into the result ('onebit') as having
 | |
|   // the value '1'. Similarly, the highest-order bit that won't fit into
 | |
|   // the result ('halfbit') has the value '0.5'. The 'point' sits between
 | |
|   // 'onebit' and 'halfbit':
 | |
|   //
 | |
|   //            These bits fit into the result.
 | |
|   //               |---------------------|
 | |
|   //  mantissa = 0bxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 | |
|   //                                     ||
 | |
|   //                                    / |
 | |
|   //                                   /  halfbit
 | |
|   //                               onebit
 | |
|   //
 | |
|   // For subnormal outputs, the range of representable bits is smaller and
 | |
|   // the position of onebit and halfbit depends on the exponent of the
 | |
|   // input, but the method is otherwise similar.
 | |
|   //
 | |
|   //   onebit(frac)
 | |
|   //     |
 | |
|   //     | halfbit(frac)          halfbit(adjusted)
 | |
|   //     | /                      /
 | |
|   //     | |                      |
 | |
|   //  0b00.0 (exact)      -> 0b00.0 (exact)                    -> 0b00
 | |
|   //  0b00.0...           -> 0b00.0...                         -> 0b00
 | |
|   //  0b00.1 (exact)      -> 0b00.0111..111                    -> 0b00
 | |
|   //  0b00.1...           -> 0b00.1...                         -> 0b01
 | |
|   //  0b01.0 (exact)      -> 0b01.0 (exact)                    -> 0b01
 | |
|   //  0b01.0...           -> 0b01.0...                         -> 0b01
 | |
|   //  0b01.1 (exact)      -> 0b01.1 (exact)                    -> 0b10
 | |
|   //  0b01.1...           -> 0b01.1...                         -> 0b10
 | |
|   //  0b10.0 (exact)      -> 0b10.0 (exact)                    -> 0b10
 | |
|   //  0b10.0...           -> 0b10.0...                         -> 0b10
 | |
|   //  0b10.1 (exact)      -> 0b10.0111..111                    -> 0b10
 | |
|   //  0b10.1...           -> 0b10.1...                         -> 0b11
 | |
|   //  0b11.0 (exact)      -> 0b11.0 (exact)                    -> 0b11
 | |
|   //  ...                   /             |                      /   |
 | |
|   //                       /              |                     /    |
 | |
|   //                                                           /     |
 | |
|   // adjusted = frac - (halfbit(mantissa) & ~onebit(frac));   /      |
 | |
|   //
 | |
|   //                   mantissa = (mantissa >> shift) + halfbit(adjusted);
 | |
| 
 | |
|   static const int mantissa_offset = 0;
 | |
|   static const int exponent_offset = mantissa_offset + mbits;
 | |
|   static const int sign_offset = exponent_offset + ebits;
 | |
|   VIXL_ASSERT(sign_offset == (sizeof(T) * 8 - 1));
 | |
| 
 | |
|   // Bail out early for zero inputs.
 | |
|   if (mantissa == 0) {
 | |
|     return static_cast<T>(sign << sign_offset);
 | |
|   }
 | |
| 
 | |
|   // If all bits in the exponent are set, the value is infinite or NaN.
 | |
|   // This is true for all binary IEEE-754 formats.
 | |
|   static const int infinite_exponent = (1 << ebits) - 1;
 | |
|   static const int max_normal_exponent = infinite_exponent - 1;
 | |
| 
 | |
|   // Apply the exponent bias to encode it for the result. Doing this early makes
 | |
|   // it easy to detect values that will be infinite or subnormal.
 | |
|   exponent += max_normal_exponent >> 1;
 | |
| 
 | |
|   if (exponent > max_normal_exponent) {
 | |
|     // Overflow: the input is too large for the result type to represent.
 | |
|     if (round_mode == FPTieEven) {
 | |
|       // FPTieEven rounding mode handles overflows using infinities.
 | |
|       exponent = infinite_exponent;
 | |
|       mantissa = 0;
 | |
|     } else {
 | |
|       VIXL_ASSERT(round_mode == FPRoundOdd);
 | |
|       // FPRoundOdd rounding mode handles overflows using the largest magnitude
 | |
|       // normal number.
 | |
|       exponent = max_normal_exponent;
 | |
|       mantissa = (UINT64_C(1) << exponent_offset) - 1;
 | |
|     }
 | |
|     return static_cast<T>((sign << sign_offset) |
 | |
|                           (exponent << exponent_offset) |
 | |
|                           (mantissa << mantissa_offset));
 | |
|   }
 | |
| 
 | |
|   // Calculate the shift required to move the top mantissa bit to the proper
 | |
|   // place in the destination type.
 | |
|   const int highest_significant_bit = 63 - CountLeadingZeros(mantissa);
 | |
|   int shift = highest_significant_bit - mbits;
 | |
| 
 | |
|   if (exponent <= 0) {
 | |
|     // The output will be subnormal (before rounding).
 | |
|     // For subnormal outputs, the shift must be adjusted by the exponent. The +1
 | |
|     // is necessary because the exponent of a subnormal value (encoded as 0) is
 | |
|     // the same as the exponent of the smallest normal value (encoded as 1).
 | |
|     shift += -exponent + 1;
 | |
| 
 | |
|     // Handle inputs that would produce a zero output.
 | |
|     //
 | |
|     // Shifts higher than highest_significant_bit+1 will always produce a zero
 | |
|     // result. A shift of exactly highest_significant_bit+1 might produce a
 | |
|     // non-zero result after rounding.
 | |
|     if (shift > (highest_significant_bit + 1)) {
 | |
|       if (round_mode == FPTieEven) {
 | |
|         // The result will always be +/-0.0.
 | |
|         return static_cast<T>(sign << sign_offset);
 | |
|       } else {
 | |
|         VIXL_ASSERT(round_mode == FPRoundOdd);
 | |
|         VIXL_ASSERT(mantissa != 0);
 | |
|         // For FPRoundOdd, if the mantissa is too small to represent and
 | |
|         // non-zero return the next "odd" value.
 | |
|         return static_cast<T>((sign << sign_offset) | 1);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Properly encode the exponent for a subnormal output.
 | |
|     exponent = 0;
 | |
|   } else {
 | |
|     // Clear the topmost mantissa bit, since this is not encoded in IEEE-754
 | |
|     // normal values.
 | |
|     mantissa &= ~(UINT64_C(1) << highest_significant_bit);
 | |
|   }
 | |
| 
 | |
|   // The casts below are only well-defined for unsigned integers.
 | |
|   VIXL_STATIC_ASSERT(std::numeric_limits<T>::is_integer);
 | |
|   VIXL_STATIC_ASSERT(!std::numeric_limits<T>::is_signed);
 | |
| 
 | |
|   if (shift > 0) {
 | |
|     if (round_mode == FPTieEven) {
 | |
|       // We have to shift the mantissa to the right. Some precision is lost, so
 | |
|       // we need to apply rounding.
 | |
|       uint64_t onebit_mantissa = (mantissa >> (shift)) & 1;
 | |
|       uint64_t halfbit_mantissa = (mantissa >> (shift - 1)) & 1;
 | |
|       uint64_t adjustment = (halfbit_mantissa & ~onebit_mantissa);
 | |
|       uint64_t adjusted = mantissa - adjustment;
 | |
|       T halfbit_adjusted = (adjusted >> (shift - 1)) & 1;
 | |
| 
 | |
|       T result =
 | |
|           static_cast<T>((sign << sign_offset) | (exponent << exponent_offset) |
 | |
|                          ((mantissa >> shift) << mantissa_offset));
 | |
| 
 | |
|       // A very large mantissa can overflow during rounding. If this happens,
 | |
|       // the exponent should be incremented and the mantissa set to 1.0
 | |
|       // (encoded as 0). Applying halfbit_adjusted after assembling the float
 | |
|       // has the nice side-effect that this case is handled for free.
 | |
|       //
 | |
|       // This also handles cases where a very large finite value overflows to
 | |
|       // infinity, or where a very large subnormal value overflows to become
 | |
|       // normal.
 | |
|       return result + halfbit_adjusted;
 | |
|     } else {
 | |
|       VIXL_ASSERT(round_mode == FPRoundOdd);
 | |
|       // If any bits at position halfbit or below are set, onebit (ie. the
 | |
|       // bottom bit of the resulting mantissa) must be set.
 | |
|       uint64_t fractional_bits = mantissa & ((UINT64_C(1) << shift) - 1);
 | |
|       if (fractional_bits != 0) {
 | |
|         mantissa |= UINT64_C(1) << shift;
 | |
|       }
 | |
| 
 | |
|       return static_cast<T>((sign << sign_offset) |
 | |
|                             (exponent << exponent_offset) |
 | |
|                             ((mantissa >> shift) << mantissa_offset));
 | |
|     }
 | |
|   } else {
 | |
|     // We have to shift the mantissa to the left (or not at all). The input
 | |
|     // mantissa is exactly representable in the output mantissa, so apply no
 | |
|     // rounding correction.
 | |
|     return static_cast<T>((sign << sign_offset) |
 | |
|                           (exponent << exponent_offset) |
 | |
|                           ((mantissa << -shift) << mantissa_offset));
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // See FPRound for a description of this function.
 | |
| inline double FPRoundToDouble(int64_t sign,
 | |
|                               int64_t exponent,
 | |
|                               uint64_t mantissa,
 | |
|                               FPRounding round_mode) {
 | |
|   uint64_t bits =
 | |
|       FPRound<uint64_t, kDoubleExponentBits, kDoubleMantissaBits>(sign,
 | |
|                                                                   exponent,
 | |
|                                                                   mantissa,
 | |
|                                                                   round_mode);
 | |
|   return RawbitsToDouble(bits);
 | |
| }
 | |
| 
 | |
| 
 | |
| // See FPRound for a description of this function.
 | |
| inline Float16 FPRoundToFloat16(int64_t sign,
 | |
|                                 int64_t exponent,
 | |
|                                 uint64_t mantissa,
 | |
|                                 FPRounding round_mode) {
 | |
|   return RawbitsToFloat16(
 | |
|       FPRound<uint16_t,
 | |
|               kFloat16ExponentBits,
 | |
|               kFloat16MantissaBits>(sign, exponent, mantissa, round_mode));
 | |
| }
 | |
| 
 | |
| 
 | |
| // See FPRound for a description of this function.
 | |
| static inline float FPRoundToFloat(int64_t sign,
 | |
|                                    int64_t exponent,
 | |
|                                    uint64_t mantissa,
 | |
|                                    FPRounding round_mode) {
 | |
|   uint32_t bits =
 | |
|       FPRound<uint32_t, kFloatExponentBits, kFloatMantissaBits>(sign,
 | |
|                                                                 exponent,
 | |
|                                                                 mantissa,
 | |
|                                                                 round_mode);
 | |
|   return RawbitsToFloat(bits);
 | |
| }
 | |
| 
 | |
| 
 | |
| float FPToFloat(Float16 value, UseDefaultNaN DN, bool* exception = NULL);
 | |
| float FPToFloat(double value,
 | |
|                 FPRounding round_mode,
 | |
|                 UseDefaultNaN DN,
 | |
|                 bool* exception = NULL);
 | |
| 
 | |
| double FPToDouble(Float16 value, UseDefaultNaN DN, bool* exception = NULL);
 | |
| double FPToDouble(float value, UseDefaultNaN DN, bool* exception = NULL);
 | |
| 
 | |
| Float16 FPToFloat16(float value,
 | |
|                     FPRounding round_mode,
 | |
|                     UseDefaultNaN DN,
 | |
|                     bool* exception = NULL);
 | |
| 
 | |
| Float16 FPToFloat16(double value,
 | |
|                     FPRounding round_mode,
 | |
|                     UseDefaultNaN DN,
 | |
|                     bool* exception = NULL);
 | |
| }  // namespace vixl
 | |
| 
 | |
| #endif  // VIXL_UTILS_H
 | 
