Duckstation/src/util/gpu_texture.cpp
2024-06-29 13:09:45 +10:00

399 lines
11 KiB
C++

// SPDX-FileCopyrightText: 2019-2024 Connor McLaughlin <stenzek@gmail.com>
// SPDX-License-Identifier: (GPL-3.0 OR CC-BY-NC-ND-4.0)
#include "gpu_texture.h"
#include "gpu_device.h"
#include "common/align.h"
#include "common/bitutils.h"
#include "common/log.h"
#include "common/string_util.h"
Log_SetChannel(GPUTexture);
GPUTexture::GPUTexture(u16 width, u16 height, u8 layers, u8 levels, u8 samples, Type type, Format format)
: m_width(width), m_height(height), m_layers(layers), m_levels(levels), m_samples(samples), m_type(type),
m_format(format)
{
GPUDevice::s_total_vram_usage += GetVRAMUsage();
}
GPUTexture::~GPUTexture()
{
GPUDevice::s_total_vram_usage -= GetVRAMUsage();
}
const char* GPUTexture::GetFormatName(Format format)
{
static constexpr const char* format_names[static_cast<u8>(Format::MaxCount)] = {
"Unknown", // Unknown
"RGBA8", // RGBA8
"BGRA8", // BGRA8
"RGB565", // RGB565
"RGB5551", // RGBA5551
"R8", // R8
"D16", // D16
"D24S8", // D24S8
"D32F", // D32F
"D32FS8S", // D32FS8
"R16", // R16
"R16I", // R16I
"R16U", // R16U
"R16F", // R16F
"R32I", // R32I
"R32U", // R32U
"R32F", // R32F
"RG8", // RG8
"RG16", // RG16
"RG16F", // RG16F
"RG32F", // RG32F
"RGBA16", // RGBA16
"RGBA16F", // RGBA16F
"RGBA32F", // RGBA32F
"RGB10A2", // RGB10A2
};
return format_names[static_cast<u8>(format)];
}
u32 GPUTexture::GetCompressedBytesPerBlock() const
{
return GetCompressedBytesPerBlock(m_format);
}
u32 GPUTexture::GetCompressedBytesPerBlock(Format format)
{
// TODO: Implement me
return GetPixelSize(format);
}
u32 GPUTexture::GetCompressedBlockSize() const
{
return GetCompressedBlockSize(m_format);
}
u32 GPUTexture::GetCompressedBlockSize(Format format)
{
// TODO: Implement me
/*if (format >= Format::BC1 && format <= Format::BC7)
return 4;
else*/
return 1;
}
u32 GPUTexture::CalcUploadPitch(Format format, u32 width)
{
/*
if (format >= Format::BC1 && format <= Format::BC7)
width = Common::AlignUpPow2(width, 4) / 4;
*/
return width * GetCompressedBytesPerBlock(format);
}
u32 GPUTexture::CalcUploadPitch(u32 width) const
{
return CalcUploadPitch(m_format, width);
}
u32 GPUTexture::CalcUploadRowLengthFromPitch(u32 pitch) const
{
return CalcUploadRowLengthFromPitch(m_format, pitch);
}
u32 GPUTexture::CalcUploadRowLengthFromPitch(Format format, u32 pitch)
{
const u32 block_size = GetCompressedBlockSize(format);
const u32 bytes_per_block = GetCompressedBytesPerBlock(format);
return ((pitch + (bytes_per_block - 1)) / bytes_per_block) * block_size;
}
u32 GPUTexture::CalcUploadSize(u32 height, u32 pitch) const
{
return CalcUploadSize(m_format, height, pitch);
}
u32 GPUTexture::CalcUploadSize(Format format, u32 height, u32 pitch)
{
const u32 block_size = GetCompressedBlockSize(format);
return pitch * ((static_cast<u32>(height) + (block_size - 1)) / block_size);
}
std::array<float, 4> GPUTexture::GetUNormClearColor() const
{
return GPUDevice::RGBA8ToFloat(m_clear_value.color);
}
size_t GPUTexture::GetVRAMUsage() const
{
if (m_levels == 1) [[likely]]
return ((static_cast<size_t>(m_width * m_height) * GetPixelSize(m_format)) * m_layers * m_samples);
const size_t ps = GetPixelSize(m_format) * m_layers * m_samples;
u32 width = m_width;
u32 height = m_height;
size_t ts = 0;
for (u32 i = 0; i < m_levels; i++)
{
width = (width > 1) ? (width / 2) : width;
height = (height > 1) ? (height / 2) : height;
ts += static_cast<size_t>(width * height) * ps;
}
return ts;
}
u32 GPUTexture::GetPixelSize(GPUTexture::Format format)
{
static constexpr std::array<u8, static_cast<size_t>(Format::MaxCount)> sizes = {{
0, // Unknown
4, // RGBA8
4, // BGRA8
2, // RGB565
2, // RGBA5551
1, // R8
2, // D16
4, // D24S8
4, // D32F
8, // D32FS8
2, // R16
2, // R16I
2, // R16U
2, // R16F
4, // R32I
4, // R32U
4, // R32F
2, // RG8
2, // RG16
2, // RG16F
8, // RG32F
8, // RGBA16
8, // RGBA16F
16, // RGBA32F
4, // RGB10A2
}};
return sizes[static_cast<size_t>(format)];
}
bool GPUTexture::IsDepthFormat(Format format)
{
return (format >= Format::D16 && format <= Format::D32FS8);
}
bool GPUTexture::IsDepthStencilFormat(Format format)
{
return (format == Format::D24S8 || format == Format::D32FS8);
}
bool GPUTexture::IsCompressedFormat(Format format)
{
// TODO: Implement me
return false;
}
bool GPUTexture::ValidateConfig(u32 width, u32 height, u32 layers, u32 levels, u32 samples, Type type, Format format)
{
if (width > MAX_WIDTH || height > MAX_HEIGHT || layers > MAX_LAYERS || levels > MAX_LEVELS || samples > MAX_SAMPLES)
{
ERROR_LOG("Invalid dimensions: {}x{}x{} {} {}.", width, height, layers, levels, samples);
return false;
}
const u32 max_texture_size = g_gpu_device->GetMaxTextureSize();
if (width > max_texture_size || height > max_texture_size)
{
ERROR_LOG("Texture width ({}) or height ({}) exceeds max texture size ({}).", width, height, max_texture_size);
return false;
}
const u32 max_samples = g_gpu_device->GetMaxMultisamples();
if (samples > max_samples)
{
ERROR_LOG("Texture samples ({}) exceeds max samples ({}).", samples, max_samples);
return false;
}
if (samples > 1 && levels > 1)
{
ERROR_LOG("Multisampled textures can't have mip levels.");
return false;
}
if (layers > 1 && type != Type::Texture && type != Type::DynamicTexture)
{
ERROR_LOG("Texture arrays are not supported on targets.");
return false;
}
if (levels > 1 && type != Type::Texture && type != Type::DynamicTexture)
{
ERROR_LOG("Mipmaps are not supported on targets.");
return false;
}
return true;
}
bool GPUTexture::ConvertTextureDataToRGBA8(u32 width, u32 height, std::vector<u32>& texture_data,
u32& texture_data_stride, GPUTexture::Format format)
{
switch (format)
{
case Format::BGRA8:
{
for (u32 y = 0; y < height; y++)
{
u8* pixels = reinterpret_cast<u8*>(texture_data.data()) + (y * texture_data_stride);
for (u32 x = 0; x < width; x++)
{
u32 pixel;
std::memcpy(&pixel, pixels, sizeof(pixel));
pixel = (pixel & 0xFF00FF00) | ((pixel & 0xFF) << 16) | ((pixel >> 16) & 0xFF);
std::memcpy(pixels, &pixel, sizeof(pixel));
pixels += sizeof(pixel);
}
}
return true;
}
case Format::RGBA8:
return true;
case Format::RGB565:
{
std::vector<u32> temp(width * height);
for (u32 y = 0; y < height; y++)
{
const u8* pixels_in = reinterpret_cast<const u8*>(texture_data.data()) + (y * texture_data_stride);
u8* pixels_out = reinterpret_cast<u8*>(temp.data()) + (y * width * sizeof(u32));
for (u32 x = 0; x < width; x++)
{
// RGB565 -> RGBA8
u16 pixel_in;
std::memcpy(&pixel_in, pixels_in, sizeof(u16));
pixels_in += sizeof(u16);
const u8 r5 = Truncate8(pixel_in >> 11);
const u8 g6 = Truncate8((pixel_in >> 5) & 0x3F);
const u8 b5 = Truncate8(pixel_in & 0x1F);
const u32 rgba8 = ZeroExtend32((r5 << 3) | (r5 & 7)) | (ZeroExtend32((g6 << 2) | (g6 & 3)) << 8) |
(ZeroExtend32((b5 << 3) | (b5 & 7)) << 16) | (0xFF000000u);
std::memcpy(pixels_out, &rgba8, sizeof(u32));
pixels_out += sizeof(u32);
}
}
texture_data = std::move(temp);
texture_data_stride = sizeof(u32) * width;
return true;
}
case Format::RGBA5551:
{
std::vector<u32> temp(width * height);
for (u32 y = 0; y < height; y++)
{
const u8* pixels_in = reinterpret_cast<const u8*>(texture_data.data()) + (y * texture_data_stride);
u8* pixels_out = reinterpret_cast<u8*>(temp.data()) + (y * width * sizeof(u32));
for (u32 x = 0; x < width; x++)
{
// RGBA5551 -> RGBA8
u16 pixel_in;
std::memcpy(&pixel_in, pixels_in, sizeof(u16));
pixels_in += sizeof(u16);
const u8 a1 = Truncate8(pixel_in >> 15);
const u8 r5 = Truncate8((pixel_in >> 10) & 0x1F);
const u8 g6 = Truncate8((pixel_in >> 5) & 0x1F);
const u8 b5 = Truncate8(pixel_in & 0x1F);
const u32 rgba8 = ZeroExtend32((r5 << 3) | (r5 & 7)) | (ZeroExtend32((g6 << 3) | (g6 & 7)) << 8) |
(ZeroExtend32((b5 << 3) | (b5 & 7)) << 16) | (a1 ? 0xFF000000u : 0u);
std::memcpy(pixels_out, &rgba8, sizeof(u32));
pixels_out += sizeof(u32);
}
}
texture_data = std::move(temp);
texture_data_stride = sizeof(u32) * width;
return true;
}
default:
[[unlikely]] ERROR_LOG("Unknown pixel format {}", static_cast<u32>(format));
return false;
}
}
void GPUTexture::FlipTextureDataRGBA8(u32 width, u32 height, u8* texture_data, u32 texture_data_stride)
{
std::unique_ptr<u8[]> temp = std::make_unique<u8[]>(texture_data_stride);
for (u32 flip_row = 0; flip_row < (height / 2); flip_row++)
{
u8* top_ptr = &texture_data[flip_row * texture_data_stride];
u8* bottom_ptr = &texture_data[((height - 1) - flip_row) * texture_data_stride];
std::memcpy(temp.get(), top_ptr, texture_data_stride);
std::memcpy(top_ptr, bottom_ptr, texture_data_stride);
std::memcpy(bottom_ptr, temp.get(), texture_data_stride);
}
}
void GPUTexture::MakeReadyForSampling()
{
}
GPUDownloadTexture::GPUDownloadTexture(u32 width, u32 height, GPUTexture::Format format, bool is_imported)
: m_width(width), m_height(height), m_format(format), m_is_imported(is_imported)
{
}
GPUDownloadTexture::~GPUDownloadTexture() = default;
u32 GPUDownloadTexture::GetBufferSize(u32 width, u32 height, GPUTexture::Format format, u32 pitch_align /* = 1 */)
{
DebugAssert(std::has_single_bit(pitch_align));
const u32 bytes_per_pixel = GPUTexture::GetPixelSize(format);
const u32 pitch = Common::AlignUpPow2(width * bytes_per_pixel, pitch_align);
return (pitch * height);
}
u32 GPUDownloadTexture::GetTransferPitch(u32 width, u32 pitch_align) const
{
DebugAssert(std::has_single_bit(pitch_align));
const u32 bytes_per_pixel = GPUTexture::GetPixelSize(m_format);
return Common::AlignUpPow2(width * bytes_per_pixel, pitch_align);
}
void GPUDownloadTexture::GetTransferSize(u32 x, u32 y, u32 width, u32 height, u32 pitch, u32* copy_offset,
u32* copy_size, u32* copy_rows) const
{
const u32 bytes_per_pixel = GPUTexture::GetPixelSize(m_format);
*copy_offset = (y * pitch) + (x * bytes_per_pixel);
*copy_size = width * bytes_per_pixel;
*copy_rows = height;
}
bool GPUDownloadTexture::ReadTexels(u32 x, u32 y, u32 width, u32 height, void* out_ptr, u32 out_stride)
{
if (m_needs_flush)
Flush();
// if we're imported, and this is the same buffer, bail out
if (m_map_pointer == out_ptr)
{
// but stride should match
DebugAssert(x == 0 && y == 0 && width <= m_width && height <= m_height && out_stride == m_current_pitch);
return true;
}
if (!Map(x, y, width, height))
return false;
u32 copy_offset, copy_size, copy_rows;
GetTransferSize(x, y, width, height, m_current_pitch, &copy_offset, &copy_size, &copy_rows);
StringUtil::StrideMemCpy(out_ptr, out_stride, m_map_pointer + copy_offset, m_current_pitch, copy_size, copy_rows);
return true;
}