mirror of
				https://github.com/RetroDECK/ES-DE.git
				synced 2025-04-10 19:15:13 +00:00 
			
		
		
		
	
		
			
	
	
		
			836 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			836 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | //
 | ||
|  | // gif.h
 | ||
|  | // by Charlie Tangora
 | ||
|  | // Public domain.
 | ||
|  | // Email me : ctangora -at- gmail -dot- com
 | ||
|  | //
 | ||
|  | // This file offers a simple, very limited way to create animated GIFs directly in code.
 | ||
|  | //
 | ||
|  | // Those looking for particular cleverness are likely to be disappointed; it's pretty
 | ||
|  | // much a straight-ahead implementation of the GIF format with optional Floyd-Steinberg
 | ||
|  | // dithering. (It does at least use delta encoding - only the changed portions of each
 | ||
|  | // frame are saved.)
 | ||
|  | //
 | ||
|  | // So resulting files are often quite large. The hope is that it will be handy nonetheless
 | ||
|  | // as a quick and easily-integrated way for programs to spit out animations.
 | ||
|  | //
 | ||
|  | // Only RGBA8 is currently supported as an input format. (The alpha is ignored.)
 | ||
|  | //
 | ||
|  | // If capturing a buffer with a bottom-left origin (such as OpenGL), define GIF_FLIP_VERT
 | ||
|  | // to automatically flip the buffer data when writing the image (the buffer itself is
 | ||
|  | // unchanged.
 | ||
|  | //
 | ||
|  | // USAGE:
 | ||
|  | // Create a GifWriter struct. Pass it to GifBegin() to initialize and write the header.
 | ||
|  | // Pass subsequent frames to GifWriteFrame().
 | ||
|  | // Finally, call GifEnd() to close the file handle and free memory.
 | ||
|  | //
 | ||
|  | 
 | ||
|  | #ifndef gif_h
 | ||
|  | #define gif_h
 | ||
|  | 
 | ||
|  | #include <stdio.h>   // for FILE*
 | ||
|  | #include <string.h>  // for memcpy and bzero
 | ||
|  | #include <stdint.h>  // for integer typedefs
 | ||
|  | 
 | ||
|  | // Define these macros to hook into a custom memory allocator.
 | ||
|  | // TEMP_MALLOC and TEMP_FREE will only be called in stack fashion - frees in the reverse order of mallocs
 | ||
|  | // and any temp memory allocated by a function will be freed before it exits.
 | ||
|  | // MALLOC and FREE are used only by GifBegin and GifEnd respectively (to allocate a buffer the size of the image, which
 | ||
|  | // is used to find changed pixels for delta-encoding.)
 | ||
|  | 
 | ||
|  | #ifndef GIF_TEMP_MALLOC
 | ||
|  | #include <stdlib.h>
 | ||
|  | #define GIF_TEMP_MALLOC malloc
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifndef GIF_TEMP_FREE
 | ||
|  | #include <stdlib.h>
 | ||
|  | #define GIF_TEMP_FREE free
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifndef GIF_MALLOC
 | ||
|  | #include <stdlib.h>
 | ||
|  | #define GIF_MALLOC malloc
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifndef GIF_FREE
 | ||
|  | #include <stdlib.h>
 | ||
|  | #define GIF_FREE free
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | const int kGifTransIndex = 0; | ||
|  | 
 | ||
|  | struct GifPalette | ||
|  | { | ||
|  |     int bitDepth; | ||
|  | 
 | ||
|  |     uint8_t r[256]; | ||
|  |     uint8_t g[256]; | ||
|  |     uint8_t b[256]; | ||
|  | 
 | ||
|  |     // k-d tree over RGB space, organized in heap fashion
 | ||
|  |     // i.e. left child of node i is node i*2, right child is node i*2+1
 | ||
|  |     // nodes 256-511 are implicitly the leaves, containing a color
 | ||
|  |     uint8_t treeSplitElt[255]; | ||
|  |     uint8_t treeSplit[255]; | ||
|  | }; | ||
|  | 
 | ||
|  | // max, min, and abs functions
 | ||
|  | int GifIMax(int l, int r) { return l>r?l:r; } | ||
|  | int GifIMin(int l, int r) { return l<r?l:r; } | ||
|  | int GifIAbs(int i) { return i<0?-i:i; } | ||
|  | 
 | ||
|  | // walks the k-d tree to pick the palette entry for a desired color.
 | ||
|  | // Takes as in/out parameters the current best color and its error -
 | ||
|  | // only changes them if it finds a better color in its subtree.
 | ||
|  | // this is the major hotspot in the code at the moment.
 | ||
|  | void GifGetClosestPaletteColor(GifPalette* pPal, int r, int g, int b, int& bestInd, int& bestDiff, int treeRoot = 1) | ||
|  | { | ||
|  |     // base case, reached the bottom of the tree
 | ||
|  |     if(treeRoot > (1<<pPal->bitDepth)-1) | ||
|  |     { | ||
|  |         int ind = treeRoot-(1<<pPal->bitDepth); | ||
|  |         if(ind == kGifTransIndex) return; | ||
|  | 
 | ||
|  |         // check whether this color is better than the current winner
 | ||
|  |         int r_err = r - ((int32_t)pPal->r[ind]); | ||
|  |         int g_err = g - ((int32_t)pPal->g[ind]); | ||
|  |         int b_err = b - ((int32_t)pPal->b[ind]); | ||
|  |         int diff = GifIAbs(r_err)+GifIAbs(g_err)+GifIAbs(b_err); | ||
|  | 
 | ||
|  |         if(diff < bestDiff) | ||
|  |         { | ||
|  |             bestInd = ind; | ||
|  |             bestDiff = diff; | ||
|  |         } | ||
|  | 
 | ||
|  |         return; | ||
|  |     } | ||
|  | 
 | ||
|  |     // take the appropriate color (r, g, or b) for this node of the k-d tree
 | ||
|  |     int comps[3]; comps[0] = r; comps[1] = g; comps[2] = b; | ||
|  |     int splitComp = comps[pPal->treeSplitElt[treeRoot]]; | ||
|  | 
 | ||
|  |     int splitPos = pPal->treeSplit[treeRoot]; | ||
|  |     if(splitPos > splitComp) | ||
|  |     { | ||
|  |         // check the left subtree
 | ||
|  |         GifGetClosestPaletteColor(pPal, r, g, b, bestInd, bestDiff, treeRoot*2); | ||
|  |         if( bestDiff > splitPos - splitComp ) | ||
|  |         { | ||
|  |             // cannot prove there's not a better value in the right subtree, check that too
 | ||
|  |             GifGetClosestPaletteColor(pPal, r, g, b, bestInd, bestDiff, treeRoot*2+1); | ||
|  |         } | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |         GifGetClosestPaletteColor(pPal, r, g, b, bestInd, bestDiff, treeRoot*2+1); | ||
|  |         if( bestDiff > splitComp - splitPos ) | ||
|  |         { | ||
|  |             GifGetClosestPaletteColor(pPal, r, g, b, bestInd, bestDiff, treeRoot*2); | ||
|  |         } | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | void GifSwapPixels(uint8_t* image, int pixA, int pixB) | ||
|  | { | ||
|  |     uint8_t rA = image[pixA*4]; | ||
|  |     uint8_t gA = image[pixA*4+1]; | ||
|  |     uint8_t bA = image[pixA*4+2]; | ||
|  |     uint8_t aA = image[pixA*4+3]; | ||
|  | 
 | ||
|  |     uint8_t rB = image[pixB*4]; | ||
|  |     uint8_t gB = image[pixB*4+1]; | ||
|  |     uint8_t bB = image[pixB*4+2]; | ||
|  |     uint8_t aB = image[pixA*4+3]; | ||
|  | 
 | ||
|  |     image[pixA*4] = rB; | ||
|  |     image[pixA*4+1] = gB; | ||
|  |     image[pixA*4+2] = bB; | ||
|  |     image[pixA*4+3] = aB; | ||
|  | 
 | ||
|  |     image[pixB*4] = rA; | ||
|  |     image[pixB*4+1] = gA; | ||
|  |     image[pixB*4+2] = bA; | ||
|  |     image[pixB*4+3] = aA; | ||
|  | } | ||
|  | 
 | ||
|  | // just the partition operation from quicksort
 | ||
|  | int GifPartition(uint8_t* image, const int left, const int right, const int elt, int pivotIndex) | ||
|  | { | ||
|  |     const int pivotValue = image[(pivotIndex)*4+elt]; | ||
|  |     GifSwapPixels(image, pivotIndex, right-1); | ||
|  |     int storeIndex = left; | ||
|  |     bool split = 0; | ||
|  |     for(int ii=left; ii<right-1; ++ii) | ||
|  |     { | ||
|  |         int arrayVal = image[ii*4+elt]; | ||
|  |         if( arrayVal < pivotValue ) | ||
|  |         { | ||
|  |             GifSwapPixels(image, ii, storeIndex); | ||
|  |             ++storeIndex; | ||
|  |         } | ||
|  |         else if( arrayVal == pivotValue ) | ||
|  |         { | ||
|  |             if(split) | ||
|  |             { | ||
|  |                 GifSwapPixels(image, ii, storeIndex); | ||
|  |                 ++storeIndex; | ||
|  |             } | ||
|  |             split = !split; | ||
|  |         } | ||
|  |     } | ||
|  |     GifSwapPixels(image, storeIndex, right-1); | ||
|  |     return storeIndex; | ||
|  | } | ||
|  | 
 | ||
|  | // Perform an incomplete sort, finding all elements above and below the desired median
 | ||
|  | void GifPartitionByMedian(uint8_t* image, int left, int right, int com, int neededCenter) | ||
|  | { | ||
|  |     if(left < right-1) | ||
|  |     { | ||
|  |         int pivotIndex = left + (right-left)/2; | ||
|  | 
 | ||
|  |         pivotIndex = GifPartition(image, left, right, com, pivotIndex); | ||
|  | 
 | ||
|  |         // Only "sort" the section of the array that contains the median
 | ||
|  |         if(pivotIndex > neededCenter) | ||
|  |             GifPartitionByMedian(image, left, pivotIndex, com, neededCenter); | ||
|  | 
 | ||
|  |         if(pivotIndex < neededCenter) | ||
|  |             GifPartitionByMedian(image, pivotIndex+1, right, com, neededCenter); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | // Builds a palette by creating a balanced k-d tree of all pixels in the image
 | ||
|  | void GifSplitPalette(uint8_t* image, int numPixels, int firstElt, int lastElt, int splitElt, int splitDist, int treeNode, bool buildForDither, GifPalette* pal) | ||
|  | { | ||
|  |     if(lastElt <= firstElt || numPixels == 0) | ||
|  |         return; | ||
|  | 
 | ||
|  |     // base case, bottom of the tree
 | ||
|  |     if(lastElt == firstElt+1) | ||
|  |     { | ||
|  |         if(buildForDither) | ||
|  |         { | ||
|  |             // Dithering needs at least one color as dark as anything
 | ||
|  |             // in the image and at least one brightest color -
 | ||
|  |             // otherwise it builds up error and produces strange artifacts
 | ||
|  |             if( firstElt == 1 ) | ||
|  |             { | ||
|  |                 // special case: the darkest color in the image
 | ||
|  |                 uint32_t r=255, g=255, b=255; | ||
|  |                 for(int ii=0; ii<numPixels; ++ii) | ||
|  |                 { | ||
|  |                     r = (uint32_t)GifIMin((int32_t)r, image[ii * 4 + 0]); | ||
|  |                     g = (uint32_t)GifIMin((int32_t)g, image[ii * 4 + 1]); | ||
|  |                     b = (uint32_t)GifIMin((int32_t)b, image[ii * 4 + 2]); | ||
|  |                 } | ||
|  | 
 | ||
|  |                 pal->r[firstElt] = (uint8_t)r; | ||
|  |                 pal->g[firstElt] = (uint8_t)g; | ||
|  |                 pal->b[firstElt] = (uint8_t)b; | ||
|  | 
 | ||
|  |                 return; | ||
|  |             } | ||
|  | 
 | ||
|  |             if( firstElt == (1 << pal->bitDepth)-1 ) | ||
|  |             { | ||
|  |                 // special case: the lightest color in the image
 | ||
|  |                 uint32_t r=0, g=0, b=0; | ||
|  |                 for(int ii=0; ii<numPixels; ++ii) | ||
|  |                 { | ||
|  |                     r = (uint32_t)GifIMax((int32_t)r, image[ii * 4 + 0]); | ||
|  |                     g = (uint32_t)GifIMax((int32_t)g, image[ii * 4 + 1]); | ||
|  |                     b = (uint32_t)GifIMax((int32_t)b, image[ii * 4 + 2]); | ||
|  |                 } | ||
|  | 
 | ||
|  |                 pal->r[firstElt] = (uint8_t)r; | ||
|  |                 pal->g[firstElt] = (uint8_t)g; | ||
|  |                 pal->b[firstElt] = (uint8_t)b; | ||
|  | 
 | ||
|  |                 return; | ||
|  |             } | ||
|  |         } | ||
|  | 
 | ||
|  |         // otherwise, take the average of all colors in this subcube
 | ||
|  |         uint64_t r=0, g=0, b=0; | ||
|  |         for(int ii=0; ii<numPixels; ++ii) | ||
|  |         { | ||
|  |             r += image[ii*4+0]; | ||
|  |             g += image[ii*4+1]; | ||
|  |             b += image[ii*4+2]; | ||
|  |         } | ||
|  | 
 | ||
|  |         r += (uint64_t)numPixels / 2;  // round to nearest
 | ||
|  |         g += (uint64_t)numPixels / 2; | ||
|  |         b += (uint64_t)numPixels / 2; | ||
|  | 
 | ||
|  |         r /= (uint64_t)numPixels; | ||
|  |         g /= (uint64_t)numPixels; | ||
|  |         b /= (uint64_t)numPixels; | ||
|  | 
 | ||
|  |         pal->r[firstElt] = (uint8_t)r; | ||
|  |         pal->g[firstElt] = (uint8_t)g; | ||
|  |         pal->b[firstElt] = (uint8_t)b; | ||
|  | 
 | ||
|  |         return; | ||
|  |     } | ||
|  | 
 | ||
|  |     // Find the axis with the largest range
 | ||
|  |     int minR = 255, maxR = 0; | ||
|  |     int minG = 255, maxG = 0; | ||
|  |     int minB = 255, maxB = 0; | ||
|  |     for(int ii=0; ii<numPixels; ++ii) | ||
|  |     { | ||
|  |         int r = image[ii*4+0]; | ||
|  |         int g = image[ii*4+1]; | ||
|  |         int b = image[ii*4+2]; | ||
|  | 
 | ||
|  |         if(r > maxR) maxR = r; | ||
|  |         if(r < minR) minR = r; | ||
|  | 
 | ||
|  |         if(g > maxG) maxG = g; | ||
|  |         if(g < minG) minG = g; | ||
|  | 
 | ||
|  |         if(b > maxB) maxB = b; | ||
|  |         if(b < minB) minB = b; | ||
|  |     } | ||
|  | 
 | ||
|  |     int rRange = maxR - minR; | ||
|  |     int gRange = maxG - minG; | ||
|  |     int bRange = maxB - minB; | ||
|  | 
 | ||
|  |     // and split along that axis. (incidentally, this means this isn't a "proper" k-d tree but I don't know what else to call it)
 | ||
|  |     int splitCom = 1; | ||
|  |     if(bRange > gRange) splitCom = 2; | ||
|  |     if(rRange > bRange && rRange > gRange) splitCom = 0; | ||
|  | 
 | ||
|  |     int subPixelsA = numPixels * (splitElt - firstElt) / (lastElt - firstElt); | ||
|  |     int subPixelsB = numPixels-subPixelsA; | ||
|  | 
 | ||
|  |     GifPartitionByMedian(image, 0, numPixels, splitCom, subPixelsA); | ||
|  | 
 | ||
|  |     pal->treeSplitElt[treeNode] = (uint8_t)splitCom; | ||
|  |     pal->treeSplit[treeNode] = image[subPixelsA*4+splitCom]; | ||
|  | 
 | ||
|  |     GifSplitPalette(image,              subPixelsA, firstElt, splitElt, splitElt-splitDist, splitDist/2, treeNode*2,   buildForDither, pal); | ||
|  |     GifSplitPalette(image+subPixelsA*4, subPixelsB, splitElt, lastElt,  splitElt+splitDist, splitDist/2, treeNode*2+1, buildForDither, pal); | ||
|  | } | ||
|  | 
 | ||
|  | // Finds all pixels that have changed from the previous image and
 | ||
|  | // moves them to the fromt of th buffer.
 | ||
|  | // This allows us to build a palette optimized for the colors of the
 | ||
|  | // changed pixels only.
 | ||
|  | int GifPickChangedPixels( const uint8_t* lastFrame, uint8_t* frame, int numPixels ) | ||
|  | { | ||
|  |     int numChanged = 0; | ||
|  |     uint8_t* writeIter = frame; | ||
|  | 
 | ||
|  |     for (int ii=0; ii<numPixels; ++ii) | ||
|  |     { | ||
|  |         if(lastFrame[0] != frame[0] || | ||
|  |            lastFrame[1] != frame[1] || | ||
|  |            lastFrame[2] != frame[2]) | ||
|  |         { | ||
|  |             writeIter[0] = frame[0]; | ||
|  |             writeIter[1] = frame[1]; | ||
|  |             writeIter[2] = frame[2]; | ||
|  |             ++numChanged; | ||
|  |             writeIter += 4; | ||
|  |         } | ||
|  |         lastFrame += 4; | ||
|  |         frame += 4; | ||
|  |     } | ||
|  | 
 | ||
|  |     return numChanged; | ||
|  | } | ||
|  | 
 | ||
|  | // Creates a palette by placing all the image pixels in a k-d tree and then averaging the blocks at the bottom.
 | ||
|  | // This is known as the "modified median split" technique
 | ||
|  | void GifMakePalette( const uint8_t* lastFrame, const uint8_t* nextFrame, uint32_t width, uint32_t height, int bitDepth, bool buildForDither, GifPalette* pPal ) | ||
|  | { | ||
|  |     pPal->bitDepth = bitDepth; | ||
|  | 
 | ||
|  |     // SplitPalette is destructive (it sorts the pixels by color) so
 | ||
|  |     // we must create a copy of the image for it to destroy
 | ||
|  |     size_t imageSize = (size_t)(width * height * 4 * sizeof(uint8_t)); | ||
|  |     uint8_t* destroyableImage = (uint8_t*)GIF_TEMP_MALLOC(imageSize); | ||
|  |     memcpy(destroyableImage, nextFrame, imageSize); | ||
|  | 
 | ||
|  |     int numPixels = (int)(width * height); | ||
|  |     if(lastFrame) | ||
|  |         numPixels = GifPickChangedPixels(lastFrame, destroyableImage, numPixels); | ||
|  | 
 | ||
|  |     const int lastElt = 1 << bitDepth; | ||
|  |     const int splitElt = lastElt/2; | ||
|  |     const int splitDist = splitElt/2; | ||
|  | 
 | ||
|  |     GifSplitPalette(destroyableImage, numPixels, 1, lastElt, splitElt, splitDist, 1, buildForDither, pPal); | ||
|  | 
 | ||
|  |     GIF_TEMP_FREE(destroyableImage); | ||
|  | 
 | ||
|  |     // add the bottom node for the transparency index
 | ||
|  |     pPal->treeSplit[1 << (bitDepth-1)] = 0; | ||
|  |     pPal->treeSplitElt[1 << (bitDepth-1)] = 0; | ||
|  | 
 | ||
|  |     pPal->r[0] = pPal->g[0] = pPal->b[0] = 0; | ||
|  | } | ||
|  | 
 | ||
|  | // Implements Floyd-Steinberg dithering, writes palette value to alpha
 | ||
|  | void GifDitherImage( const uint8_t* lastFrame, const uint8_t* nextFrame, uint8_t* outFrame, uint32_t width, uint32_t height, GifPalette* pPal ) | ||
|  | { | ||
|  |     int numPixels = (int)(width * height); | ||
|  | 
 | ||
|  |     // quantPixels initially holds color*256 for all pixels
 | ||
|  |     // The extra 8 bits of precision allow for sub-single-color error values
 | ||
|  |     // to be propagated
 | ||
|  |     int32_t *quantPixels = (int32_t *)GIF_TEMP_MALLOC(sizeof(int32_t) * (size_t)numPixels * 4); | ||
|  | 
 | ||
|  |     for( int ii=0; ii<numPixels*4; ++ii ) | ||
|  |     { | ||
|  |         uint8_t pix = nextFrame[ii]; | ||
|  |         int32_t pix16 = int32_t(pix) * 256; | ||
|  |         quantPixels[ii] = pix16; | ||
|  |     } | ||
|  | 
 | ||
|  |     for( uint32_t yy=0; yy<height; ++yy ) | ||
|  |     { | ||
|  |         for( uint32_t xx=0; xx<width; ++xx ) | ||
|  |         { | ||
|  |             int32_t* nextPix = quantPixels + 4*(yy*width+xx); | ||
|  |             const uint8_t* lastPix = lastFrame? lastFrame + 4*(yy*width+xx) : NULL; | ||
|  | 
 | ||
|  |             // Compute the colors we want (rounding to nearest)
 | ||
|  |             int32_t rr = (nextPix[0] + 127) / 256; | ||
|  |             int32_t gg = (nextPix[1] + 127) / 256; | ||
|  |             int32_t bb = (nextPix[2] + 127) / 256; | ||
|  | 
 | ||
|  |             // if it happens that we want the color from last frame, then just write out
 | ||
|  |             // a transparent pixel
 | ||
|  |             if( lastFrame && | ||
|  |                lastPix[0] == rr && | ||
|  |                lastPix[1] == gg && | ||
|  |                lastPix[2] == bb ) | ||
|  |             { | ||
|  |                 nextPix[0] = rr; | ||
|  |                 nextPix[1] = gg; | ||
|  |                 nextPix[2] = bb; | ||
|  |                 nextPix[3] = kGifTransIndex; | ||
|  |                 continue; | ||
|  |             } | ||
|  | 
 | ||
|  |             int32_t bestDiff = 1000000; | ||
|  |             int32_t bestInd = kGifTransIndex; | ||
|  | 
 | ||
|  |             // Search the palete
 | ||
|  |             GifGetClosestPaletteColor(pPal, rr, gg, bb, bestInd, bestDiff); | ||
|  | 
 | ||
|  |             // Write the result to the temp buffer
 | ||
|  |             int32_t r_err = nextPix[0] - int32_t(pPal->r[bestInd]) * 256; | ||
|  |             int32_t g_err = nextPix[1] - int32_t(pPal->g[bestInd]) * 256; | ||
|  |             int32_t b_err = nextPix[2] - int32_t(pPal->b[bestInd]) * 256; | ||
|  | 
 | ||
|  |             nextPix[0] = pPal->r[bestInd]; | ||
|  |             nextPix[1] = pPal->g[bestInd]; | ||
|  |             nextPix[2] = pPal->b[bestInd]; | ||
|  |             nextPix[3] = bestInd; | ||
|  | 
 | ||
|  |             // Propagate the error to the four adjacent locations
 | ||
|  |             // that we haven't touched yet
 | ||
|  |             int quantloc_7 = (int)(yy * width + xx + 1); | ||
|  |             int quantloc_3 = (int)(yy * width + width + xx - 1); | ||
|  |             int quantloc_5 = (int)(yy * width + width + xx); | ||
|  |             int quantloc_1 = (int)(yy * width + width + xx + 1); | ||
|  | 
 | ||
|  |             if(quantloc_7 < numPixels) | ||
|  |             { | ||
|  |                 int32_t* pix7 = quantPixels+4*quantloc_7; | ||
|  |                 pix7[0] += GifIMax( -pix7[0], r_err * 7 / 16 ); | ||
|  |                 pix7[1] += GifIMax( -pix7[1], g_err * 7 / 16 ); | ||
|  |                 pix7[2] += GifIMax( -pix7[2], b_err * 7 / 16 ); | ||
|  |             } | ||
|  | 
 | ||
|  |             if(quantloc_3 < numPixels) | ||
|  |             { | ||
|  |                 int32_t* pix3 = quantPixels+4*quantloc_3; | ||
|  |                 pix3[0] += GifIMax( -pix3[0], r_err * 3 / 16 ); | ||
|  |                 pix3[1] += GifIMax( -pix3[1], g_err * 3 / 16 ); | ||
|  |                 pix3[2] += GifIMax( -pix3[2], b_err * 3 / 16 ); | ||
|  |             } | ||
|  | 
 | ||
|  |             if(quantloc_5 < numPixels) | ||
|  |             { | ||
|  |                 int32_t* pix5 = quantPixels+4*quantloc_5; | ||
|  |                 pix5[0] += GifIMax( -pix5[0], r_err * 5 / 16 ); | ||
|  |                 pix5[1] += GifIMax( -pix5[1], g_err * 5 / 16 ); | ||
|  |                 pix5[2] += GifIMax( -pix5[2], b_err * 5 / 16 ); | ||
|  |             } | ||
|  | 
 | ||
|  |             if(quantloc_1 < numPixels) | ||
|  |             { | ||
|  |                 int32_t* pix1 = quantPixels+4*quantloc_1; | ||
|  |                 pix1[0] += GifIMax( -pix1[0], r_err / 16 ); | ||
|  |                 pix1[1] += GifIMax( -pix1[1], g_err / 16 ); | ||
|  |                 pix1[2] += GifIMax( -pix1[2], b_err / 16 ); | ||
|  |             } | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     // Copy the palettized result to the output buffer
 | ||
|  |     for( int ii=0; ii<numPixels*4; ++ii ) | ||
|  |     { | ||
|  |         outFrame[ii] = (uint8_t)quantPixels[ii]; | ||
|  |     } | ||
|  | 
 | ||
|  |     GIF_TEMP_FREE(quantPixels); | ||
|  | } | ||
|  | 
 | ||
|  | // Picks palette colors for the image using simple thresholding, no dithering
 | ||
|  | void GifThresholdImage( const uint8_t* lastFrame, const uint8_t* nextFrame, uint8_t* outFrame, uint32_t width, uint32_t height, GifPalette* pPal ) | ||
|  | { | ||
|  |     uint32_t numPixels = width*height; | ||
|  |     for( uint32_t ii=0; ii<numPixels; ++ii ) | ||
|  |     { | ||
|  |         // if a previous color is available, and it matches the current color,
 | ||
|  |         // set the pixel to transparent
 | ||
|  |         if(lastFrame && | ||
|  |            lastFrame[0] == nextFrame[0] && | ||
|  |            lastFrame[1] == nextFrame[1] && | ||
|  |            lastFrame[2] == nextFrame[2]) | ||
|  |         { | ||
|  |             outFrame[0] = lastFrame[0]; | ||
|  |             outFrame[1] = lastFrame[1]; | ||
|  |             outFrame[2] = lastFrame[2]; | ||
|  |             outFrame[3] = kGifTransIndex; | ||
|  |         } | ||
|  |         else | ||
|  |         { | ||
|  |             // palettize the pixel
 | ||
|  |             int32_t bestDiff = 1000000; | ||
|  |             int32_t bestInd = 1; | ||
|  |             GifGetClosestPaletteColor(pPal, nextFrame[0], nextFrame[1], nextFrame[2], bestInd, bestDiff); | ||
|  | 
 | ||
|  |             // Write the resulting color to the output buffer
 | ||
|  |             outFrame[0] = pPal->r[bestInd]; | ||
|  |             outFrame[1] = pPal->g[bestInd]; | ||
|  |             outFrame[2] = pPal->b[bestInd]; | ||
|  |             outFrame[3] = (uint8_t)bestInd; | ||
|  |         } | ||
|  | 
 | ||
|  |         if(lastFrame) lastFrame += 4; | ||
|  |         outFrame += 4; | ||
|  |         nextFrame += 4; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | // Simple structure to write out the LZW-compressed portion of the image
 | ||
|  | // one bit at a time
 | ||
|  | struct GifBitStatus | ||
|  | { | ||
|  |     uint8_t bitIndex;  // how many bits in the partial byte written so far
 | ||
|  |     uint8_t byte;      // current partial byte
 | ||
|  | 
 | ||
|  |     uint32_t chunkIndex; | ||
|  |     uint8_t chunk[256];   // bytes are written in here until we have 256 of them, then written to the file
 | ||
|  | }; | ||
|  | 
 | ||
|  | // insert a single bit
 | ||
|  | void GifWriteBit( GifBitStatus& stat, uint32_t bit ) | ||
|  | { | ||
|  |     bit = bit & 1; | ||
|  |     bit = bit << stat.bitIndex; | ||
|  |     stat.byte |= bit; | ||
|  | 
 | ||
|  |     ++stat.bitIndex; | ||
|  |     if( stat.bitIndex > 7 ) | ||
|  |     { | ||
|  |         // move the newly-finished byte to the chunk buffer
 | ||
|  |         stat.chunk[stat.chunkIndex++] = stat.byte; | ||
|  |         // and start a new byte
 | ||
|  |         stat.bitIndex = 0; | ||
|  |         stat.byte = 0; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | // write all bytes so far to the file
 | ||
|  | void GifWriteChunk( FILE* f, GifBitStatus& stat ) | ||
|  | { | ||
|  |     fputc((int)stat.chunkIndex, f); | ||
|  |     fwrite(stat.chunk, 1, stat.chunkIndex, f); | ||
|  | 
 | ||
|  |     stat.bitIndex = 0; | ||
|  |     stat.byte = 0; | ||
|  |     stat.chunkIndex = 0; | ||
|  | } | ||
|  | 
 | ||
|  | void GifWriteCode( FILE* f, GifBitStatus& stat, uint32_t code, uint32_t length ) | ||
|  | { | ||
|  |     for( uint32_t ii=0; ii<length; ++ii ) | ||
|  |     { | ||
|  |         GifWriteBit(stat, code); | ||
|  |         code = code >> 1; | ||
|  | 
 | ||
|  |         if( stat.chunkIndex == 255 ) | ||
|  |         { | ||
|  |             GifWriteChunk(f, stat); | ||
|  |         } | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | // The LZW dictionary is a 256-ary tree constructed as the file is encoded,
 | ||
|  | // this is one node
 | ||
|  | struct GifLzwNode | ||
|  | { | ||
|  |     uint16_t m_next[256]; | ||
|  | }; | ||
|  | 
 | ||
|  | // write a 256-color (8-bit) image palette to the file
 | ||
|  | void GifWritePalette( const GifPalette* pPal, FILE* f ) | ||
|  | { | ||
|  |     fputc(0, f);  // first color: transparency
 | ||
|  |     fputc(0, f); | ||
|  |     fputc(0, f); | ||
|  | 
 | ||
|  |     for(int ii=1; ii<(1 << pPal->bitDepth); ++ii) | ||
|  |     { | ||
|  |         uint32_t r = pPal->r[ii]; | ||
|  |         uint32_t g = pPal->g[ii]; | ||
|  |         uint32_t b = pPal->b[ii]; | ||
|  | 
 | ||
|  |         fputc((int)r, f); | ||
|  |         fputc((int)g, f); | ||
|  |         fputc((int)b, f); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | // write the image header, LZW-compress and write out the image
 | ||
|  | void GifWriteLzwImage(FILE* f, uint8_t* image, uint32_t left, uint32_t top,  uint32_t width, uint32_t height, uint32_t delay, GifPalette* pPal) | ||
|  | { | ||
|  |     // graphics control extension
 | ||
|  |     fputc(0x21, f); | ||
|  |     fputc(0xf9, f); | ||
|  |     fputc(0x04, f); | ||
|  |     fputc(0x05, f); // leave prev frame in place, this frame has transparency
 | ||
|  |     fputc(delay & 0xff, f); | ||
|  |     fputc((delay >> 8) & 0xff, f); | ||
|  |     fputc(kGifTransIndex, f); // transparent color index
 | ||
|  |     fputc(0, f); | ||
|  | 
 | ||
|  |     fputc(0x2c, f); // image descriptor block
 | ||
|  | 
 | ||
|  |     fputc(left & 0xff, f);           // corner of image in canvas space
 | ||
|  |     fputc((left >> 8) & 0xff, f); | ||
|  |     fputc(top & 0xff, f); | ||
|  |     fputc((top >> 8) & 0xff, f); | ||
|  | 
 | ||
|  |     fputc(width & 0xff, f);          // width and height of image
 | ||
|  |     fputc((width >> 8) & 0xff, f); | ||
|  |     fputc(height & 0xff, f); | ||
|  |     fputc((height >> 8) & 0xff, f); | ||
|  | 
 | ||
|  |     //fputc(0, f); // no local color table, no transparency
 | ||
|  |     //fputc(0x80, f); // no local color table, but transparency
 | ||
|  | 
 | ||
|  |     fputc(0x80 + pPal->bitDepth-1, f); // local color table present, 2 ^ bitDepth entries
 | ||
|  |     GifWritePalette(pPal, f); | ||
|  | 
 | ||
|  |     const int minCodeSize = pPal->bitDepth; | ||
|  |     const uint32_t clearCode = 1 << pPal->bitDepth; | ||
|  | 
 | ||
|  |     fputc(minCodeSize, f); // min code size 8 bits
 | ||
|  | 
 | ||
|  |     GifLzwNode* codetree = (GifLzwNode*)GIF_TEMP_MALLOC(sizeof(GifLzwNode)*4096); | ||
|  | 
 | ||
|  |     memset(codetree, 0, sizeof(GifLzwNode)*4096); | ||
|  |     int32_t curCode = -1; | ||
|  |     uint32_t codeSize = (uint32_t)minCodeSize + 1; | ||
|  |     uint32_t maxCode = clearCode+1; | ||
|  | 
 | ||
|  |     GifBitStatus stat; | ||
|  |     stat.byte = 0; | ||
|  |     stat.bitIndex = 0; | ||
|  |     stat.chunkIndex = 0; | ||
|  | 
 | ||
|  |     GifWriteCode(f, stat, clearCode, codeSize);  // start with a fresh LZW dictionary
 | ||
|  | 
 | ||
|  |     for(uint32_t yy=0; yy<height; ++yy) | ||
|  |     { | ||
|  |         for(uint32_t xx=0; xx<width; ++xx) | ||
|  |         { | ||
|  |     #ifdef GIF_FLIP_VERT
 | ||
|  |             // bottom-left origin image (such as an OpenGL capture)
 | ||
|  |             uint8_t nextValue = image[((height-1-yy)*width+xx)*4+3]; | ||
|  |     #else
 | ||
|  |             // top-left origin
 | ||
|  |             uint8_t nextValue = image[(yy*width+xx)*4+3]; | ||
|  |     #endif
 | ||
|  | 
 | ||
|  |             // "loser mode" - no compression, every single code is followed immediately by a clear
 | ||
|  |             //WriteCode( f, stat, nextValue, codeSize );
 | ||
|  |             //WriteCode( f, stat, 256, codeSize );
 | ||
|  | 
 | ||
|  |             if( curCode < 0 ) | ||
|  |             { | ||
|  |                 // first value in a new run
 | ||
|  |                 curCode = nextValue; | ||
|  |             } | ||
|  |             else if( codetree[curCode].m_next[nextValue] ) | ||
|  |             { | ||
|  |                 // current run already in the dictionary
 | ||
|  |                 curCode = codetree[curCode].m_next[nextValue]; | ||
|  |             } | ||
|  |             else | ||
|  |             { | ||
|  |                 // finish the current run, write a code
 | ||
|  |                 GifWriteCode(f, stat, (uint32_t)curCode, codeSize); | ||
|  | 
 | ||
|  |                 // insert the new run into the dictionary
 | ||
|  |                 codetree[curCode].m_next[nextValue] = (uint16_t)++maxCode; | ||
|  | 
 | ||
|  |                 if( maxCode >= (1ul << codeSize) ) | ||
|  |                 { | ||
|  |                     // dictionary entry count has broken a size barrier,
 | ||
|  |                     // we need more bits for codes
 | ||
|  |                     codeSize++; | ||
|  |                 } | ||
|  |                 if( maxCode == 4095 ) | ||
|  |                 { | ||
|  |                     // the dictionary is full, clear it out and begin anew
 | ||
|  |                     GifWriteCode(f, stat, clearCode, codeSize); // clear tree
 | ||
|  | 
 | ||
|  |                     memset(codetree, 0, sizeof(GifLzwNode)*4096); | ||
|  |                     codeSize = (uint32_t)(minCodeSize + 1); | ||
|  |                     maxCode = clearCode+1; | ||
|  |                 } | ||
|  | 
 | ||
|  |                 curCode = nextValue; | ||
|  |             } | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     // compression footer
 | ||
|  |     GifWriteCode(f, stat, (uint32_t)curCode, codeSize); | ||
|  |     GifWriteCode(f, stat, clearCode, codeSize); | ||
|  |     GifWriteCode(f, stat, clearCode + 1, (uint32_t)minCodeSize + 1); | ||
|  | 
 | ||
|  |     // write out the last partial chunk
 | ||
|  |     while( stat.bitIndex ) GifWriteBit(stat, 0); | ||
|  |     if( stat.chunkIndex ) GifWriteChunk(f, stat); | ||
|  | 
 | ||
|  |     fputc(0, f); // image block terminator
 | ||
|  | 
 | ||
|  |     GIF_TEMP_FREE(codetree); | ||
|  | } | ||
|  | 
 | ||
|  | struct GifWriter | ||
|  | { | ||
|  |     FILE* f; | ||
|  |     uint8_t* oldImage; | ||
|  |     bool firstFrame; | ||
|  | }; | ||
|  | 
 | ||
|  | // Creates a gif file.
 | ||
|  | // The input GIFWriter is assumed to be uninitialized.
 | ||
|  | // The delay value is the time between frames in hundredths of a second - note that not all viewers pay much attention to this value.
 | ||
|  | bool GifBegin( GifWriter* writer, const char* filename, uint32_t width, uint32_t height, uint32_t delay, int32_t bitDepth = 8, bool dither = false ) | ||
|  | { | ||
|  |     (void)bitDepth; (void)dither; // Mute "Unused argument" warnings
 | ||
|  | #if defined(_MSC_VER) && (_MSC_VER >= 1400)
 | ||
|  | 	writer->f = 0; | ||
|  |     fopen_s(&writer->f, filename, "wb"); | ||
|  | #else
 | ||
|  |     writer->f = fopen(filename, "wb"); | ||
|  | #endif
 | ||
|  |     if(!writer->f) return false; | ||
|  | 
 | ||
|  |     writer->firstFrame = true; | ||
|  | 
 | ||
|  |     // allocate
 | ||
|  |     writer->oldImage = (uint8_t*)GIF_MALLOC(width*height*4); | ||
|  | 
 | ||
|  |     fputs("GIF89a", writer->f); | ||
|  | 
 | ||
|  |     // screen descriptor
 | ||
|  |     fputc(width & 0xff, writer->f); | ||
|  |     fputc((width >> 8) & 0xff, writer->f); | ||
|  |     fputc(height & 0xff, writer->f); | ||
|  |     fputc((height >> 8) & 0xff, writer->f); | ||
|  | 
 | ||
|  |     fputc(0xf0, writer->f);  // there is an unsorted global color table of 2 entries
 | ||
|  |     fputc(0, writer->f);     // background color
 | ||
|  |     fputc(0, writer->f);     // pixels are square (we need to specify this because it's 1989)
 | ||
|  | 
 | ||
|  |     // now the "global" palette (really just a dummy palette)
 | ||
|  |     // color 0: black
 | ||
|  |     fputc(0, writer->f); | ||
|  |     fputc(0, writer->f); | ||
|  |     fputc(0, writer->f); | ||
|  |     // color 1: also black
 | ||
|  |     fputc(0, writer->f); | ||
|  |     fputc(0, writer->f); | ||
|  |     fputc(0, writer->f); | ||
|  | 
 | ||
|  |     if( delay != 0 ) | ||
|  |     { | ||
|  |         // animation header
 | ||
|  |         fputc(0x21, writer->f); // extension
 | ||
|  |         fputc(0xff, writer->f); // application specific
 | ||
|  |         fputc(11, writer->f); // length 11
 | ||
|  |         fputs("NETSCAPE2.0", writer->f); // yes, really
 | ||
|  |         fputc(3, writer->f); // 3 bytes of NETSCAPE2.0 data
 | ||
|  | 
 | ||
|  |         fputc(1, writer->f); // JUST BECAUSE
 | ||
|  |         fputc(0, writer->f); // loop infinitely (byte 0)
 | ||
|  |         fputc(0, writer->f); // loop infinitely (byte 1)
 | ||
|  | 
 | ||
|  |         fputc(0, writer->f); // block terminator
 | ||
|  |     } | ||
|  | 
 | ||
|  |     return true; | ||
|  | } | ||
|  | 
 | ||
|  | // Writes out a new frame to a GIF in progress.
 | ||
|  | // The GIFWriter should have been created by GIFBegin.
 | ||
|  | // AFAIK, it is legal to use different bit depths for different frames of an image -
 | ||
|  | // this may be handy to save bits in animations that don't change much.
 | ||
|  | bool GifWriteFrame( GifWriter* writer, const uint8_t* image, uint32_t width, uint32_t height, uint32_t delay, int bitDepth = 8, bool dither = false ) | ||
|  | { | ||
|  |     if(!writer->f) return false; | ||
|  | 
 | ||
|  |     const uint8_t* oldImage = writer->firstFrame? NULL : writer->oldImage; | ||
|  |     writer->firstFrame = false; | ||
|  | 
 | ||
|  |     GifPalette pal; | ||
|  |     GifMakePalette((dither? NULL : oldImage), image, width, height, bitDepth, dither, &pal); | ||
|  | 
 | ||
|  |     if(dither) | ||
|  |         GifDitherImage(oldImage, image, writer->oldImage, width, height, &pal); | ||
|  |     else | ||
|  |         GifThresholdImage(oldImage, image, writer->oldImage, width, height, &pal); | ||
|  | 
 | ||
|  |     GifWriteLzwImage(writer->f, writer->oldImage, 0, 0, width, height, delay, &pal); | ||
|  | 
 | ||
|  |     return true; | ||
|  | } | ||
|  | 
 | ||
|  | // Writes the EOF code, closes the file handle, and frees temp memory used by a GIF.
 | ||
|  | // Many if not most viewers will still display a GIF properly if the EOF code is missing,
 | ||
|  | // but it's still a good idea to write it out.
 | ||
|  | bool GifEnd( GifWriter* writer ) | ||
|  | { | ||
|  |     if(!writer->f) return false; | ||
|  | 
 | ||
|  |     fputc(0x3b, writer->f); // end of file
 | ||
|  |     fclose(writer->f); | ||
|  |     GIF_FREE(writer->oldImage); | ||
|  | 
 | ||
|  |     writer->f = NULL; | ||
|  |     writer->oldImage = NULL; | ||
|  | 
 | ||
|  |     return true; | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 |