mirror of
				https://github.com/RetroDECK/ES-DE.git
				synced 2025-04-10 19:15:13 +00:00 
			
		
		
		
	
		
			
	
	
		
			243 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			243 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  #
 | ||
|  |  #  File        : nlmeans.h
 | ||
|  |  #                ( C++ header file - CImg plug-in )
 | ||
|  |  #
 | ||
|  |  #  Description : CImg plugin that implements the non-local mean filter.
 | ||
|  |  #                This file is a part of the CImg Library project.
 | ||
|  |  #                ( http://cimg.eu )
 | ||
|  |  #
 | ||
|  |  #  [1] Buades, A.; Coll, B.; Morel, J.-M.: A non-local algorithm for image denoising
 | ||
|  |  #      IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005.
 | ||
|  |  #      Volume 2,  20-25 June 2005 Page(s):60 - 65 vol. 2
 | ||
|  |  #
 | ||
|  |  #  [2] Buades, A. Coll, B. and Morel, J.: A review of image denoising algorithms, with a new one.
 | ||
|  |  #      Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal 4 (2004) 490-530
 | ||
|  |  #
 | ||
|  |  #  [3] Gasser, T. Sroka,L. Jennen Steinmetz,C. Residual variance and residual pattern nonlinear regression.
 | ||
|  |  #      Biometrika 73 (1986) 625-659
 | ||
|  |  #
 | ||
|  |  #  Copyright   : Jerome Boulanger
 | ||
|  |  #                ( http://www.irisa.fr/vista/Equipe/People/Jerome.Boulanger.html )
 | ||
|  |  #
 | ||
|  |  #  License     : CeCILL v2.0
 | ||
|  |  #                ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
 | ||
|  |  #
 | ||
|  |  #  This software is governed by the CeCILL  license under French law and
 | ||
|  |  #  abiding by the rules of distribution of free software.  You can  use,
 | ||
|  |  #  modify and/ or redistribute the software under the terms of the CeCILL
 | ||
|  |  #  license as circulated by CEA, CNRS and INRIA at the following URL
 | ||
|  |  #  "http://www.cecill.info".
 | ||
|  |  #
 | ||
|  |  #  As a counterpart to the access to the source code and  rights to copy,
 | ||
|  |  #  modify and redistribute granted by the license, users are provided only
 | ||
|  |  #  with a limited warranty  and the software's author,  the holder of the
 | ||
|  |  #  economic rights,  and the successive licensors  have only  limited
 | ||
|  |  #  liability.
 | ||
|  |  #
 | ||
|  |  #  In this respect, the user's attention is drawn to the risks associated
 | ||
|  |  #  with loading,  using,  modifying and/or developing or reproducing the
 | ||
|  |  #  software by the user in light of its specific status of free software,
 | ||
|  |  #  that may mean  that it is complicated to manipulate,  and  that  also
 | ||
|  |  #  therefore means  that it is reserved for developers  and  experienced
 | ||
|  |  #  professionals having in-depth computer knowledge. Users are therefore
 | ||
|  |  #  encouraged to load and test the software's suitability as regards their
 | ||
|  |  #  requirements in conditions enabling the security of their systems and/or
 | ||
|  |  #  data to be ensured and,  more generally, to use and operate it in the
 | ||
|  |  #  same conditions as regards security.
 | ||
|  |  #
 | ||
|  |  #  The fact that you are presently reading this means that you have had
 | ||
|  |  #  knowledge of the CeCILL license and that you accept its terms.
 | ||
|  |  #
 | ||
|  | */ | ||
|  | 
 | ||
|  | #ifndef cimg_plugin_nlmeans
 | ||
|  | #define cimg_plugin_nlmeans
 | ||
|  | 
 | ||
|  | //! NL-Means denoising algorithm.
 | ||
|  | /**
 | ||
|  |    This is the in-place version of get_nlmean(). | ||
|  | **/ | ||
|  | CImg<T>& nlmeans(int patch_size=1, double lambda=-1, double alpha=3, double sigma=-1, int sampling=1){ | ||
|  |   if (!is_empty()){ | ||
|  |     if (sigma<0) sigma = std::sqrt(variance_noise()); // noise variance estimation
 | ||
|  |     const double np = (2*patch_size + 1)*(2*patch_size + 1)*spectrum()/(double)sampling; | ||
|  |     if (lambda<0) {// Bandwidth estimation
 | ||
|  |       if (np<100) | ||
|  |         lambda = ((((((1.1785e-12*np - 5.1827e-10)*np + 9.5946e-08)*np - | ||
|  |                      9.7798e-06)*np + 6.0756e-04)*np - 0.0248)*np + 1.9203)*np + 7.9599; | ||
|  |       else | ||
|  |         lambda = (-7.2611e-04*np + 1.3213)*np + 15.2726; | ||
|  |     } | ||
|  | #if cimg_debug>=1
 | ||
|  |     std::fprintf(stderr,"Size of the patch                              : %dx%d \n", | ||
|  |                  2*patch_size + 1,2*patch_size + 1); | ||
|  |     std::fprintf(stderr,"Size of window where similar patch are looked for : %dx%d \n", | ||
|  |                  (int)(alpha*(2*patch_size + 1)),(int)(alpha*(2*patch_size + 1))); | ||
|  |     std::fprintf(stderr,"Bandwidth of the kernel                                : %fx%f^2 \n", | ||
|  |                  lambda,sigma); | ||
|  |     std::fprintf(stderr,"Noise standard deviation estimated to          : %f \n", | ||
|  |                  sigma); | ||
|  | #endif
 | ||
|  | 
 | ||
|  |     CImg<T> dest(width(),height(),depth(),spectrum(),0); | ||
|  |     double *uhat = new double[spectrum()]; | ||
|  |     const double h2 = -.5/(lambda*sigma*sigma); // [Kervrann] notations
 | ||
|  |     if (depth()!=1){ // 3D case
 | ||
|  |       const CImg<> P = (*this).get_blur(1); // inspired from Mahmoudi&Sapiro SPletter dec 05
 | ||
|  |       const int n_simu = 64; | ||
|  |       CImg<> tmp(n_simu,n_simu,n_simu); | ||
|  |       const double sig = std::sqrt(tmp.fill(0.f).noise(sigma).blur(1).pow(2.).sum()/(n_simu*n_simu*n_simu)); | ||
|  |       const int | ||
|  |         patch_size_z = 0, | ||
|  |         pxi = (int)(alpha*patch_size), | ||
|  |         pyi = (int)(alpha*patch_size), | ||
|  |         pzi = 2; //Define the size of the neighborhood in z
 | ||
|  |       for (int zi = 0; zi<depth(); ++zi) { | ||
|  | #if cimg_debug>=1
 | ||
|  |         std::fprintf(stderr,"\rProcessing : %3d %%",(int)((float)zi/(float)depth()*100.));fflush(stdout); | ||
|  | #endif
 | ||
|  |         for (int yi = 0; yi<height(); ++yi) | ||
|  |           for (int xi = 0; xi<width(); ++xi) { | ||
|  |             cimg_forC(*this,v) uhat[v] = 0; | ||
|  |             float sw = 0, wmax = -1; | ||
|  |             for (int zj = std::max(0,zi - pzi); zj<std::min(depth(),zi + pzi + 1); ++zj) | ||
|  |               for (int yj = std::max(0,yi - pyi); yj<std::min(height(),yi + pyi + 1); ++yj) | ||
|  |                 for (int xj = std::max(0,xi - pxi); xj<std::min(width(),xi + pxi + 1); ++xj) | ||
|  |                   if (cimg::abs(P(xi,yi,zi) - P(xj,yj,zj))/sig<3) { | ||
|  |                     double d = 0; | ||
|  |                     int n = 0; | ||
|  |                     if (xi!=xj && yi!=yj && zi!=zj){ | ||
|  |                       for (int kz = -patch_size_z; kz<patch_size_z + 1; kz+=sampling) { | ||
|  |                         int | ||
|  |                           zj_ = zj + kz, | ||
|  |                           zi_ = zi + kz; | ||
|  |                         if (zj_>=0 && zj_<depth() && zi_>=0 && zi_<depth()) | ||
|  |                           for (int ky = -patch_size; ky<=patch_size; ky+=sampling) { | ||
|  |                             int | ||
|  |                               yj_ = yj + ky, | ||
|  |                               yi_ = yi + ky; | ||
|  |                             if (yj_>=0 && yj_<height() && yi_>=0 && yi_<height()) | ||
|  |                               for (int kx = -patch_size; kx<=patch_size; kx+=sampling) { | ||
|  |                                 int | ||
|  |                                   xj_ = xj + kx, | ||
|  |                                   xi_ = xi + kx; | ||
|  |                                 if (xj_>=0 && xj_<width() && xi_>=0 && xi_<width()) | ||
|  |                                   cimg_forC(*this,v) { | ||
|  |                                     double d1 = (*this)(xj_,yj_,zj_,v) - (*this)(xi_,yi_,zi_,v); | ||
|  |                                     d+=d1*d1; | ||
|  |                                     ++n; | ||
|  |                                   } | ||
|  |                               } | ||
|  |                           } | ||
|  |                       } | ||
|  |                       float w = (float)std::exp(d*h2); | ||
|  |                       wmax = w>wmax?w:wmax; | ||
|  |                       cimg_forC(*this,v) uhat[v]+=w*(*this)(xj,yj,zj,v); | ||
|  |                       sw+=w; | ||
|  |                     } | ||
|  |                   } | ||
|  |             // add the central pixel
 | ||
|  |             cimg_forC(*this,v) uhat[v]+=wmax*(*this)(xi,yi,zi,v); | ||
|  |             sw+=wmax; | ||
|  |             if (sw) cimg_forC(*this,v) dest(xi,yi,zi,v) = (T)(uhat[v]/=sw); | ||
|  |             else cimg_forC(*this,v) dest(xi,yi,zi,v) = (*this)(xi,yi,zi,v); | ||
|  |           } | ||
|  |       } | ||
|  |     } | ||
|  |     else { // 2D case
 | ||
|  |       const CImg<> P = (*this).get_blur(1); // inspired from Mahmoudi&Sapiro SPletter dec 05
 | ||
|  |       const int n_simu = 512; | ||
|  |       CImg<> tmp(n_simu,n_simu); | ||
|  |       const double sig = std::sqrt(tmp.fill(0.f).noise(sigma).blur(1).pow(2.).sum()/(n_simu*n_simu)); | ||
|  |       const int | ||
|  |         pxi = (int)(alpha*patch_size), | ||
|  |         pyi = (int)(alpha*patch_size); //Define the size of the neighborhood
 | ||
|  |       for (int yi = 0; yi<height(); ++yi) { | ||
|  | #if cimg_debug>=1
 | ||
|  |         std::fprintf(stderr,"\rProcessing : %3d %%",(int)((float)yi/(float)height()*100.));fflush(stdout); | ||
|  | #endif
 | ||
|  |         for (int xi = 0; xi<width(); ++xi) { | ||
|  |           cimg_forC(*this,v) uhat[v] = 0; | ||
|  |           float sw = 0, wmax = -1; | ||
|  |           for (int yj = std::max(0,yi - pyi); yj<std::min(height(),yi + pyi + 1); ++yj) | ||
|  |             for (int xj = std::max(0,xi - pxi); xj<std::min(width(),xi + pxi + 1); ++xj) | ||
|  |               if (cimg::abs(P(xi,yi) - P(xj,yj))/sig<3.) { | ||
|  |                 double d = 0; | ||
|  |                 int n = 0; | ||
|  |                 if (!(xi==xj && yi==yj)) //{
 | ||
|  |                   for (int ky = -patch_size; ky<patch_size + 1; ky+=sampling) { | ||
|  |                     int | ||
|  |                       yj_ = yj + ky, | ||
|  |                       yi_ = yi + ky; | ||
|  |                     if (yj_>=0 && yj_<height() && yi_>=0 && yi_<height()) | ||
|  |                       for (int kx = -patch_size; kx<patch_size + 1; kx+=sampling) { | ||
|  |                         int | ||
|  |                           xj_ = xj + kx, | ||
|  |                           xi_ = xi + kx; | ||
|  |                         if (xj_>=0 && xj_<width() && xi_>=0 && xi_<width()) | ||
|  |                           cimg_forC(*this,v) { | ||
|  |                             double d1 = (*this)(xj_,yj_,v) - (*this)(xi_,yi_,v); | ||
|  |                             d+=d1*d1; | ||
|  |                             n++; | ||
|  |                           } | ||
|  |                       } | ||
|  |                     //}
 | ||
|  |                 float w = (float)std::exp(d*h2); | ||
|  |                 cimg_forC(*this,v) uhat[v]+=w*(*this)(xj,yj,v); | ||
|  |                 wmax = w>wmax?w:wmax; // Store the maximum of the weights
 | ||
|  |                 sw+=w; // Compute the sum of the weights
 | ||
|  |                 } | ||
|  |               } | ||
|  |           // add the central pixel with the maximum weight
 | ||
|  |           cimg_forC(*this,v) uhat[v]+=wmax*(*this)(xi,yi,v); | ||
|  |           sw+=wmax; | ||
|  | 
 | ||
|  |           // Compute the estimate for the current pixel
 | ||
|  |           if (sw) cimg_forC(*this,v) dest(xi,yi,v) = (T)(uhat[v]/=sw); | ||
|  |           else cimg_forC(*this,v) dest(xi,yi,v) = (*this)(xi,yi,v); | ||
|  |         } | ||
|  |       } // main loop
 | ||
|  |     } // 2d
 | ||
|  |     delete [] uhat; | ||
|  |     dest.move_to(*this); | ||
|  | #if cimg_debug>=1
 | ||
|  |     std::fprintf(stderr,"\n"); // make a new line
 | ||
|  | #endif
 | ||
|  |   } // is empty
 | ||
|  |   return *this; | ||
|  | } | ||
|  | 
 | ||
|  | //! Get the result of the NL-Means denoising algorithm.
 | ||
|  | /**
 | ||
|  |    \param patch_size = radius of the patch (1=3x3 by default) | ||
|  |    \param lambda = bandwidth ( -1 by default : automatic selection) | ||
|  |    \param alpha  = size of the region where similar patch are searched (3 x patch_size = 9x9 by default) | ||
|  |    \param sigma = noise standard deviation (-1 = estimation) | ||
|  |    \param sampling = sampling of the patch (1 = uses all point, 2 = uses one point on 4, etc) | ||
|  |    If the image has three dimensions then the patch is only in  2D and the neighborhood extent in time is only 5. | ||
|  |    If the image has several channel (color images), the distance between the two patch is computed using | ||
|  |    all the channels. | ||
|  |    The greater the patch is the best is the result. | ||
|  |    Lambda parameter is function of the size of the patch size. The automatic Lambda parameter is taken | ||
|  |    in the Chi2 table at a significiance level of 0.01. This diffear from the original paper [1]. | ||
|  |    The weighted average becomes then: | ||
|  |    \f$$ \hat{f}(x,y) = \sum_{x',y'} \frac{1}{Z} exp(\frac{P(x,y)-P(x',y')}{2 \lambda \sigma^2}) f(x',y') $$\f | ||
|  |    where \f$ P(x,y) $\f denotes the patch in (x,y) location. | ||
|  | 
 | ||
|  |    An a priori is also used to increase the speed of the algorithm in the spirit of Sapiro et al. SPletter dec 05 | ||
|  | 
 | ||
|  |    This very basic version of the Non-Local Means algorithm provides an output image which contains | ||
|  |    some residual noise with a relatively small variance (\f$\sigma<5$\f). | ||
|  | 
 | ||
|  |    [1] A non-local algorithm for image denoising | ||
|  |    Buades, A.; Coll, B.; Morel, J.-M.; | ||
|  |    Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on | ||
|  |    Volume 2,  20-25 June 2005 Page(s):60 - 65 vol. 2 | ||
|  | **/ | ||
|  | CImg<T> get_nlmeans( int patch_size=1,  double lambda=-1, double alpha=3 ,double sigma=-1, int sampling=1) const  { | ||
|  |   return CImg<T>(*this).nlmeans(patch_size,lambda,alpha,sigma,sampling); | ||
|  | } | ||
|  | 
 | ||
|  | #endif /* cimg_plugin_nlmeans */
 |