ES-DE/external/glm/test/ext/ext_scalar_integer.cpp

687 lines
15 KiB
C++
Raw Permalink Normal View History

#include <glm/ext/scalar_integer.hpp>
#include <glm/ext/scalar_int_sized.hpp>
#include <glm/ext/scalar_uint_sized.hpp>
#include <vector>
#include <ctime>
#include <cstdio>
#if GLM_LANG & GLM_LANG_CXX11_FLAG
#include <chrono>
namespace isPowerOfTwo
{
template<typename genType>
struct type
{
genType Value;
bool Return;
};
int test_int16()
{
type<glm::int16> const Data[] =
{
{0x0001, true},
{0x0002, true},
{0x0004, true},
{0x0080, true},
{0x0000, true},
{0x0003, false}
};
int Error = 0;
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int16>); i < n; ++i)
{
bool Result = glm::isPowerOfTwo(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
return Error;
}
int test_uint16()
{
type<glm::uint16> const Data[] =
{
{0x0001, true},
{0x0002, true},
{0x0004, true},
{0x0000, true},
{0x0000, true},
{0x0003, false}
};
int Error = 0;
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint16>); i < n; ++i)
{
bool Result = glm::isPowerOfTwo(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
return Error;
}
int test_int32()
{
type<int> const Data[] =
{
{0x00000001, true},
{0x00000002, true},
{0x00000004, true},
{0x0000000f, false},
{0x00000000, true},
{0x00000003, false}
};
int Error = 0;
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i)
{
bool Result = glm::isPowerOfTwo(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
return Error;
}
int test_uint32()
{
type<glm::uint> const Data[] =
{
{0x00000001, true},
{0x00000002, true},
{0x00000004, true},
{0x80000000, true},
{0x00000000, true},
{0x00000003, false}
};
int Error = 0;
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint>); i < n; ++i)
{
bool Result = glm::isPowerOfTwo(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
return Error;
}
int test()
{
int Error = 0;
Error += test_int16();
Error += test_uint16();
Error += test_int32();
Error += test_uint32();
return Error;
}
}//isPowerOfTwo
namespace nextPowerOfTwo_advanced
{
template<typename genIUType>
GLM_FUNC_QUALIFIER genIUType highestBitValue(genIUType Value)
{
genIUType tmp = Value;
genIUType result = genIUType(0);
while(tmp)
{
result = (tmp & (~tmp + 1)); // grab lowest bit
tmp &= ~result; // clear lowest bit
}
return result;
}
template<typename genType>
GLM_FUNC_QUALIFIER genType nextPowerOfTwo_loop(genType value)
{
return glm::isPowerOfTwo(value) ? value : highestBitValue(value) << 1;
}
template<typename genType>
struct type
{
genType Value;
genType Return;
};
int test_int32()
{
type<glm::int32> const Data[] =
{
{0x0000ffff, 0x00010000},
{-3, -4},
{-8, -8},
{0x00000001, 0x00000001},
{0x00000002, 0x00000002},
{0x00000004, 0x00000004},
{0x00000007, 0x00000008},
{0x0000fff0, 0x00010000},
{0x0000f000, 0x00010000},
{0x08000000, 0x08000000},
{0x00000000, 0x00000000},
{0x00000003, 0x00000004}
};
int Error(0);
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int32>); i < n; ++i)
{
glm::int32 Result = glm::nextPowerOfTwo(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
return Error;
}
int test_uint32()
{
type<glm::uint32> const Data[] =
{
{0x00000001, 0x00000001},
{0x00000002, 0x00000002},
{0x00000004, 0x00000004},
{0x00000007, 0x00000008},
{0x0000ffff, 0x00010000},
{0x0000fff0, 0x00010000},
{0x0000f000, 0x00010000},
{0x80000000, 0x80000000},
{0x00000000, 0x00000000},
{0x00000003, 0x00000004}
};
int Error(0);
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint32>); i < n; ++i)
{
glm::uint32 Result = glm::nextPowerOfTwo(Data[i].Value);
Error += Data[i].Return == Result ? 0 : 1;
}
return Error;
}
int perf()
{
int Error(0);
std::vector<glm::uint> v;
v.resize(100000000);
std::clock_t Timestramp0 = std::clock();
for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i)
v[i] = nextPowerOfTwo_loop(i);
std::clock_t Timestramp1 = std::clock();
for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i)
v[i] = glm::nextPowerOfTwo(i);
std::clock_t Timestramp2 = std::clock();
std::printf("nextPowerOfTwo_loop: %d clocks\n", static_cast<int>(Timestramp1 - Timestramp0));
std::printf("glm::nextPowerOfTwo: %d clocks\n", static_cast<int>(Timestramp2 - Timestramp1));
return Error;
}
int test()
{
int Error(0);
Error += test_int32();
Error += test_uint32();
return Error;
}
}//namespace nextPowerOfTwo_advanced
namespace prevPowerOfTwo
{
template <typename T>
int run()
{
int Error = 0;
T const A = glm::prevPowerOfTwo(static_cast<T>(7));
Error += A == static_cast<T>(4) ? 0 : 1;
T const B = glm::prevPowerOfTwo(static_cast<T>(15));
Error += B == static_cast<T>(8) ? 0 : 1;
T const C = glm::prevPowerOfTwo(static_cast<T>(31));
Error += C == static_cast<T>(16) ? 0 : 1;
T const D = glm::prevPowerOfTwo(static_cast<T>(32));
Error += D == static_cast<T>(32) ? 0 : 1;
return Error;
}
int test()
{
int Error = 0;
Error += run<glm::int8>();
Error += run<glm::int16>();
Error += run<glm::int32>();
Error += run<glm::int64>();
Error += run<glm::uint8>();
Error += run<glm::uint16>();
Error += run<glm::uint32>();
Error += run<glm::uint64>();
return Error;
}
}//namespace prevPowerOfTwo
namespace nextPowerOfTwo
{
template <typename T>
int run()
{
int Error = 0;
T const A = glm::nextPowerOfTwo(static_cast<T>(7));
Error += A == static_cast<T>(8) ? 0 : 1;
T const B = glm::nextPowerOfTwo(static_cast<T>(15));
Error += B == static_cast<T>(16) ? 0 : 1;
T const C = glm::nextPowerOfTwo(static_cast<T>(31));
Error += C == static_cast<T>(32) ? 0 : 1;
T const D = glm::nextPowerOfTwo(static_cast<T>(32));
Error += D == static_cast<T>(32) ? 0 : 1;
return Error;
}
int test()
{
int Error = 0;
Error += run<glm::int8>();
Error += run<glm::int16>();
Error += run<glm::int32>();
Error += run<glm::int64>();
Error += run<glm::uint8>();
Error += run<glm::uint16>();
Error += run<glm::uint32>();
Error += run<glm::uint64>();
return Error;
}
}//namespace nextPowerOfTwo
namespace prevMultiple
{
template<typename genIUType>
struct type
{
genIUType Source;
genIUType Multiple;
genIUType Return;
};
template <typename T>
int run()
{
type<T> const Data[] =
{
{8, 3, 6},
{7, 7, 7}
};
int Error = 0;
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i)
{
T const Result = glm::prevMultiple(Data[i].Source, Data[i].Multiple);
Error += Data[i].Return == Result ? 0 : 1;
}
return Error;
}
int test()
{
int Error = 0;
Error += run<glm::int8>();
Error += run<glm::int16>();
Error += run<glm::int32>();
Error += run<glm::int64>();
Error += run<glm::uint8>();
Error += run<glm::uint16>();
Error += run<glm::uint32>();
Error += run<glm::uint64>();
return Error;
}
}//namespace prevMultiple
namespace nextMultiple
{
static glm::uint const Multiples = 128;
int perf_nextMultiple(glm::uint Samples)
{
std::vector<glm::uint> Results(Samples * Multiples);
std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now();
for(glm::uint Source = 0; Source < Samples; ++Source)
for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple)
{
Results[Source * Multiples + Multiple] = glm::nextMultiple(Source, Multiples);
}
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now();
std::printf("- glm::nextMultiple Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count()));
glm::uint Result = 0;
for(std::size_t i = 0, n = Results.size(); i < n; ++i)
Result += Results[i];
return Result > 0 ? 0 : 1;
}
template <typename T>
GLM_FUNC_QUALIFIER T nextMultipleMod(T Source, T Multiple)
{
T const Tmp = Source - static_cast<T>(1);
return Tmp + (Multiple - (Tmp % Multiple));
}
int perf_nextMultipleMod(glm::uint Samples)
{
std::vector<glm::uint> Results(Samples * Multiples);
std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now();
for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple)
for (glm::uint Source = 0; Source < Samples; ++Source)
{
Results[Source * Multiples + Multiple] = nextMultipleMod(Source, Multiples);
}
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now();
std::printf("- nextMultipleMod Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count()));
glm::uint Result = 0;
for(std::size_t i = 0, n = Results.size(); i < n; ++i)
Result += Results[i];
return Result > 0 ? 0 : 1;
}
template <typename T>
GLM_FUNC_QUALIFIER T nextMultipleNeg(T Source, T Multiple)
{
if(Source > static_cast<T>(0))
{
T const Tmp = Source - static_cast<T>(1);
return Tmp + (Multiple - (Tmp % Multiple));
}
else
return Source + (-Source % Multiple);
}
int perf_nextMultipleNeg(glm::uint Samples)
{
std::vector<glm::uint> Results(Samples * Multiples);
std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now();
for(glm::uint Source = 0; Source < Samples; ++Source)
for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple)
{
Results[Source * Multiples + Multiple] = nextMultipleNeg(Source, Multiples);
}
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now();
std::printf("- nextMultipleNeg Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count()));
glm::uint Result = 0;
for (std::size_t i = 0, n = Results.size(); i < n; ++i)
Result += Results[i];
return Result > 0 ? 0 : 1;
}
template <typename T>
GLM_FUNC_QUALIFIER T nextMultipleUFloat(T Source, T Multiple)
{
return Source + (Multiple - std::fmod(Source, Multiple));
}
int perf_nextMultipleUFloat(glm::uint Samples)
{
std::vector<float> Results(Samples * Multiples);
std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now();
for(glm::uint Source = 0; Source < Samples; ++Source)
for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple)
{
Results[Source * Multiples + Multiple] = nextMultipleUFloat(static_cast<float>(Source), static_cast<float>(Multiples));
}
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now();
std::printf("- nextMultipleUFloat Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count()));
float Result = 0;
for (std::size_t i = 0, n = Results.size(); i < n; ++i)
Result += Results[i];
return Result > 0.0f ? 0 : 1;
}
template <typename T>
GLM_FUNC_QUALIFIER T nextMultipleFloat(T Source, T Multiple)
{
if(Source > static_cast<float>(0))
return Source + (Multiple - std::fmod(Source, Multiple));
else
return Source + std::fmod(-Source, Multiple);
}
int perf_nextMultipleFloat(glm::uint Samples)
{
std::vector<float> Results(Samples * Multiples);
std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now();
for(glm::uint Source = 0; Source < Samples; ++Source)
for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple)
{
Results[Source * Multiples + Multiple] = nextMultipleFloat(static_cast<float>(Source), static_cast<float>(Multiples));
}
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now();
std::printf("- nextMultipleFloat Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count()));
float Result = 0;
for (std::size_t i = 0, n = Results.size(); i < n; ++i)
Result += Results[i];
return Result > 0.0f ? 0 : 1;
}
template<typename genIUType>
struct type
{
genIUType Source;
genIUType Multiple;
genIUType Return;
};
template <typename T>
int test_uint()
{
type<T> const Data[] =
{
{ 3, 4, 4 },
{ 6, 3, 6 },
{ 5, 3, 6 },
{ 7, 7, 7 },
{ 0, 1, 0 },
{ 8, 3, 9 }
};
int Error = 0;
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i)
{
T const Result0 = glm::nextMultiple(Data[i].Source, Data[i].Multiple);
Error += Data[i].Return == Result0 ? 0 : 1;
assert(!Error);
T const Result1 = nextMultipleMod(Data[i].Source, Data[i].Multiple);
Error += Data[i].Return == Result1 ? 0 : 1;
assert(!Error);
}
return Error;
}
int perf()
{
int Error = 0;
glm::uint const Samples = 10000;
for(int i = 0; i < 4; ++i)
{
std::printf("Run %d :\n", i);
Error += perf_nextMultiple(Samples);
Error += perf_nextMultipleMod(Samples);
Error += perf_nextMultipleNeg(Samples);
Error += perf_nextMultipleUFloat(Samples);
Error += perf_nextMultipleFloat(Samples);
std::printf("\n");
}
return Error;
}
int test()
{
int Error = 0;
Error += test_uint<glm::int8>();
Error += test_uint<glm::int16>();
Error += test_uint<glm::int32>();
Error += test_uint<glm::int64>();
Error += test_uint<glm::uint8>();
Error += test_uint<glm::uint16>();
Error += test_uint<glm::uint32>();
Error += test_uint<glm::uint64>();
return Error;
}
}//namespace nextMultiple
namespace findNSB
{
template<typename T>
struct type
{
T Source;
int SignificantBitCount;
int Return;
};
template <typename T>
int run()
{
type<T> const Data[] =
{
{ 0x00, 1,-1 },
{ 0x01, 2,-1 },
{ 0x02, 2,-1 },
{ 0x06, 3,-1 },
{ 0x01, 1, 0 },
{ 0x03, 1, 0 },
{ 0x03, 2, 1 },
{ 0x07, 2, 1 },
{ 0x05, 2, 2 },
{ 0x0D, 2, 2 }
};
int Error = 0;
for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i)
{
int const Result0 = glm::findNSB(Data[i].Source, Data[i].SignificantBitCount);
Error += Data[i].Return == Result0 ? 0 : 1;
assert(!Error);
}
return Error;
}
int test()
{
int Error = 0;
Error += run<glm::uint8>();
Error += run<glm::uint16>();
Error += run<glm::uint32>();
Error += run<glm::uint64>();
Error += run<glm::int8>();
Error += run<glm::int16>();
Error += run<glm::int32>();
Error += run<glm::int64>();
return Error;
}
}//namespace findNSB
int main()
{
int Error = 0;
Error += findNSB::test();
Error += isPowerOfTwo::test();
Error += prevPowerOfTwo::test();
Error += nextPowerOfTwo::test();
Error += nextPowerOfTwo_advanced::test();
Error += prevMultiple::test();
Error += nextMultiple::test();
# ifdef NDEBUG
Error += nextPowerOfTwo_advanced::perf();
Error += nextMultiple::perf();
# endif//NDEBUG
return Error;
}
#else
int main()
{
return 0;
}
#endif