/* # # File : mcf_levelsets3d.cpp # ( C++ source file ) # # Description : Implementation of the Mean Curvature Flow on Surfaces # using the framework of Level Sets 3D. # This file is a part of the CImg Library project. # ( http://cimg.eu ) # # Copyright : David Tschumperlé # ( http://tschumperle.users.greyc.fr/ ) # # License : CeCILL v2.0 # ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html ) # # This software is governed by the CeCILL license under French law and # abiding by the rules of distribution of free software. You can use, # modify and/ or redistribute the software under the terms of the CeCILL # license as circulated by CEA, CNRS and INRIA at the following URL # "http://www.cecill.info". # # As a counterpart to the access to the source code and rights to copy, # modify and redistribute granted by the license, users are provided only # with a limited warranty and the software's author, the holder of the # economic rights, and the successive licensors have only limited # liability. # # In this respect, the user's attention is drawn to the risks associated # with loading, using, modifying and/or developing or reproducing the # software by the user in light of its specific status of free software, # that may mean that it is complicated to manipulate, and that also # therefore means that it is reserved for developers and experienced # professionals having in-depth computer knowledge. Users are therefore # encouraged to load and test the software's suitability as regards their # requirements in conditions enabling the security of their systems and/or # data to be ensured and, more generally, to use and operate it in the # same conditions as regards security. # # The fact that you are presently reading this means that you have had # knowledge of the CeCILL license and that you accept its terms. # */ #include "CImg.h" using namespace cimg_library; #undef min #undef max // Apply the Mean curvature flow PDE //----------------------------------- template CImg& mcf_PDE(CImg& img, const unsigned int nb_iterations, const float dt=0.25f, const float narrow=4.0f) { CImg velocity(img.width(),img.height(),img.depth(),img.spectrum()); CImg_3x3x3(I,float); for (unsigned int iteration = 0; iterationveloc_max) veloc_max = veloc; else if (-veloc>veloc_max) veloc_max = -veloc; } else *(ptrd++) = 0; if (veloc_max>0) img+=(velocity*=dt/veloc_max); } return img; } /*---------------------- Main procedure --------------------*/ int main(int argc,char **argv) { cimg_usage("Mean curvature flow of a surface, using 3D level sets"); const char *file_i = cimg_option("-i",(char*)0,"Input image"); const float dt = cimg_option("-dt",0.05f,"PDE Time step"); const float narrow = cimg_option("-band",5.0f,"Size of the narrow band"); const bool both = cimg_option("-both",false,"Show both evolving and initial surface"); // Define the signed distance map of the initial surface. CImg<> img; if (file_i) { const float sigma = cimg_option("-sigma",1.2f,"Segmentation regularity"); const float alpha = cimg_option("-alpha",5.0f,"Region growing tolerance"); img.load(file_i).channel(0); CImg s; CImgDisplay disp(img,"Please select a starting point"); while (!s || s[0]<0) s = img.get_select(0,disp); CImg<> region; float tmp[] = { 0 }; img.draw_fill(s[0],s[1],s[2],tmp,1,region,alpha); ((img = region.normalize(-1,1))*=-1).blur(sigma); } else { // Create synthetic implicit function img.assign(60,60,60); const float exte[] = { 1 }, inte[] = { -1 }; img.fill(*exte).draw_rectangle(15,15,15,45,45,45,inte).draw_rectangle(25,25,0,35,35,img.depth() - 1,exte). draw_rectangle(0,25,25,img.width() - 1,35,35,exte).draw_rectangle(25,0,25,35,img.height() - 1,35,exte).noise(0.7); } img.distance_eikonal(10,0,0.1f); // Compute corresponding surface triangularization by the marching cube algorithm (isovalue 0). CImg<> points0; CImgList faces0; if (both) points0 = img.get_isosurface3d(faces0,0); const CImgList colors0(faces0.size(),CImg::vector(100,200,255)); const CImgList<> opacities0(faces0.size(),1,1,1,1,0.2f); // Perform MCF evolution. CImgDisplay disp(256,256,0,1), disp3d(512,512,0,0); float alpha = 0, beta = 0; for (unsigned int iteration = 0; !disp.is_closed() && !disp3d.is_closed() && !disp.is_keyESC() && !disp3d.is_keyESC() && !disp.is_keyQ() && !disp3d.is_keyQ(); ++iteration) { disp.set_title("3D implicit Function (iter. %u)",iteration); disp3d.set_title("Mean curvature flow 3D - Isosurface (iter. %u)",iteration); // Apply PDE on the distance function. mcf_PDE(img,1,dt,narrow); // Do one iteration of mean curvature flow // Every 10 steps, do one iteration of distance function re-initialization. if (!(iteration%10)) img.distance_eikonal(1,narrow,0.5f); // Compute surface triangularization by the marching cube algorithm (isovalue 0) CImgList faces; CImg<> points = img.get_isosurface3d(faces,0); CImgList colors(faces.size(),CImg::vector(200,128,100)); CImgList<> opacities(faces.size(),CImg<>::vector(1.0f)); const float fact = 3*std::max(disp3d.width(),disp3d.height())/(4.0f*std::max(img.width(),img.height())); // Append initial object if necessary. if (both) { points.append_object3d(faces,points0,faces0); colors.insert(colors0); opacities.insert(opacities0); } // Center and rescale the objects cimg_forX(points,l) { points(l,0)=(points(l,0) - img.width()/2)*fact; points(l,1)=(points(l,1) - img.height()/2)*fact; points(l,2)=(points(l,2) - img.depth()/2)*fact; } // Display 3D object on the display window. CImg visu(disp3d.width(),disp3d.height(),1,3,0); const CImg<> rot = CImg<>::rotation_matrix(1,0,0,(beta+=0.5f))*CImg<>::rotation_matrix(0,1,1,(alpha+=3)); if (points.size()) { visu.draw_object3d(visu.width()/2.0f,visu.height()/2.0f,0.0f, rot*points,faces,colors,opacities,3, false,500.0,0.0f,0.0f,-8000.0f).display(disp3d); } else visu.fill(0).display(disp3d); img.display(disp.wait(20)); if ((disp3d.button() || disp3d.key()) && points.size() && !disp3d.is_keyESC() && !disp3d.is_keyQ()) { const unsigned char white[3] = { 255, 255, 255 }; visu.fill(0).draw_text(10,10,"Time stopped, press any key to start again",white). display_object3d(disp3d,points,faces,colors,opacities,true,4,3,false,500,0,0,-5000,0.4f,0.3f); disp3d.set_key(); } if (disp.is_resized()) disp.resize(false); if (disp3d.is_resized()) disp3d.resize(false); disp.wait(50); } return 0; }