mirror of
https://github.com/RetroDECK/ES-DE.git
synced 2024-12-12 07:25:39 +00:00
324 lines
13 KiB
C
324 lines
13 KiB
C
|
/*
|
||
|
#
|
||
|
# File : chlpca.cpp
|
||
|
# ( C++ source file )
|
||
|
#
|
||
|
# Description : Example of use for the CImg plugin 'plugins/chlpca.h'.
|
||
|
# This file is a part of the CImg Library project.
|
||
|
# ( http://cimg.eu )
|
||
|
#
|
||
|
# Copyright : Jerome Boulanger
|
||
|
# ( http://www.irisa.fr/vista/Equipe/People/Jerome.Boulanger.html )
|
||
|
#
|
||
|
#
|
||
|
# License : CeCILL v2.0
|
||
|
# ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
|
||
|
#
|
||
|
# This software is governed by the CeCILL license under French law and
|
||
|
# abiding by the rules of distribution of free software. You can use,
|
||
|
# modify and/ or redistribute the software under the terms of the CeCILL
|
||
|
# license as circulated by CEA, CNRS and INRIA at the following URL
|
||
|
# "http://www.cecill.info".
|
||
|
#
|
||
|
# As a counterpart to the access to the source code and rights to copy,
|
||
|
# modify and redistribute granted by the license, users are provided only
|
||
|
# with a limited warranty and the software's author, the holder of the
|
||
|
# economic rights, and the successive licensors have only limited
|
||
|
# liability.
|
||
|
#
|
||
|
# In this respect, the user's attention is drawn to the risks associated
|
||
|
# with loading, using, modifying and/or developing or reproducing the
|
||
|
# software by the user in light of its specific status of free software,
|
||
|
# that may mean that it is complicated to manipulate, and that also
|
||
|
# therefore means that it is reserved for developers and experienced
|
||
|
# professionals having in-depth computer knowledge. Users are therefore
|
||
|
# encouraged to load and test the software's suitability as regards their
|
||
|
# requirements in conditions enabling the security of their systems and/or
|
||
|
# data to be ensured and, more generally, to use and operate it in the
|
||
|
# same conditions as regards security.
|
||
|
#
|
||
|
# The fact that you are presently reading this means that you have had
|
||
|
# knowledge of the CeCILL license and that you accept its terms.
|
||
|
#
|
||
|
*/
|
||
|
|
||
|
#ifndef cimg_plugin_chlpca
|
||
|
#define cimg_plugin_chlpca
|
||
|
|
||
|
// Define some useful macros.
|
||
|
|
||
|
//! Some loops
|
||
|
#define cimg_for_step1(bound,i,step) for (int i = 0; i<(int)(bound); i+=step)
|
||
|
#define cimg_for_stepX(img,x,step) cimg_for_step1((img)._width,x,step)
|
||
|
#define cimg_for_stepY(img,y,step) cimg_for_step1((img)._height,y,step)
|
||
|
#define cimg_for_stepZ(img,z,step) cimg_for_step1((img)._depth,z,step)
|
||
|
#define cimg_for_stepXY(img,x,y,step) cimg_for_stepY(img,y,step) cimg_for_stepX(img,x,step)
|
||
|
#define cimg_for_stepXYZ(img,x,y,step) cimg_for_stepZ(img,z,step) cimg_for_stepY(img,y,step) cimg_for_stepX(img,x,step)
|
||
|
|
||
|
//! Loop for point J(xj,yj) in the neighborhood of a point I(xi,yi) of size (2*rx+1,2*ry+1)
|
||
|
/**
|
||
|
Point J is kept inside the boundaries of the image img.
|
||
|
example of summing the pixels values in a neighborhood 11x11
|
||
|
cimg_forXY(img,xi,yi) cimg_for_windowXY(img,xi,yi,xj,yj,5,5) dest(yi,yi) += src(xj,yj);
|
||
|
**/
|
||
|
#define cimg_forXY_window(img,xi,yi,xj,yj,rx,ry) \
|
||
|
for (int yi0 = std::max(0,yi-ry), yi1=std::min(yi + ry,(int)img.height() - 1), yj=yi0;yj<=yi1;++yj) \
|
||
|
for (int xi0 = std::max(0,xi-rx), xi1=std::min(xi + rx,(int)img.width() - 1), xj=xi0;xj<=xi1;++xj)
|
||
|
|
||
|
#define cimg_forXYZ_window(img,xi,yi,zi,xj,yj,zj,rx,ry,rz) \
|
||
|
for (int zi0 = std::max(0,zi-rz), zi1=std::min(zi + rz,(int)img.depth() - 1) , zj=zi0;zj<=zi1;++zj) \
|
||
|
for (int yi0 = std::max(0,yi-ry), yi1=std::min(yi + ry,(int)img.height() - 1), yj=yi0;yj<=yi1;++yj) \
|
||
|
for (int xi0 = std::max(0,xi-rx), xi1=std::min(xi + rx,(int)img.width() - 1) , xj=xi0;xj<=xi1;++xj)
|
||
|
|
||
|
//! Crop a patch in the image around position x,y,z and return a column vector
|
||
|
/**
|
||
|
\param x x-coordinate of the center of the patch
|
||
|
\param y y-coordinate of the center of the patch
|
||
|
\param z z-coordinate of the center of the patch
|
||
|
\param px the patch half width
|
||
|
\param px the patch half height
|
||
|
\param px the patch half depth
|
||
|
\return img.get_crop(x0,y0,z0,x1,y1,z1).unroll('y');
|
||
|
**/
|
||
|
CImg<T> get_patch(int x, int y, int z,
|
||
|
int px, int py, int pz) const {
|
||
|
if (depth() == 1){
|
||
|
const int x0 = x - px, y0 = y - py, x1 = x + px, y1 = y + py;
|
||
|
return get_crop(x0, y0, x1, y1).unroll('y');
|
||
|
} else {
|
||
|
const int
|
||
|
x0 = x - px, y0 = y - py, z0 = z - pz,
|
||
|
x1 = x + px, y1 = y + py, z1 = z + pz;
|
||
|
return get_crop(x0, y0, z0, x1, y1, z1).unroll('y');
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//! Extract a local patch dictionnary around point xi,yi,zi
|
||
|
CImg<T> get_patch_dictionnary(const int xi, const int yi, const int zi,
|
||
|
const int px, const int py, const int pz,
|
||
|
const int wx, const int wy, const int wz,
|
||
|
int & idc) const {
|
||
|
const int
|
||
|
n = (2*wx + 1) * (2*wy + 1) * (2 * (depth()==1?0:wz) + 1),
|
||
|
d = (2*px + 1) * (2*py + 1) * (2 * (depth()==1?0:px) + 1) * spectrum();
|
||
|
CImg<> S(n, d);
|
||
|
int idx = 0;
|
||
|
if (depth() == 1) {
|
||
|
cimg_forXY_window((*this), xi, yi, xj, yj, wx, wy){
|
||
|
CImg<T> patch = get_patch(xj, yj, 0, px, py, 1);
|
||
|
cimg_forY(S,y) S(idx,y) = patch(y);
|
||
|
if (xj==xi && yj==yi) idc = idx;
|
||
|
idx++;
|
||
|
}
|
||
|
} else {
|
||
|
cimg_forXYZ_window((*this), xi,yi,zi,xj,yj,zj,wx,wy,wz){
|
||
|
CImg<T> patch = get_patch(xj, yj, zj, px, py, pz);
|
||
|
cimg_forY(S,y) S(idx,y) = patch(y);
|
||
|
if (xj==xi && yj==yi && zj==zi) idc = idx;
|
||
|
idx++;
|
||
|
}
|
||
|
}
|
||
|
S.columns(0, idx - 1);
|
||
|
return S;
|
||
|
}
|
||
|
|
||
|
//! Add a patch to the image
|
||
|
/**
|
||
|
\param x x-coordinate of the center of the patch
|
||
|
\param y y-coordinate of the center of the patch
|
||
|
\param z z-coordinate of the center of the patch
|
||
|
\param img the patch as a 1D column vector
|
||
|
\param px the patch half width
|
||
|
\param px the patch half height
|
||
|
\param px the patch half depth
|
||
|
**/
|
||
|
CImg<T> & add_patch(const int xi, const int yi, const int zi,
|
||
|
const CImg<T> & patch,
|
||
|
const int px, const int py, const int pz) {
|
||
|
const int
|
||
|
x0 = xi - px, y0 = yi - py, z0 = (depth() == 1 ? 0 : zi - pz),
|
||
|
sx = 2 * px + 1, sy = 2 * py + 1, sz = (depth() == 1 ? 1 : 2 * pz +1);
|
||
|
draw_image(x0, y0, z0, 0, patch.get_resize(sx, sy, sz, spectrum(), -1), -1);
|
||
|
return (*this);
|
||
|
}
|
||
|
|
||
|
//! Add a constant patch to the image
|
||
|
/**
|
||
|
\param x x-coordinate of the center of the patch
|
||
|
\param y y-coordinate of the center of the patch
|
||
|
\param z z-coordinate of the center of the patch
|
||
|
\param value in the patch
|
||
|
\param px the patch half width
|
||
|
\param px the patch half height
|
||
|
\param px the patch half depth
|
||
|
**/
|
||
|
CImg<T> & add_patch(const int xi, const int yi, const int zi, const T value,
|
||
|
const int px, const int py, const int pz) {
|
||
|
const int
|
||
|
x0 = xi - px, y0 = yi - py, z0 = (depth() == 1 ? 0 : zi - pz),
|
||
|
x1 = xi + px, y1 = yi + py, z1 = (depth() == 1 ? 0 : zi + pz);
|
||
|
draw_rectangle(x0, y0, z0, 0, x1, y1, z1, spectrum()-1, value, -1);
|
||
|
return (*this);
|
||
|
}
|
||
|
|
||
|
//! CHLPCA denoising from the PhD thesis of Hu Haijuan
|
||
|
/**
|
||
|
\param px the patch half width
|
||
|
\param py the patch half height
|
||
|
\param pz the patch half depth
|
||
|
\param wx the training region half width
|
||
|
\param wy the training region half height
|
||
|
\param wz the training region half depth
|
||
|
\param nstep the subsampling of the image domain
|
||
|
\param nsim the number of patches used for training as a factor of the patch size
|
||
|
\param lambda_min the threshold on the eigen values of the PCA for dimension reduction
|
||
|
\param threshold the threshold on the value of the coefficients
|
||
|
\param pca_use_svd if true use the svd approach to perform the pca otherwise use the covariance method
|
||
|
\note please cite the PhD thesis of Hu Haijuan http://www.univ-ubs.fr/soutenance-de-these-hu-haijuan-337653.kjsp?RH=1318498222799
|
||
|
**/
|
||
|
CImg<T> get_chlpca(const int px, const int py, const int pz,
|
||
|
const int wx, const int wy, const int wz,
|
||
|
const int nstep, const float nsim,
|
||
|
const float lambda_min, const float threshold,
|
||
|
const float noise_std, const bool pca_use_svd) const {
|
||
|
const int
|
||
|
nd = (2*px + 1) * (2*py + 1) * (depth()==1?1:2*pz + 1) * spectrum(),
|
||
|
K = (int)(nsim * nd);
|
||
|
#ifdef DEBUG
|
||
|
fprintf(stderr,"chlpca: p:%dx%dx%d,w:%dx%dx%d,nd:%d,K:%d\n",
|
||
|
2*px + 1,2*py + 1,2*pz + 1,2*wx + 1,2*wy + 1,2*wz + 1,nd,K);
|
||
|
#endif
|
||
|
float sigma;
|
||
|
if (noise_std<0) sigma = (float)std::sqrt(variance_noise());
|
||
|
else sigma = noise_std;
|
||
|
CImg<T> dest(*this), count(*this);
|
||
|
dest.fill(0);
|
||
|
count.fill(0);
|
||
|
cimg_for_stepZ(*this,zi,(depth()==1||pz==0)?1:nstep){
|
||
|
#ifdef cimg_use_openmp
|
||
|
|
||
|
cimg_pragma_openmp(parallel for)
|
||
|
#endif
|
||
|
cimg_for_stepXY((*this),xi,yi,nstep){
|
||
|
// extract the training region X
|
||
|
int idc = 0;
|
||
|
CImg<T> S = get_patch_dictionnary(xi,yi,zi,px,py,pz,wx,wy,wz,idc);
|
||
|
// select the K most similar patches within the training set
|
||
|
CImg<T> Sk(S);
|
||
|
CImg<unsigned int> a_index(S.width());
|
||
|
if (K < Sk.width() - 1){
|
||
|
CImg<T> mse(S.width());
|
||
|
CImg<unsigned int> perms;
|
||
|
cimg_forX(S,x) { mse(x) = (T)S.get_column(idc).MSE(S.get_column(x)); }
|
||
|
mse.sort(perms,true);
|
||
|
cimg_foroff(perms,i) {
|
||
|
cimg_forY(S,j) Sk(i,j) = S(perms(i),j);
|
||
|
a_index(perms(i)) = i;
|
||
|
}
|
||
|
Sk.columns(0, K);
|
||
|
perms.threshold(K);
|
||
|
} else {
|
||
|
cimg_foroff(a_index,i) a_index(i)=i;
|
||
|
}
|
||
|
// centering the patches
|
||
|
CImg<T> M(1, Sk.height(), 1, 1, 0);
|
||
|
cimg_forXY(Sk,x,y) { M(y) += Sk(x,y); }
|
||
|
M /= (T)Sk.width();
|
||
|
cimg_forXY(Sk,x,y) { Sk(x,y) -= M(y); }
|
||
|
// compute the principal component of the training set S
|
||
|
CImg<T> P, lambda;
|
||
|
if (pca_use_svd) {
|
||
|
CImg<T> V;
|
||
|
Sk.get_transpose().SVD(V,lambda,P,true,100);
|
||
|
} else {
|
||
|
(Sk * Sk.get_transpose()).symmetric_eigen(lambda, P);
|
||
|
lambda.sqrt();
|
||
|
}
|
||
|
// dimension reduction
|
||
|
int s = 0;
|
||
|
const T tx = (T)(std::sqrt((double)Sk.width()-1.0) * lambda_min * sigma);
|
||
|
while((lambda(s) > tx) && (s < ((int)lambda.size() - 1))) { s++; }
|
||
|
P.columns(0,s);
|
||
|
// project all the patches on the basis (compute scalar product)
|
||
|
Sk = P.get_transpose() * Sk;
|
||
|
// threshold the coefficients
|
||
|
if (threshold > 0) { Sk.threshold(threshold, 1); }
|
||
|
// project back to pixel space
|
||
|
Sk = P * Sk;
|
||
|
// recenter the patches
|
||
|
cimg_forXY(Sk,x,y) { Sk(x,y) += M(y); }
|
||
|
int j = 0;
|
||
|
cimg_forXYZ_window((*this),xi,yi,zi,xj,yj,zj,wx,wy,wz){
|
||
|
const int id = a_index(j);
|
||
|
if (id < Sk.width()) {
|
||
|
dest.add_patch(xj, yj, zj, Sk.get_column(id), px, py, pz);
|
||
|
count.add_patch(xj, yj, zj, (T)1, px, py, pz);
|
||
|
}
|
||
|
j++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
cimg_foroff(dest, i) {
|
||
|
if(count(i) != 0) { dest(i) /= count(i); }
|
||
|
else { dest(i) = (*this)(i); }
|
||
|
}
|
||
|
return dest;
|
||
|
}
|
||
|
|
||
|
//! CHLPCA denoising from the PhD thesis of Hu Haijuan
|
||
|
/**
|
||
|
\param px the patch half width
|
||
|
\param px the patch half height
|
||
|
\param px the patch half depth
|
||
|
\param wx the training region half width
|
||
|
\param wy the training region half height
|
||
|
\param wz the training region half depth
|
||
|
\param nstep the subsampling of the image domain
|
||
|
\param nsim the number of patches used for training as a factor of the patch size
|
||
|
\param lambda_min the threshold on the eigen values of the PCA for dimension reduction
|
||
|
\param threshold the threshold on the value of the coefficients
|
||
|
\param pca_use_svd if true use the svd approach to perform the pca otherwise use the covariance method
|
||
|
\note please cite the PhD thesis of Hu Haijuan http://www.univ-ubs.fr/soutenance-de-these-hu-haijuan-337653.kjsp?RH=1318498222799
|
||
|
**/
|
||
|
CImg<T> & chlpca(const int px, const int py, const int pz,
|
||
|
const int wx, const int wy, const int wz,
|
||
|
const int nstep, const float nsim,
|
||
|
const float lambda_min, const float threshold,
|
||
|
const float noise_std, const bool pca_use_svd) {
|
||
|
(*this) = get_chlpca(px, py, pz, wx, wy, wz, nstep, nsim, lambda_min,
|
||
|
threshold, noise_std, pca_use_svd);
|
||
|
return (*this);
|
||
|
}
|
||
|
|
||
|
//! CHLPCA denoising from the PhD thesis of Hu Haijuan
|
||
|
/**
|
||
|
\param p the patch half size
|
||
|
\param w the training region half size
|
||
|
\param nstep the subsampling of the image domain
|
||
|
\param nsim the number of patches used for training as a factor of the patch size
|
||
|
\param lambda_min the threshold on the eigen values of the PCA for dimension reduction
|
||
|
\param threshold the threshold on the value of the coefficients
|
||
|
\param pca_use_svd if true use the svd approach to perform the pca otherwise use the covariance method
|
||
|
\note please cite the PhD thesis of Hu Haijuan http://www.univ-ubs.fr/soutenance-de-these-hu-haijuan-337653.kjsp?RH=1318498222799
|
||
|
**/
|
||
|
CImg<T> get_chlpca(const int p=3, const int w=10,
|
||
|
const int nstep=5, const float nsim=10,
|
||
|
const float lambda_min=2, const float threshold = -1,
|
||
|
const float noise_std=-1, const bool pca_use_svd=true) const {
|
||
|
if (depth()==1) return get_chlpca(p, p, 0, w, w, 0, nstep, nsim, lambda_min,
|
||
|
threshold, noise_std, pca_use_svd);
|
||
|
else return get_chlpca(p, p, p, w, w, w, nstep, nsim, lambda_min,
|
||
|
threshold, noise_std, pca_use_svd);
|
||
|
}
|
||
|
|
||
|
CImg<T> chlpca(const int p=3, const int w=10,
|
||
|
const int nstep=5, const float nsim=10,
|
||
|
const float lambda_min=2, const float threshold = -1,
|
||
|
const float noise_std=-1, const bool pca_use_svd=true) {
|
||
|
(*this) = get_chlpca(p, w, nstep, nsim, lambda_min,
|
||
|
threshold, noise_std, pca_use_svd);
|
||
|
return (*this);
|
||
|
}
|
||
|
|
||
|
#endif /* cimg_plugin_chlpca */
|