Added a function to generate MD5 hashes.

This commit is contained in:
Leon Styhre 2021-08-18 21:03:25 +02:00
parent 816d79c32f
commit 192bec6f5c
4 changed files with 323 additions and 60 deletions

View file

@ -57,7 +57,7 @@ public:
// By default, just calls renderChildren(parentTrans * getTransform())
// Normally the following steps are required:
// 1. Calculate the new transform that your component will draw at
// glm::mat4 trans {parentTrans * getTransform()};
// glm::mat4 trans{parentTrans * getTransform()};
// 2. Set the renderer to use that new transform as the model matrix
// Renderer::setMatrix(trans);
// 3. Draw your component

View file

@ -365,9 +365,9 @@ template <typename T> void TextListComponent<T>::update(int deltaTime)
while (mMarqueeTime > maxTime)
mMarqueeTime -= maxTime;
mMarqueeOffset = static_cast<int>(Utils::Math::Scroll::loop(
delay, scrollTime + returnTime, static_cast<float>(mMarqueeTime),
scrollLength + returnLength));
mMarqueeOffset = static_cast<int>(Utils::Math::loop(delay, scrollTime + returnTime,
static_cast<float>(mMarqueeTime),
scrollLength + returnLength));
if (mMarqueeOffset > (scrollLength - (limit - returnLength)))
mMarqueeOffset2 = static_cast<int>(mMarqueeOffset - (scrollLength + returnLength));

View file

@ -7,8 +7,15 @@
// The GLM library headers are also included from here.
//
#if defined(_MSC_VER) // MSVC compiler.
#define _CRT_SECURE_NO_WARNINGS
#endif
#include "utils/MathUtil.h"
#include <cstring>
#include <sstream>
namespace Utils
{
namespace Math
@ -25,56 +32,302 @@ namespace Utils
return x * x * x * (x * ((x * 6.0f) - 15.0f) + 10.0f);
}
namespace Scroll
float loop(const float delayTime,
const float scrollTime,
const float currentTime,
const float scrollLength)
{
float bounce(const float delayTime,
const float scrollTime,
const float currentTime,
const float scrollLength)
{
if (currentTime < delayTime) {
// Wait.
return 0.0f;
}
else if (currentTime < (delayTime + scrollTime)) {
// Interpolate from 0 to scrollLength.
const float fraction{(currentTime - delayTime) / scrollTime};
return glm::mix(0.0f, scrollLength, smootherStep(0.0f, 1.0f, fraction));
}
else if (currentTime < (delayTime + scrollTime + delayTime)) {
// Wait some more.
return scrollLength;
}
else if (currentTime < (delayTime + scrollTime + delayTime + scrollTime)) {
// Interpolate back from scrollLength to 0.
const float fraction{(currentTime - delayTime - scrollTime - delayTime) /
scrollTime};
return glm::mix(scrollLength, 0.0f, smootherStep(0.0f, 1.0f, fraction));
}
// And back to waiting.
if (currentTime < delayTime) {
// Wait.
return 0.0f;
}
float loop(const float delayTime,
const float scrollTime,
const float currentTime,
const float scrollLength)
{
if (currentTime < delayTime) {
// Wait.
return 0.0f;
}
else if (currentTime < (delayTime + scrollTime)) {
// Interpolate from 0 to scrollLength.
const float fraction{(currentTime - delayTime) / scrollTime};
return glm::mix(0.0f, scrollLength, fraction);
}
// And back to waiting.
return 0.0f;
else if (currentTime < (delayTime + scrollTime)) {
// Interpolate from 0 to scrollLength.
const float fraction{(currentTime - delayTime) / scrollTime};
return glm::mix(0.0f, scrollLength, fraction);
}
} // namespace Scroll
// And back to waiting.
return 0.0f;
}
float bounce(const float delayTime,
const float scrollTime,
const float currentTime,
const float scrollLength)
{
if (currentTime < delayTime) {
// Wait.
return 0.0f;
}
else if (currentTime < (delayTime + scrollTime)) {
// Interpolate from 0 to scrollLength.
const float fraction{(currentTime - delayTime) / scrollTime};
return glm::mix(0.0f, scrollLength, smootherStep(0.0f, 1.0f, fraction));
}
else if (currentTime < (delayTime + scrollTime + delayTime)) {
// Wait some more.
return scrollLength;
}
else if (currentTime < (delayTime + scrollTime + delayTime + scrollTime)) {
// Interpolate back from scrollLength to 0.
const float fraction{(currentTime - delayTime - scrollTime - delayTime) /
scrollTime};
return glm::mix(scrollLength, 0.0f, smootherStep(0.0f, 1.0f, fraction));
}
// And back to waiting.
return 0.0f;
}
std::string md5Hash(const std::string& data)
{
// Data that didn't fit in last 64 byte chunk.
unsigned char buffer[64]{};
// 64 bit counter for the number of bits (low, high).
unsigned int count[2]{};
// Digest so far.
unsigned int state[4];
// Magic initialization constants.
state[0] = 0x67452301;
state[1] = 0xefcdab89;
state[2] = 0x98badcfe;
state[3] = 0x10325476;
md5Update(reinterpret_cast<const unsigned char*>(data.c_str()),
static_cast<unsigned int>(data.length()), state, count, buffer);
static unsigned char padding[64]{0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
// Encodes unsigned int input into unsigned char output. Assumes len is a multiple of 4.
auto encodeFunc = [](unsigned char output[], const unsigned int input[],
unsigned int len) {
for (unsigned int i = 0, j = 0; j < len; i++, j += 4) {
output[j] = input[i] & 0xff;
output[j + 1] = (input[i] >> 8) & 0xff;
output[j + 2] = (input[i] >> 16) & 0xff;
output[j + 3] = (input[i] >> 24) & 0xff;
}
};
// Save number of bits.
unsigned char bits[8];
encodeFunc(bits, count, 8);
// Pad out to 56 mod 64.
unsigned int index = count[0] / 8 % 64;
unsigned int padLen = (index < 56) ? (56 - index) : (120 - index);
md5Update(padding, padLen, state, count, buffer);
// Append length (before padding).
md5Update(bits, 8, state, count, buffer);
// The result.
unsigned char digest[16];
// Store state in digest.
encodeFunc(digest, state, 16);
// Convert to hex string.
char buf[33];
for (int i = 0; i < 16; i++)
sprintf(buf + i * 2, "%02x", digest[i]);
buf[32] = 0;
return std::string(buf);
}
void md5Update(const unsigned char input[],
unsigned int length,
unsigned int (&state)[4],
unsigned int (&count)[2],
unsigned char (&buffer)[64])
{
// Compute number of bytes (mod 64).
unsigned int index = count[0] / 8 % 64;
// Update number of bits.
if ((count[0] += (length << 3)) < (length << 3))
count[1]++;
count[1] += (length >> 29);
// Number of bytes we need to fill in buffer.
unsigned int firstpart = 64 - index;
unsigned int i;
// Encodes unsigned int input into unsigned char output. Assumes len is a multiple of 4.
// Transform as many times as possible.
if (length >= firstpart) {
// Fill buffer first, then transform.
memcpy(&buffer[index], input, firstpart);
md5Transform(buffer, state);
// Transform chunks of 64 (64 bytes).
for (i = firstpart; i + 64 <= length; i += 64)
md5Transform(&input[i], state);
index = 0;
}
else
i = 0;
// Buffer remaining input.
memcpy(&buffer[index], &input[i], length - i);
}
void md5Transform(const unsigned char block[64], unsigned int (&state)[4])
{
unsigned int a{state[0]};
unsigned int b{state[1]};
unsigned int c{state[2]};
unsigned int d{state[3]};
unsigned int x[16]{};
// Encodes unsigned int input into unsigned char output. Assumes len is a multiple of 4.
for (unsigned int i = 0, j = 0; j < 64; i++, j += 4)
x[i] = (static_cast<unsigned int>(block[j])) |
((static_cast<unsigned int>(block[j + 1])) << 8) |
((static_cast<unsigned int>(block[j + 2])) << 16) |
((static_cast<unsigned int>(block[j + 3])) << 24);
const unsigned int S11{7};
const unsigned int S12{12};
const unsigned int S13{17};
const unsigned int S14{22};
const unsigned int S21{5};
const unsigned int S22{9};
const unsigned int S23{14};
const unsigned int S24{20};
const unsigned int S31{4};
const unsigned int S32{11};
const unsigned int S33{16};
const unsigned int S34{23};
const unsigned int S41{6};
const unsigned int S42{10};
const unsigned int S43{15};
const unsigned int S44{21};
// fFunc, gFunc, hFunc and iFunc are basic MD5 functions.
auto fFunc = [](unsigned int x, unsigned int y, unsigned int z) {
return (x & y) | (~x & z);
};
auto gFunc = [](unsigned int x, unsigned int y, unsigned int z) {
return (x & z) | (y & ~z);
};
auto hFunc = [](unsigned int x, unsigned int y, unsigned int z) { return x ^ y ^ z; };
auto iFunc = [](unsigned int x, unsigned int y, unsigned int z) {
return y ^ (x | ~z);
};
auto rotateLeftFunc = [](unsigned int x, int n) { return (x << n) | (x >> (32 - n)); };
// ffFunc, ggFunc, hhFunc, and iiFunc transformations for rounds 1, 2, 3, and 4.
// Rotation is separate from addition to prevent recomputation.
auto ffFunc = [fFunc, rotateLeftFunc](unsigned int& a, unsigned int b, unsigned int c,
unsigned int d, unsigned int x, unsigned int s,
unsigned int ac) {
a = rotateLeftFunc(a + fFunc(b, c, d) + x + ac, s) + b;
};
auto ggFunc = [gFunc, rotateLeftFunc](unsigned int& a, unsigned int b, unsigned int c,
unsigned int d, unsigned int x, unsigned int s,
unsigned int ac) {
a = rotateLeftFunc(a + gFunc(b, c, d) + x + ac, s) + b;
};
auto hhFunc = [hFunc, rotateLeftFunc](unsigned int& a, unsigned int b, unsigned int c,
unsigned int d, unsigned int x, unsigned int s,
unsigned int ac) {
a = rotateLeftFunc(a + hFunc(b, c, d) + x + ac, s) + b;
};
auto iiFunc = [iFunc, rotateLeftFunc](unsigned int& a, unsigned int b, unsigned int c,
unsigned int d, unsigned int x, unsigned int s,
unsigned int ac) {
a = rotateLeftFunc(a + iFunc(b, c, d) + x + ac, s) + b;
};
// Round 1.
ffFunc(a, b, c, d, x[0], S11, 0xd76aa478); /* 1 */
ffFunc(d, a, b, c, x[1], S12, 0xe8c7b756); /* 2 */
ffFunc(c, d, a, b, x[2], S13, 0x242070db); /* 3 */
ffFunc(b, c, d, a, x[3], S14, 0xc1bdceee); /* 4 */
ffFunc(a, b, c, d, x[4], S11, 0xf57c0faf); /* 5 */
ffFunc(d, a, b, c, x[5], S12, 0x4787c62a); /* 6 */
ffFunc(c, d, a, b, x[6], S13, 0xa8304613); /* 7 */
ffFunc(b, c, d, a, x[7], S14, 0xfd469501); /* 8 */
ffFunc(a, b, c, d, x[8], S11, 0x698098d8); /* 9 */
ffFunc(d, a, b, c, x[9], S12, 0x8b44f7af); /* 10 */
ffFunc(c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
ffFunc(b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
ffFunc(a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
ffFunc(d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
ffFunc(c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
ffFunc(b, c, d, a, x[15], S14, 0x49b40821); /* 16 */
// Round 2.
ggFunc(a, b, c, d, x[1], S21, 0xf61e2562); /* 17 */
ggFunc(d, a, b, c, x[6], S22, 0xc040b340); /* 18 */
ggFunc(c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
ggFunc(b, c, d, a, x[0], S24, 0xe9b6c7aa); /* 20 */
ggFunc(a, b, c, d, x[5], S21, 0xd62f105d); /* 21 */
ggFunc(d, a, b, c, x[10], S22, 0x2441453); /* 22 */
ggFunc(c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
ggFunc(b, c, d, a, x[4], S24, 0xe7d3fbc8); /* 24 */
ggFunc(a, b, c, d, x[9], S21, 0x21e1cde6); /* 25 */
ggFunc(d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
ggFunc(c, d, a, b, x[3], S23, 0xf4d50d87); /* 27 */
ggFunc(b, c, d, a, x[8], S24, 0x455a14ed); /* 28 */
ggFunc(a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
ggFunc(d, a, b, c, x[2], S22, 0xfcefa3f8); /* 30 */
ggFunc(c, d, a, b, x[7], S23, 0x676f02d9); /* 31 */
ggFunc(b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */
// Round 3.
hhFunc(a, b, c, d, x[5], S31, 0xfffa3942); /* 33 */
hhFunc(d, a, b, c, x[8], S32, 0x8771f681); /* 34 */
hhFunc(c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
hhFunc(b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
hhFunc(a, b, c, d, x[1], S31, 0xa4beea44); /* 37 */
hhFunc(d, a, b, c, x[4], S32, 0x4bdecfa9); /* 38 */
hhFunc(c, d, a, b, x[7], S33, 0xf6bb4b60); /* 39 */
hhFunc(b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
hhFunc(a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
hhFunc(d, a, b, c, x[0], S32, 0xeaa127fa); /* 42 */
hhFunc(c, d, a, b, x[3], S33, 0xd4ef3085); /* 43 */
hhFunc(b, c, d, a, x[6], S34, 0x4881d05); /* 44 */
hhFunc(a, b, c, d, x[9], S31, 0xd9d4d039); /* 45 */
hhFunc(d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
hhFunc(c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
hhFunc(b, c, d, a, x[2], S34, 0xc4ac5665); /* 48 */
// Round 4.
iiFunc(a, b, c, d, x[0], S41, 0xf4292244); /* 49 */
iiFunc(d, a, b, c, x[7], S42, 0x432aff97); /* 50 */
iiFunc(c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
iiFunc(b, c, d, a, x[5], S44, 0xfc93a039); /* 52 */
iiFunc(a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
iiFunc(d, a, b, c, x[3], S42, 0x8f0ccc92); /* 54 */
iiFunc(c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
iiFunc(b, c, d, a, x[1], S44, 0x85845dd1); /* 56 */
iiFunc(a, b, c, d, x[8], S41, 0x6fa87e4f); /* 57 */
iiFunc(d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
iiFunc(c, d, a, b, x[6], S43, 0xa3014314); /* 59 */
iiFunc(b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
iiFunc(a, b, c, d, x[4], S41, 0xf7537e82); /* 61 */
iiFunc(d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
iiFunc(c, d, a, b, x[2], S43, 0x2ad7d2bb); /* 63 */
iiFunc(b, c, d, a, x[9], S44, 0xeb86d391); /* 64 */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
}
} // namespace Math

View file

@ -13,6 +13,7 @@
#include <glm/ext/matrix_clip_space.hpp>
#include <glm/ext/matrix_transform.hpp>
#include <glm/trigonometric.hpp>
#include <string>
namespace Utils
{
@ -21,17 +22,26 @@ namespace Utils
float smoothStep(const float left, const float right, const float value);
float smootherStep(const float left, const float right, const float value);
namespace Scroll
{
float bounce(const float delayTime,
const float scrollTime,
const float currentTime,
const float scrollLength);
float loop(const float delayTime,
const float scrollTime,
const float currentTime,
const float scrollLength);
} // namespace Scroll
// Used for horizontal scrolling, e.g. long names in TextListComponent.
float loop(const float delayTime,
const float scrollTime,
const float currentTime,
const float scrollLength);
// Variation of the loop, with an acceleration and deceleration at the start and ending.
float bounce(const float delayTime,
const float scrollTime,
const float currentTime,
const float scrollLength);
// The MD5 functions are derived from the RSA Data Security, Inc. MD5 Message-Digest
// Algorithm. Based on this code: https://github.com/yaoyao-cn/md5/blob/master/md5.cpp
std::string md5Hash(const std::string& data);
void md5Update(const unsigned char* buf,
unsigned int length,
unsigned int (&state)[4],
unsigned int (&count)[2],
unsigned char (&buffer)[64]);
void md5Transform(const unsigned char block[64], unsigned int (&state)[4]);
} // namespace Math