/* # # File : radon_transform2d.cpp # ( C++ source file ) # # Description : An implementation of the Radon Transform. # This file is a part of the CImg Library project. # ( http://cimg.eu ) # # Copyright : David G. Starkweather # ( starkdg@sourceforge.net - starkweatherd@cox.net ) # # License : CeCILL v2.0 # ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html ) # # This software is governed by the CeCILL license under French law and # abiding by the rules of distribution of free software. You can use, # modify and/ or redistribute the software under the terms of the CeCILL # license as circulated by CEA, CNRS and INRIA at the following URL # "http://www.cecill.info". # # As a counterpart to the access to the source code and rights to copy, # modify and redistribute granted by the license, users are provided only # with a limited warranty and the software's author, the holder of the # economic rights, and the successive licensors have only limited # liability. # # In this respect, the user's attention is drawn to the risks associated # with loading, using, modifying and/or developing or reproducing the # software by the user in light of its specific status of free software, # that may mean that it is complicated to manipulate, and that also # therefore means that it is reserved for developers and experienced # professionals having in-depth computer knowledge. Users are therefore # encouraged to load and test the software's suitability as regards their # requirements in conditions enabling the security of their systems and/or # data to be ensured and, more generally, to use and operate it in the # same conditions as regards security. # # The fact that you are presently reading this means that you have had # knowledge of the CeCILL license and that you accept its terms. # */ #include "CImg.h" using namespace cimg_library; #ifndef cimg_imagepath #define cimg_imagepath "img/" #endif #define ROUNDING_FACTOR(x) (((x) >= 0) ? 0.5 : -0.5) CImg GaussianKernel(double rho); CImg ApplyGaussian(CImg im,double rho); CImg RGBtoGrayScale(CImg &im); int GetAngle(int dy,int dx); CImg CannyEdges(CImg im, double T1, double T2,bool doHysteresis); CImg<> RadonTransform(CImg im,int N); // Main procedure //---------------- int main(int argc,char **argv) { cimg_usage("Illustration of the Radon Transform"); const char *file = cimg_option("-f",cimg_imagepath "parrot.ppm","path and file name"); const double sigma = cimg_option("-r",1.0,"blur coefficient for gaussian low pass filter (lpf)"), thresh1 = cimg_option("-t1",0.50,"lower threshold for canny edge detector"), thresh2 = cimg_option("-t2",1.25,"upper threshold for canny edge detector");; const int N = cimg_option("-n",64,"number of angles to consider in the Radon transform - should be a power of 2"); //color to draw lines const unsigned char green[] = {0,255,0}; CImg src(file); int rhomax = (int)std::sqrt((double)(src.width()*src.width() + src.height()*src.height()))/2; if (cimg::dialog(cimg::basename(argv[0]), "Instructions:\n" "Click on space bar or Enter key to display Radon transform of given image\n" "Click on anywhere in the transform window to display a \n" "corresponding green line in the original image\n", "Start", "Quit",0,0,0,0, src.get_resize(100,100,1,3),true)) std::exit(0); //retrieve a grayscale from the image CImg grayScaleIm; if ((src.spectrum() == 3) && (src.width() > 0) && (src.height() > 0) && (src.depth() == 1)) grayScaleIm = (CImg)src.get_norm(0).quantize(255,false); else if ((src.spectrum() == 1)&&(src.width() > 0) && (src.height() > 0) && (src.depth() == 1)) grayScaleIm = src; else { // image in wrong format if (cimg::dialog(cimg::basename("wrong file format"), "Incorrect file format\n","OK",0,0,0,0,0, src.get_resize(100,100,1,3),true)) std::exit(0); } //blur the image with a Gaussian lpf to remove spurious edges (e.g. noise) CImg blurredIm = ApplyGaussian(grayScaleIm,sigma); //use canny edge detection algorithm to get edge map of the image //- the threshold values are used to perform hysteresis in the edge detection process CImg cannyEdgeMap = CannyEdges(blurredIm,thresh1,thresh2,false); CImg radonImage(500,400,1,1,0); //display the two windows CImgDisplay dispImage(src,"original image"); dispImage.move(CImgDisplay::screen_width()/8,CImgDisplay::screen_height()/8); CImgDisplay dispRadon(radonImage,"Radon Transform"); dispRadon.move(CImgDisplay::screen_width()/4,CImgDisplay::screen_height()/4); CImgDisplay dispCanny(cannyEdgeMap,"canny edges"); //start main display loop while (!dispImage.is_closed() && !dispRadon.is_closed() && !dispImage.is_keyQ() && !dispRadon.is_keyQ() && !dispImage.is_keyESC() && !dispRadon.is_keyESC()) { CImgDisplay::wait(dispImage,dispRadon); if (dispImage.is_keySPACE() || dispRadon.is_keySPACE()) { radonImage = (CImg)RadonTransform(cannyEdgeMap,N).quantize(255,false).resize(500,400); radonImage.display(dispRadon); } //when clicking on dispRadon window, draw line in original image window if (dispRadon.button()) { const double rho = dispRadon.mouse_y()*rhomax/dispRadon.height(), theta = (dispRadon.mouse_x()*N/dispRadon.width())*2*cimg::PI/N, x = src.width()/2 + rho*std::cos(theta), y = src.height()/2 + rho*std::sin(theta); const int x0 = (int)(x + 1000*std::cos(theta + cimg::PI/2)), y0 = (int)(y + 1000*std::sin(theta + cimg::PI/2)), x1 = (int)(x - 1000*std::cos(theta + cimg::PI/2)), y1 = (int)(y - 1000*std::sin(theta + cimg::PI/2)); src.draw_line(x0,y0,x1,y1,green,1.0f,0xF0F0F0F0).display(dispImage); } } return 0; } /** * PURPOSE: create a 5x5 gaussian kernel matrix * PARAM rho - gaussiam equation parameter (default = 1.0) * RETURN CImg the gaussian kernel **/ CImg GaussianKernel(double sigma = 1.0) { CImg resultIm(5,5,1,1,0); int midX = 3, midY = 3; cimg_forXY(resultIm,X,Y) { resultIm(X,Y) = std::ceil(256.0*(std::exp(-(midX*midX + midY*midY)/(2*sigma*sigma)))/(2*cimg::PI*sigma*sigma)); } return resultIm; } /* * PURPOSE: convolve a given image with the gaussian kernel * PARAM CImg im - image to be convolved upon * PARAM double sigma - gaussian equation parameter * RETURN CImg image resulting from the convolution * */ CImg ApplyGaussian(CImg im,double sigma) { CImg smoothIm(im.width(),im.height(),1,1,0); //make gaussian kernel CImg gk = GaussianKernel(sigma); //apply gaussian CImg_5x5(I,int); cimg_for5x5(im,X,Y,0,0,I,int) { float sum = 0; sum += gk(0,0)*Ibb + gk(0,1)*Ibp + gk(0,2)*Ibc + gk(0,3)*Ibn + gk(0,4)*Iba; sum += gk(1,0)*Ipb + gk(1,1)*Ipp + gk(1,2)*Ipc + gk(1,3)*Ipn + gk(1,4)*Ipa; sum += gk(2,0)*Icb + gk(2,1)*Icp + gk(2,2)*Icc + gk(2,3)*Icn + gk(2,4)*Ica; sum += gk(3,0)*Inb + gk(3,1)*Inp + gk(3,2)*Inc + gk(3,3)*Inn + gk(3,4)*Ina; sum += gk(4,0)*Iab + gk(4,1)*Iap + gk(4,2)*Iac + gk(4,3)*Ian + gk(4,4)*Iaa; smoothIm(X,Y) = sum/256; } return smoothIm; } /** * PURPOSE: convert a given rgb image to a MxNX1 single vector grayscale image * PARAM: CImg im - rgb image to convert * RETURN: CImg grayscale image with MxNx1x1 dimensions **/ CImg RGBtoGrayScale(CImg &im) { CImg grayImage(im.width(),im.height(),im.depth(),1,0); if (im.spectrum() == 3) { cimg_forXYZ(im,X,Y,Z) { grayImage(X,Y,Z,0) = (unsigned char)(0.299*im(X,Y,Z,0) + 0.587*im(X,Y,Z,1) + 0.114*im(X,Y,Z,2)); } } grayImage.quantize(255,false); return grayImage; } /** * PURPOSE: aux. function used by CannyEdges to quantize an angle theta given by gradients, dx and dy * into 0 - 7 * PARAM: dx,dy - gradient magnitudes * RETURN int value between 0 and 7 **/ int GetAngle(int dy,int dx) { double angle = cimg::abs(std::atan2((double)dy,(double)dx)); if ((angle >= -cimg::PI/8)&&(angle <= cimg::PI/8))//-pi/8 to pi/8 => 0 return 0; else if ((angle >= cimg::PI/8)&&(angle <= 3*cimg::PI/8))//pi/8 to 3pi/8 => pi/4 return 1; else if ((angle > 3*cimg::PI/8)&&(angle <= 5*cimg::PI/8))//3pi/8 to 5pi/8 => pi/2 return 2; else if ((angle > 5*cimg::PI/8)&&(angle <= 7*cimg::PI/8))//5pi/8 to 7pi/8 => 3pi/4 return 3; else if (((angle > 7*cimg::PI/8) && (angle <= cimg::PI)) || ((angle <= -7*cimg::PI/8)&&(angle >= -cimg::PI))) //-7pi/8 to -pi OR 7pi/8 to pi => pi return 4; else return 0; } /** * PURPOSE: create an edge map of the given image with hysteresis using thresholds T1 and T2 * PARAMS: CImg im the image to perform edge detection on * T1 lower threshold * T2 upper threshold * RETURN CImg edge map **/ CImg CannyEdges(CImg im, double T1, double T2, bool doHysteresis=false) { CImg edges(im); CImg secDerivs(im); secDerivs.fill(0); edges.fill(0); CImgList gradients = im.get_gradient("xy",1); int image_width = im.width(); int image_height = im.height(); cimg_forXY(im,X,Y) { double Gr = std::sqrt(std::pow((double)gradients[0](X,Y),2.0) + std::pow((double)gradients[1](X,Y),2.0)); double theta = GetAngle(Y,X); //if Gradient magnitude is positive and X,Y within the image //take the 2nd deriv in the appropriate direction if ((Gr > 0)&&(X < image_width - 2)&&(Y < image_height - 2)) { if (theta == 0) secDerivs(X,Y) = im(X + 2,Y) - 2*im(X + 1,Y) + im(X,Y); else if (theta == 1) secDerivs(X,Y) = im(X + 2,Y + 2) - 2*im(X + 1,Y + 1) + im(X,Y); else if (theta == 2) secDerivs(X,Y) = im(X,Y + 2) - 2*im(X,Y + 1) + im(X,Y); else if (theta == 3) secDerivs(X,Y) = im(X + 2,Y + 2) - 2*im(X + 1,Y + 1) + im(X,Y); else if (theta == 4) secDerivs(X,Y) = im(X + 2,Y) - 2*im(X + 1,Y) + im(X,Y); } } //for each 2nd deriv that crosses a zero point and magnitude passes the upper threshold. //Perform hysteresis in the direction of the gradient, rechecking the gradient //angle for each pixel that meets the threshold requirement. Stop checking when //the lower threshold is not reached. CImg_5x5(I,float); cimg_for5x5(secDerivs,X,Y,0,0,I,float) { if ( (Ipp*Ibb < 0) || (Ipc*Ibc < 0)|| (Icp*Icb < 0) ) { double Gr = std::sqrt(std::pow((double)gradients[0](X,Y),2.0) + std::pow((double)gradients[1](X,Y),2.0)); int dir = GetAngle(Y,X); int Xt = X, Yt = Y, delta_x = 0, delta_y=0; double GRt = Gr; if (Gr >= T2) edges(X,Y) = 255; //work along the gradient in one direction if (doHysteresis) { while ((Xt > 0) && (Xt < image_width - 1) && (Yt > 0) && (Yt < image_height - 1)) { switch (dir){ case 0 : delta_x=0;delta_y=1;break; case 1 : delta_x=1;delta_y=1;break; case 2 : delta_x=1;delta_y=0;break; case 3 : delta_x=1;delta_y=-1;break; case 4 : delta_x=0;delta_y=1;break; } Xt += delta_x; Yt += delta_y; GRt = std::sqrt(std::pow((double)gradients[0](Xt,Yt),2.0) + std::pow((double)gradients[1](Xt,Yt),2.0)); dir = GetAngle(Yt,Xt); if (GRt >= T1) edges(Xt,Yt) = 255; } //work along gradient in other direction Xt = X; Yt = Y; while ((Xt > 0) && (Xt < image_width - 1) && (Yt > 0) && (Yt < image_height - 1)) { switch (dir){ case 0 : delta_x=0;delta_y=1;break; case 1 : delta_x=1;delta_y=1;break; case 2 : delta_x=1;delta_y=0;break; case 3 : delta_x=1;delta_y=-1;break; case 4 : delta_x=0;delta_y=1;break; } Xt -= delta_x; Yt -= delta_y; GRt = std::sqrt(std::pow((double)gradients[0](Xt,Yt),2.0) + std::pow((double)gradients[1](Xt,Yt),2.0)); dir = GetAngle(Yt,Xt); if (GRt >= T1) edges(Xt,Yt) = 255; } } } } return edges; } /** * PURPOSE: perform radon transform of given image * PARAM: CImg im - image to detect lines * int N - number of angles to consider (should be a power of 2) * (the values of N will be spread over 0 to 2PI) * RETURN CImg - transform of given image of size, N x D * D = rhomax = sqrt(dimx*dimx + dimy*dimy)/2 **/ CImg<> RadonTransform(CImg im,int N) { int image_width = im.width(); int image_height = im.height(); //calc offsets to center the image float xofftemp = image_width/2.0f - 1; float yofftemp = image_height/2.0f - 1; int xoffset = (int)std::floor(xofftemp + ROUNDING_FACTOR(xofftemp)); int yoffset = (int)std::floor(yofftemp + ROUNDING_FACTOR(yofftemp)); float dtemp = (float)std::sqrt((double)(xoffset*xoffset + yoffset*yoffset)); int D = (int)std::floor(dtemp + ROUNDING_FACTOR(dtemp)); CImg<> imRadon(N,D,1,1,0); //for each angle k to consider for (int k= 0 ; k < N; k++) { //only consider from PI/8 to 3PI/8 and 5PI/8 to 7PI/8 //to avoid computational complexity of a steep angle if (k == 0){k = N/8;continue;} else if (k == (3*N/8 + 1)){ k = 5*N/8;continue;} else if (k == 7*N/8 + 1){k = N; continue;} //for each rho length, determine linear equation and sum the line //sum is to sum the values along the line at angle k2pi/N //sum2 is to sum the values along the line at angle k2pi/N + N/4 //The sum2 is performed merely by swapping the x,y axis as if the image were rotated 90 degrees. for (int d=0; d < D; d++) { double theta = 2*k*cimg::PI/N;//calculate actual theta double alpha = std::tan(theta + cimg::PI/2);//calculate the slope double beta_temp = -alpha*d*std::cos(theta) + d*std::sin(theta);//y-axis intercept for the line int beta = (int)std::floor(beta_temp + ROUNDING_FACTOR(beta_temp)); //for each value of m along x-axis, calculate y //if the x,y location is within the boundary for the respective image orientations, add to the sum unsigned int sum1 = 0, sum2 = 0; int M = (image_width >= image_height) ? image_width : image_height; for (int m=0;m < M; m++) { //interpolate in-between values using nearest-neighbor approximation //using m,n as x,y indices into image double n_temp = alpha*(m - xoffset) + beta; int n = (int)std::floor(n_temp + ROUNDING_FACTOR(n_temp)); if ((m < image_width) && (n + yoffset >= 0) && (n + yoffset < image_height)) { sum1 += im(m, n + yoffset); } n_temp = alpha*(m - yoffset) + beta; n = (int)std::floor(n_temp + ROUNDING_FACTOR(n_temp)); if ((m < image_height)&&(n + xoffset >= 0)&&(n + xoffset < image_width)) { sum2 += im(-(n + xoffset) + image_width - 1, m); } } //assign the sums into the result matrix imRadon(k,d) = (float)sum1; //assign sum2 to angle position for theta + PI/4 imRadon(((k + N/4)%N),d) = (float)sum2; } } return imRadon; } /* references: * 1. See Peter Toft's thesis on the Radon transform: http://petertoft.dk/PhD/index.html * While I changed his basic algorithm, the main idea is still the same and provides an excellent explanation. * * */