Got rid of Matrix3x3f, Matrix4x4f, Rotation3x3f and Scale3x3f

Everything is now handled by Transform4x4f which now does it way more optimized than previous version
This commit is contained in:
Tomas Jakobsson 2017-10-30 20:43:58 +01:00
parent 9304f15c74
commit 8f5fbb0b26
9 changed files with 234 additions and 380 deletions

View file

@ -4,7 +4,6 @@
#include "animations/Animation.h" #include "animations/Animation.h"
#include "Log.h" #include "Log.h"
#include "math/Scale3x3f.h"
// let's look at the game launch effect: // let's look at the game launch effect:
// -move camera to center on point P (interpolation method: linear) // -move camera to center on point P (interpolation method: linear)
@ -44,7 +43,7 @@ public:
cameraOut = Transform4x4f::Identity(); cameraOut = Transform4x4f::Identity();
float zoom = lerp<float>(1.0, 4.25f, t*t); float zoom = lerp<float>(1.0, 4.25f, t*t);
cameraOut *= Scale3x3f(Vector3f(zoom, zoom, 1)); cameraOut.scale(zoom);
const float sw = (float)Renderer::getScreenWidth() / zoom; const float sw = (float)Renderer::getScreenWidth() / zoom;
const float sh = (float)Renderer::getScreenHeight() / zoom; const float sh = (float)Renderer::getScreenHeight() / zoom;

View file

@ -372,7 +372,8 @@ void ViewController::update(int deltaTime)
void ViewController::render(const Transform4x4f& parentTrans) void ViewController::render(const Transform4x4f& parentTrans)
{ {
Transform4x4f trans = mCamera * parentTrans; Transform4x4f trans = mCamera * parentTrans;
Transform4x4f transInverse = trans.inverse(); Transform4x4f transInverse;
transInverse.invert(trans);
// camera position, position + size // camera position, position + size
Vector3f viewStart = transInverse.translation(); Vector3f viewStart = transInverse.translation();

View file

@ -46,8 +46,8 @@ void IGameListView::render(const Transform4x4f& parentTrans)
{ {
Transform4x4f trans = parentTrans * getTransform(); Transform4x4f trans = parentTrans * getTransform();
float scaleX = trans[0]; float scaleX = trans.r0().x();
float scaleY = trans[5]; float scaleY = trans.r1().y();
Vector2i pos(trans.translation()[0], trans.translation()[1]); Vector2i pos(trans.translation()[0], trans.translation()[1]);
Vector2i size(mSize.x() * scaleX, mSize.y() * scaleY); Vector2i size(mSize.x() * scaleX, mSize.y() * scaleY);

View file

@ -4,8 +4,6 @@
#include "Renderer.h" #include "Renderer.h"
#include "animations/AnimationController.h" #include "animations/AnimationController.h"
#include "ThemeData.h" #include "ThemeData.h"
#include "math/Rotation3x3f.h"
#include "math/Scale3x3f.h"
GuiComponent::GuiComponent(Window* window) : mWindow(window), mParent(NULL), mOpacity(255), GuiComponent::GuiComponent(Window* window) : mWindow(window), mParent(NULL), mOpacity(255),
mPosition(Vector3f::Zero()), mOrigin(Vector2f::Zero()), mRotationOrigin(0.5, 0.5), mPosition(Vector3f::Zero()), mOrigin(Vector2f::Zero()), mRotationOrigin(0.5, 0.5),
@ -247,7 +245,7 @@ const Transform4x4f& GuiComponent::getTransform()
mTransform.translate(mPosition); mTransform.translate(mPosition);
if (mScale != 1.0) if (mScale != 1.0)
{ {
mTransform *= Scale3x3f(mScale); mTransform.scale(mScale);
} }
if (mRotation != 0.0) if (mRotation != 0.0)
{ {
@ -259,8 +257,8 @@ const Transform4x4f& GuiComponent::getTransform()
if (xOff != 0.0 || yOff != 0.0) if (xOff != 0.0 || yOff != 0.0)
mTransform.translate(Vector3f(xOff * -1, yOff * -1, 0.0f)); mTransform.translate(Vector3f(xOff * -1, yOff * -1, 0.0f));
// apply rotation transorm // apply rotation transform
mTransform *= Rotation3x3f(mRotation, Vector3f::UnitZ()); mTransform.rotateZ(mRotation);
// Tranform back to original point // Tranform back to original point
if (xOff != 0.0 || yOff != 0.0) if (xOff != 0.0 || yOff != 0.0)

View file

@ -1,78 +0,0 @@
#pragma once
#ifndef ES_CORE_MATH_MATRIX3X3F_H
#define ES_CORE_MATH_MATRIX3X3F_H
#include <assert.h>
#include <math/Vector3f.h>
class Matrix3x3f
{
public:
Matrix3x3f() { }
Matrix3x3f(const Vector3f& r0, const Vector3f& r1, const Vector3f& r2) : mR0(r0), mR1(r1), mR2(r2) { }
const bool operator==(const Matrix3x3f& other) const { return ((mR0 == other.mR0) && (mR1 == other.mR1) && (mR2 == other.mR2)); }
const bool operator!=(const Matrix3x3f& other) const { return ((mR0 != other.mR0) || (mR1 != other.mR1) || (mR2 != other.mR2)); }
const Matrix3x3f operator*(const Matrix3x3f& other) const
{
const float* tm = (float*)this;
const float* om = (float*)&other;
return
{
{
tm[0] * om[0] + tm[1] * om[3] + tm[2] * om[6],
tm[0] * om[1] + tm[1] * om[4] + tm[2] * om[7],
tm[0] * om[2] + tm[1] * om[5] + tm[2] * om[8]
},
{
tm[3] * om[0] + tm[4] * om[3] + tm[5] * om[6],
tm[3] * om[1] + tm[4] * om[4] + tm[5] * om[7],
tm[3] * om[2] + tm[4] * om[5] + tm[5] * om[8]
},
{
tm[6] * om[0] + tm[7] * om[3] + tm[8] * om[6],
tm[6] * om[1] + tm[7] * om[4] + tm[8] * om[7],
tm[6] * om[2] + tm[7] * om[5] + tm[8] * om[8]
}
};
}
const Vector3f operator*(const Vector3f& other) const
{
const float* tm = (float*)this;
const float* ov = (float*)&other;
return
{
tm[0] * ov[0] + tm[3] * ov[1] + tm[6] * ov[2],
tm[1] * ov[0] + tm[4] * ov[1] + tm[7] * ov[2],
tm[2] * ov[0] + tm[5] * ov[1] + tm[8] * ov[2]
};
}
Matrix3x3f& operator*=(const Matrix3x3f& other) { *this = *this * other; return *this; }
float& operator[](const int index) { assert(index < 9 && "index out of range"); return ((float*)&mR0)[index]; }
const float& operator[](const int index) const { assert(index < 9 && "index out of range"); return ((float*)&mR0)[index]; }
Vector3f& r0() { return mR0; }
Vector3f& r1() { return mR1; }
Vector3f& r2() { return mR2; }
const Vector3f& r0() const { return mR0; }
const Vector3f& r1() const { return mR1; }
const Vector3f& r2() const { return mR2; }
static const Matrix3x3f Identity() { return { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } }; }
protected:
Vector3f mR0;
Vector3f mR1;
Vector3f mR2;
};
#endif // ES_CORE_MATH_MATRIX3X3F_H

View file

@ -1,180 +0,0 @@
#pragma once
#ifndef ES_CORE_MATH_MATRIX4X4F_H
#define ES_CORE_MATH_MATRIX4X4F_H
#include <assert.h>
#include <math/Matrix3x3f.h>
#include <math/Vector4f.h>
class Matrix4x4f
{
public:
friend class Transform4x4f;
Matrix4x4f() { }
Matrix4x4f(const Vector4f& r0, const Vector4f& r1, const Vector4f& r2, const Vector4f& r3) : mR0(r0), mR1(r1), mR2(r2), mR3(r3) { }
const bool operator==(const Matrix4x4f& other) const { return ((mR0 == other.mR0) && (mR1 == other.mR1) && (mR2 == other.mR2) && (mR3 == other.mR3)); }
const bool operator!=(const Matrix4x4f& other) const { return ((mR0 != other.mR0) || (mR1 != other.mR1) || (mR2 != other.mR2) || (mR3 != other.mR3)); }
const Matrix4x4f operator*(const Matrix4x4f& other) const
{
const float* tm = (float*)this;
const float* om = (float*)&other;
return
{
{
tm[ 0] * om[ 0] + tm[ 1] * om[ 4] + tm[ 2] * om[ 8] + tm[ 3] * om[12],
tm[ 0] * om[ 1] + tm[ 1] * om[ 5] + tm[ 2] * om[ 9] + tm[ 3] * om[13],
tm[ 0] * om[ 2] + tm[ 1] * om[ 6] + tm[ 2] * om[10] + tm[ 3] * om[14],
tm[ 0] * om[ 3] + tm[ 1] * om[ 7] + tm[ 2] * om[11] + tm[ 3] * om[15]
},
{
tm[ 4] * om[ 0] + tm[ 5] * om[ 4] + tm[ 6] * om[ 8] + tm[ 7] * om[12],
tm[ 4] * om[ 1] + tm[ 5] * om[ 5] + tm[ 6] * om[ 9] + tm[ 7] * om[13],
tm[ 4] * om[ 2] + tm[ 5] * om[ 6] + tm[ 6] * om[10] + tm[ 7] * om[14],
tm[ 4] * om[ 3] + tm[ 5] * om[ 7] + tm[ 6] * om[11] + tm[ 7] * om[15]
},
{
tm[ 8] * om[ 0] + tm[ 9] * om[ 4] + tm[10] * om[ 8] + tm[11] * om[12],
tm[ 8] * om[ 1] + tm[ 9] * om[ 5] + tm[10] * om[ 9] + tm[11] * om[13],
tm[ 8] * om[ 2] + tm[ 9] * om[ 6] + tm[10] * om[10] + tm[11] * om[14],
tm[ 8] * om[ 3] + tm[ 9] * om[ 7] + tm[10] * om[11] + tm[11] * om[15]
},
{
tm[12] * om[ 0] + tm[13] * om[ 4] + tm[14] * om[ 8] + tm[15] * om[12],
tm[12] * om[ 1] + tm[13] * om[ 5] + tm[14] * om[ 9] + tm[15] * om[13],
tm[12] * om[ 2] + tm[13] * om[ 6] + tm[14] * om[10] + tm[15] * om[14],
tm[12] * om[ 3] + tm[13] * om[ 7] + tm[14] * om[11] + tm[15] * om[15]
}
};
}
const Matrix4x4f operator*(const Matrix3x3f& other) const
{
const float* tm = (float*)this;
const float* om = (float*)&other;
return
{
{
tm[ 0] * om[0] + tm[ 1] * om[3] + tm[ 2] * om[6],
tm[ 0] * om[1] + tm[ 1] * om[4] + tm[ 2] * om[7],
tm[ 0] * om[2] + tm[ 1] * om[5] + tm[ 2] * om[8],
tm[ 3]
},
{
tm[ 4] * om[0] + tm[ 5] * om[3] + tm[ 6] * om[6],
tm[ 4] * om[1] + tm[ 5] * om[4] + tm[ 6] * om[7],
tm[ 4] * om[2] + tm[ 5] * om[5] + tm[ 6] * om[8],
tm[ 7]
},
{
tm[ 8] * om[0] + tm[ 9] * om[3] + tm[10] * om[6],
tm[ 8] * om[1] + tm[ 9] * om[4] + tm[10] * om[7],
tm[ 8] * om[2] + tm[ 9] * om[5] + tm[10] * om[8],
tm[11]
},
{
tm[12],
tm[13],
tm[14],
tm[15]
}
};
}
Matrix4x4f& operator*=(const Matrix4x4f& other) { *this = *this * other; return *this; }
Matrix4x4f& operator*=(const Matrix3x3f& other) { *this = *this * other; return *this; }
float& operator[](const int index) { assert(index < 16 && "index out of range"); return ((float*)&mR0)[index]; }
const float& operator[](const int index) const { assert(index < 16 && "index out of range"); return ((float*)&mR0)[index]; }
Vector4f& r0() { return mR0; }
Vector4f& r1() { return mR1; }
Vector4f& r2() { return mR2; }
Vector4f& r3() { return mR3; }
const Vector4f& r0() const { return mR0; }
const Vector4f& r1() const { return mR1; }
const Vector4f& r2() const { return mR2; }
const Vector4f& r3() const { return mR3; }
Matrix4x4f& invert(const Matrix4x4f& other)
{
auto Determinant2x2 = [=](const float x1, const float x2,
const float y1, const float y2)
{
return x1 * y2 - x2 * y1;
};
auto Determinant3x3 = [=](const float x1, const float x2, const float x3,
const float y1, const float y2, const float y3,
const float z1, const float z2, const float z3)
{
return x1 * Determinant2x2(y2, y3, z2, z3) -
y1 * Determinant2x2(x2, x3, z2, z3) +
z1 * Determinant2x2(x2, x3, y2, y3);
};
float* tm = (float*)this;
const float* om = (float*)&other;
tm[ 0] = Determinant3x3(om[ 5], om[ 6], om[ 7], om[ 9], om[10], om[11], om[13], om[14], om[15]);
tm[ 1] = -Determinant3x3(om[ 1], om[ 2], om[ 3], om[ 9], om[10], om[11], om[13], om[14], om[15]);
tm[ 2] = Determinant3x3(om[ 1], om[ 2], om[ 3], om[ 5], om[ 6], om[ 7], om[13], om[14], om[15]);
tm[ 3] = -Determinant3x3(om[ 1], om[ 2], om[ 3], om[ 5], om[ 6], om[ 7], om[ 9], om[10], om[11]);
tm[ 4] = -Determinant3x3(om[ 4], om[ 6], om[ 7], om[ 8], om[10], om[11], om[12], om[14], om[15]);
tm[ 5] = Determinant3x3(om[ 0], om[ 2], om[ 3], om[ 8], om[10], om[11], om[12], om[14], om[15]);
tm[ 6] = -Determinant3x3(om[ 0], om[ 2], om[ 3], om[ 4], om[ 6], om[ 7], om[12], om[14], om[15]);
tm[ 7] = Determinant3x3(om[ 0], om[ 2], om[ 3], om[ 4], om[ 6], om[ 7], om[ 8], om[10], om[11]);
tm[ 8] = Determinant3x3(om[ 4], om[ 5], om[ 7], om[ 8], om[ 9], om[11], om[12], om[13], om[15]);
tm[ 9] = -Determinant3x3(om[ 0], om[ 1], om[ 3], om[ 8], om[ 9], om[11], om[12], om[13], om[15]);
tm[10] = Determinant3x3(om[ 0], om[ 1], om[ 3], om[ 4], om[ 5], om[ 7], om[12], om[13], om[15]);
tm[11] = -Determinant3x3(om[ 0], om[ 1], om[ 3], om[ 4], om[ 5], om[ 7], om[ 8], om[ 9], om[11]);
tm[12] = -Determinant3x3(om[ 4], om[ 5], om[ 6], om[ 8], om[ 9], om[10], om[12], om[13], om[14]);
tm[13] = Determinant3x3(om[ 0], om[ 1], om[ 2], om[ 8], om[ 9], om[10], om[12], om[13], om[14]);
tm[14] = -Determinant3x3(om[ 0], om[ 1], om[ 2], om[ 4], om[ 5], om[ 6], om[12], om[13], om[14]);
tm[15] = Determinant3x3(om[ 0], om[ 1], om[ 2], om[ 4], om[ 5], om[ 6], om[ 8], om[ 9], om[10]);
float Determinant = om[ 0] * tm[ 0] +
om[ 4] * tm[ 1] +
om[ 8] * tm[ 2] +
om[12] * tm[ 3];
if(Determinant != 0)
Determinant = 1 / Determinant;
mR0 *= Determinant;
mR1 *= Determinant;
mR2 *= Determinant;
mR3 *= Determinant;
return *this;
}
Matrix4x4f& invert()
{
return invert(Matrix4x4f(*this));
}
Matrix4x4f inverse()
{
Matrix4x4f m;
m.invert(*this);
return m;
}
static const Matrix4x4f Identity() { return { { 1, 0, 0, 0 }, { 0, 1, 0, 0 }, { 0, 0, 1, 0 }, { 0, 0, 0, 1 } }; }
protected:
Vector4f mR0;
Vector4f mR1;
Vector4f mR2;
Vector4f mR3;
};
#endif // ES_CORE_MATH_MATRIX4X4F_H

View file

@ -1,40 +0,0 @@
#pragma once
#ifndef ES_CORE_MATH_ROTATION3X3F_H
#define ES_CORE_MATH_ROTATION3X3F_H
class Rotation3x3f : public Matrix3x3f
{
public:
Rotation3x3f(const float angle, const Vector3f& axis)
{
float* tm = (float*)this;
const float* av = (float*)&axis;
const float s = sin(-angle);
const float c = cos(-angle);
const float t = 1 - c;
const float x = av[0];
const float y = av[1];
const float z = av[2];
const float tx = t * x;
const float ty = t * y;
const float tz = t * z;
const float sx = s * x;
const float sy = s * y;
const float sz = s * z;
tm[0] = tx * x + c;
tm[1] = tx * y - sz;
tm[2] = tx * z + sy;
tm[3] = ty * x + sz;
tm[4] = ty * y + c;
tm[5] = ty * z - sy;
tm[6] = tz * x - sy;
tm[7] = tz * y + sx;
tm[8] = tz * z + c;
};
};
#endif // ES_CORE_MATH_ROTATION3X3F_H

View file

@ -1,27 +0,0 @@
#pragma once
#ifndef ES_CORE_MATH_SCALE3X3F_H
#define ES_CORE_MATH_SCALE3X3F_H
class Scale3x3f : public Matrix3x3f
{
public:
Scale3x3f(const Vector3f& scale)
{
float* tm = (float*)this;
const float* sv = (float*)&scale;
tm[0] = sv[0];
tm[1] = 0;
tm[2] = 0;
tm[3] = 0;
tm[4] = sv[1];
tm[5] = 0;
tm[6] = 0;
tm[7] = 0;
tm[8] = sv[2];
};
};
#endif // ES_CORE_MATH_SCALE3X3F_H

View file

@ -2,18 +2,18 @@
#ifndef ES_CORE_MATH_TRANSFORM4X4F_H #ifndef ES_CORE_MATH_TRANSFORM4X4F_H
#define ES_CORE_MATH_TRANSFORM4X4F_H #define ES_CORE_MATH_TRANSFORM4X4F_H
#include <math/Matrix4x4f.h> #include "math/Vector4f.h"
#include <math/Vector3f.h> #include "math/Vector3f.h"
#include <math.h>
class Transform4x4f : public Matrix4x4f class Transform4x4f
{ {
public: public:
Transform4x4f() { } Transform4x4f() { }
Transform4x4f(const Matrix4x4f& m) : Matrix4x4f(m) { } Transform4x4f(const Vector4f& r0, const Vector4f& r1, const Vector4f& r2, const Vector4f& r3) : mR0(r0), mR1(r1), mR2(r2), mR3(r3) { }
Transform4x4f(const Vector4f& r0, const Vector4f& r1, const Vector4f& r2, const Vector4f& r3) : Matrix4x4f(r0, r1, r2, r3) { }
const Transform4x4f operator*(const Matrix4x4f& other) const const Transform4x4f operator*(const Transform4x4f& other) const
{ {
const float* tm = (float*)this; const float* tm = (float*)this;
const float* om = (float*)&other; const float* om = (float*)&other;
@ -47,40 +47,6 @@ public:
}; };
} }
const Transform4x4f operator*(const Matrix3x3f& other) const
{
const float* tm = (float*)this;
const float* om = (float*)&other;
return
{
{
tm[ 0] * om[0] + tm[ 1] * om[3] + tm[ 2] * om[6],
tm[ 0] * om[1] + tm[ 1] * om[4] + tm[ 2] * om[7],
tm[ 0] * om[2] + tm[ 1] * om[5] + tm[ 2] * om[8],
0
},
{
tm[ 4] * om[0] + tm[ 5] * om[3] + tm[ 6] * om[6],
tm[ 4] * om[1] + tm[ 5] * om[4] + tm[ 6] * om[7],
tm[ 4] * om[2] + tm[ 5] * om[5] + tm[ 6] * om[8],
0
},
{
tm[ 8] * om[0] + tm[ 9] * om[3] + tm[10] * om[6],
tm[ 8] * om[1] + tm[ 9] * om[4] + tm[10] * om[7],
tm[ 8] * om[2] + tm[ 9] * om[5] + tm[10] * om[8],
0
},
{
tm[12],
tm[13],
tm[14],
1
}
};
}
const Vector3f operator*(const Vector3f& other) const const Vector3f operator*(const Vector3f& other) const
{ {
const float* tm = (float*)this; const float* tm = (float*)this;
@ -94,11 +60,213 @@ public:
}; };
} }
Transform4x4f& operator*=(const Matrix4x4f& other) { *this = *this * other; return *this; } Transform4x4f& operator*=(const Transform4x4f& other) { *this = *this * other; return *this; }
Transform4x4f& operator*=(const Matrix3x3f& other) { *this = *this * other; return *this; }
inline Vector3f& translation() { return mR3.v3(); } inline Vector4f& r0() { return mR0; }
inline const Vector3f& translation() const { return mR3.v3(); } inline Vector4f& r1() { return mR1; }
inline Vector4f& r2() { return mR2; }
inline Vector4f& r3() { return mR3; }
inline const Vector4f& r0() const { return mR0; }
inline const Vector4f& r1() const { return mR1; }
inline const Vector4f& r2() const { return mR2; }
inline const Vector4f& r3() const { return mR3; }
inline Transform4x4f& invert(const Transform4x4f& other)
{
float* tm = (float*)this;
const float* om = (float*)&other;
// Full invert
// tm[ 0] = ((om[ 5] * (om[10] * om[15] - om[11] * om[14])) - (om[ 9] * (om[ 6] * om[15] - om[ 7] * om[14])) + (om[13] * (om[ 6] * om[11] - om[ 7] * om[10])));
// tm[ 1] = -((om[ 1] * (om[10] * om[15] - om[11] * om[14])) - (om[ 9] * (om[ 2] * om[15] - om[ 3] * om[14])) + (om[13] * (om[ 2] * om[11] - om[ 3] * om[10])));
// tm[ 2] = ((om[ 1] * (om[ 6] * om[15] - om[ 7] * om[14])) - (om[ 5] * (om[ 2] * om[15] - om[ 3] * om[14])) + (om[13] * (om[ 2] * om[ 7] - om[ 3] * om[ 6])));
// tm[ 3] = -((om[ 1] * (om[ 6] * om[11] - om[ 7] * om[10])) - (om[ 5] * (om[ 2] * om[11] - om[ 3] * om[10])) + (om[ 9] * (om[ 2] * om[ 7] - om[ 3] * om[ 6])));
// tm[ 4] = -((om[ 4] * (om[10] * om[15] - om[11] * om[14])) - (om[ 8] * (om[ 6] * om[15] - om[ 7] * om[14])) + (om[12] * (om[ 6] * om[11] - om[ 7] * om[10])));
// tm[ 5] = ((om[ 0] * (om[10] * om[15] - om[11] * om[14])) - (om[ 8] * (om[ 2] * om[15] - om[ 3] * om[14])) + (om[12] * (om[ 2] * om[11] - om[ 3] * om[10])));
// tm[ 6] = -((om[ 0] * (om[ 6] * om[15] - om[ 7] * om[14])) - (om[ 4] * (om[ 2] * om[15] - om[ 3] * om[14])) + (om[12] * (om[ 2] * om[ 7] - om[ 3] * om[ 6])));
// tm[ 7] = ((om[ 0] * (om[ 6] * om[11] - om[ 7] * om[10])) - (om[ 4] * (om[ 2] * om[11] - om[ 3] * om[10])) + (om[ 8] * (om[ 2] * om[ 7] - om[ 3] * om[ 6])));
// tm[ 8] = ((om[ 4] * (om[ 9] * om[15] - om[11] * om[13])) - (om[ 8] * (om[ 5] * om[15] - om[ 7] * om[13])) + (om[12] * (om[ 5] * om[11] - om[ 7] * om[ 9])));
// tm[ 9] = -((om[ 0] * (om[ 9] * om[15] - om[11] * om[13])) - (om[ 8] * (om[ 1] * om[15] - om[ 3] * om[13])) + (om[12] * (om[ 1] * om[11] - om[ 3] * om[ 9])));
// tm[10] = ((om[ 0] * (om[ 5] * om[15] - om[ 7] * om[13])) - (om[ 4] * (om[ 1] * om[15] - om[ 3] * om[13])) + (om[12] * (om[ 1] * om[ 7] - om[ 3] * om[ 5])));
// tm[11] = -((om[ 0] * (om[ 5] * om[11] - om[ 7] * om[ 9])) - (om[ 4] * (om[ 1] * om[11] - om[ 3] * om[ 9])) + (om[ 8] * (om[ 1] * om[ 7] - om[ 3] * om[ 5])));
// tm[12] = -((om[ 4] * (om[ 9] * om[14] - om[10] * om[13])) - (om[ 8] * (om[ 5] * om[14] - om[ 6] * om[13])) + (om[12] * (om[ 5] * om[10] - om[ 6] * om[ 9])));
// tm[13] = ((om[ 0] * (om[ 9] * om[14] - om[10] * om[13])) - (om[ 8] * (om[ 1] * om[14] - om[ 2] * om[13])) + (om[12] * (om[ 1] * om[10] - om[ 2] * om[ 9])));
// tm[14] = -((om[ 0] * (om[ 5] * om[14] - om[ 6] * om[13])) - (om[ 4] * (om[ 1] * om[14] - om[ 2] * om[13])) + (om[12] * (om[ 1] * om[ 6] - om[ 2] * om[ 5])));
// tm[15] = ((om[ 0] * (om[ 5] * om[10] - om[ 6] * om[ 9])) - (om[ 4] * (om[ 1] * om[10] - om[ 2] * om[ 9])) + (om[ 8] * (om[ 1] * om[ 6] - om[ 2] * om[ 5])));
// Optimized invert ( om[3, 7 and 11] is always 0, and om[15] is always 1 )
tm[ 0] = ((om[ 5] * om[10]) - (om[ 9] * om[ 6]));
tm[ 1] = -((om[ 1] * om[10]) - (om[ 9] * om[ 2]));
tm[ 2] = ((om[ 1] * om[ 6]) - (om[ 5] * om[ 2]));
tm[ 3] = 0;
tm[ 4] = -((om[ 4] * om[10]) - (om[ 8] * om[ 6]));
tm[ 5] = ((om[ 0] * om[10]) - (om[ 8] * om[ 2]));
tm[ 6] = -((om[ 0] * om[ 6]) - (om[ 4] * om[ 2]));
tm[ 7] = 0;
tm[ 8] = ((om[ 4] * om[ 9]) - (om[ 8] * om[ 5]));
tm[ 9] = -((om[ 0] * om[ 9]) - (om[ 8] * om[ 1]));
tm[10] = ((om[ 0] * om[ 5]) - (om[ 4] * om[ 1]));
tm[11] = 0;
tm[12] = -((om[ 4] * (om[ 9] * om[14] - om[10] * om[13])) - (om[ 8] * (om[ 5] * om[14] - om[ 6] * om[13])) + (om[12] * (om[ 5] * om[10] - om[ 6] * om[ 9])));
tm[13] = ((om[ 0] * (om[ 9] * om[14] - om[10] * om[13])) - (om[ 8] * (om[ 1] * om[14] - om[ 2] * om[13])) + (om[12] * (om[ 1] * om[10] - om[ 2] * om[ 9])));
tm[14] = -((om[ 0] * (om[ 5] * om[14] - om[ 6] * om[13])) - (om[ 4] * (om[ 1] * om[14] - om[ 2] * om[13])) + (om[12] * (om[ 1] * om[ 6] - om[ 2] * om[ 5])));
tm[15] = 1;
float Determinant = om[ 0] * tm[ 0] +
om[ 4] * tm[ 1] +
om[ 8] * tm[ 2] +
om[12] * tm[ 3];
if(Determinant != 0)
Determinant = 1 / Determinant;
tm[ 0] *= Determinant;
tm[ 1] *= Determinant;
tm[ 2] *= Determinant;
tm[ 4] *= Determinant;
tm[ 5] *= Determinant;
tm[ 6] *= Determinant;
tm[ 8] *= Determinant;
tm[ 9] *= Determinant;
tm[10] *= Determinant;
tm[12] *= Determinant;
tm[13] *= Determinant;
tm[14] *= Determinant;
return *this;
}
inline Transform4x4f& scale(const Vector3f& scale)
{
float* tm = (float*)this;
const float* sv = (float*)&scale;
tm[ 0] *= sv[0];
tm[ 1] *= sv[1];
tm[ 2] *= sv[2];
tm[ 4] *= sv[0];
tm[ 5] *= sv[1];
tm[ 6] *= sv[2];
tm[ 8] *= sv[0];
tm[ 9] *= sv[1];
tm[10] *= sv[2];
return *this;
}
inline Transform4x4f& rotate(const float angle, const Vector3f& axis)
{
float* tm = (float*)this;
const float* av = (float*)&axis;
const float s = sin(-angle);
const float c = cos(-angle);
const float t = 1 - c;
const float x = av[0];
const float y = av[1];
const float z = av[2];
const float tx = t * x;
const float ty = t * y;
const float tz = t * z;
const float sx = s * x;
const float sy = s * y;
const float sz = s * z;
const float r[9] = { tx * x + c,
tx * y - sz,
tx * z + sy,
ty * x + sz,
ty * y + c,
ty * z - sx,
tz * x - sy,
tz * y + sx,
tz * z + c };
const float temp[9] = { tm[ 0] * r[0] + tm[ 1] * r[3] + tm[ 2] * r[6],
tm[ 0] * r[1] + tm[ 1] * r[4] + tm[ 2] * r[7],
tm[ 0] * r[2] + tm[ 1] * r[5] + tm[ 2] * r[8],
tm[ 4] * r[0] + tm[ 5] * r[3] + tm[ 6] * r[6],
tm[ 4] * r[1] + tm[ 5] * r[4] + tm[ 6] * r[7],
tm[ 4] * r[2] + tm[ 5] * r[5] + tm[ 6] * r[8],
tm[ 8] * r[0] + tm[ 9] * r[3] + tm[10] * r[6],
tm[ 8] * r[1] + tm[ 9] * r[4] + tm[10] * r[7],
tm[ 8] * r[2] + tm[ 9] * r[5] + tm[10] * r[8] };
tm[ 0] = temp[0];
tm[ 1] = temp[1];
tm[ 2] = temp[2];
tm[ 4] = temp[3];
tm[ 5] = temp[4];
tm[ 6] = temp[5];
tm[ 8] = temp[6];
tm[ 9] = temp[7];
tm[10] = temp[8];
return *this;
};
inline Transform4x4f& rotateX(const float angle)
{
float* tm = (float*)this;
const float s = sin(-angle);
const float c = cos(-angle);
const float temp[6] = { tm[ 1] * c + tm[ 2] * s,
tm[ 1] * -s + tm[ 2] * c,
tm[ 5] * c + tm[ 6] * s,
tm[ 5] * -s + tm[ 6] * c,
tm[ 9] * c + tm[10] * s,
tm[ 9] * -s + tm[10] * c };
tm[ 1] = temp[0];
tm[ 2] = temp[1];
tm[ 5] = temp[2];
tm[ 6] = temp[3];
tm[ 9] = temp[4];
tm[10] = temp[5];
return *this;
};
inline Transform4x4f& rotateY(const float angle)
{
float* tm = (float*)this;
const float s = sin(-angle);
const float c = cos(-angle);
const float temp[6] = { tm[ 0] * c + tm[ 2] * -s,
tm[ 0] * s + tm[ 2] * c,
tm[ 4] * c + tm[ 6] * -s,
tm[ 4] * s + tm[ 6] * c,
tm[ 8] * c + tm[10] * -s,
tm[ 8] * s + tm[10] * c };
tm[ 0] = temp[0];
tm[ 2] = temp[1];
tm[ 4] = temp[2];
tm[ 6] = temp[3];
tm[ 8] = temp[4];
tm[10] = temp[5];
return *this;
};
inline Transform4x4f& rotateZ(const float angle)
{
float* tm = (float*)this;
const float s = sin(-angle);
const float c = cos(-angle);
const float temp[6] = { tm[ 0] * c + tm[ 1] * s,
tm[ 0] * -s + tm[ 1] * c,
tm[ 4] * c + tm[ 5] * s,
tm[ 4] * -s + tm[ 5] * c,
tm[ 8] * c + tm[ 9] * s,
tm[ 8] * -s + tm[ 9] * c };
tm[ 0] = temp[0];
tm[ 1] = temp[1];
tm[ 4] = temp[2];
tm[ 5] = temp[3];
tm[ 8] = temp[4];
tm[ 9] = temp[5];
return *this;
};
inline Transform4x4f& translate(const Vector3f& translation) inline Transform4x4f& translate(const Vector3f& translation)
{ {
@ -118,10 +286,23 @@ public:
tm[12] = (int)(tm[12] + 0.5f); tm[12] = (int)(tm[12] + 0.5f);
tm[13] = (int)(tm[13] + 0.5f); tm[13] = (int)(tm[13] + 0.5f);
tm[14] = (int)(tm[14] + 0.5f);
return *this; return *this;
} }
inline Vector3f& translation() { return mR3.v3(); }
inline const Vector3f& translation() const { return mR3.v3(); }
static const Transform4x4f Identity() { return { { 1, 0, 0, 0 }, { 0, 1, 0, 0 }, { 0, 0, 1, 0 }, { 0, 0, 0, 1 } }; }
protected:
Vector4f mR0;
Vector4f mR1;
Vector4f mR2;
Vector4f mR3;
}; };
#endif // ES_CORE_MATH_TRANSFORM4X4F_H #endif // ES_CORE_MATH_TRANSFORM4X4F_H