#include #include #include #include #include #include #include #include using namespace glm; int test_matrixCompMult() { int Error(0); { mat2 m(0, 1, 2, 3); mat2 n = matrixCompMult(m, m); mat2 expected = mat2(0, 1, 4, 9); for (length_t l = 0; l < m.length(); ++l) Error += all(epsilonEqual(n[l], expected[l], epsilon())) ? 0 : 1; } { mat2x3 m(0, 1, 2, 3, 4, 5); mat2x3 n = matrixCompMult(m, m); mat2x3 expected = mat2x3(0, 1, 4, 9, 16, 25); for (length_t l = 0; l < m.length(); ++l) Error += all(epsilonEqual(n[l], expected[l], epsilon())) ? 0 : 1; } { mat2x4 m(0, 1, 2, 3, 4, 5, 6, 7); mat2x4 n = matrixCompMult(m, m); mat2x4 expected = mat2x4(0, 1, 4, 9, 16, 25, 36, 49); for (length_t l = 0; l < m.length(); ++l) Error += all(epsilonEqual(n[l], expected[l], epsilon())) ? 0 : 1; } { mat3 m(0, 1, 2, 3, 4, 5, 6, 7, 8); mat3 n = matrixCompMult(m, m); mat3 expected = mat3(0, 1, 4, 9, 16, 25, 36, 49, 64); for (length_t l = 0; l < m.length(); ++l) Error += all(epsilonEqual(n[l], expected[l], epsilon())) ? 0 : 1; } { mat3x2 m(0, 1, 2, 3, 4, 5); mat3x2 n = matrixCompMult(m, m); mat3x2 expected = mat3x2(0, 1, 4, 9, 16, 25); for (length_t l = 0; l < m.length(); ++l) Error += all(epsilonEqual(n[l], expected[l], epsilon())) ? 0 : 1; } { mat3x4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11); mat3x4 n = matrixCompMult(m, m); mat3x4 expected = mat3x4(0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121); for (length_t l = 0; l < m.length(); ++l) Error += all(epsilonEqual(n[l], expected[l], epsilon())) ? 0 : 1; } { mat4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); mat4 n = matrixCompMult(m, m); mat4 expected = mat4(0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225); for (length_t l = 0; l < m.length(); ++l) Error += all(epsilonEqual(n[l], expected[l], epsilon())) ? 0 : 1; } { mat4x2 m(0, 1, 2, 3, 4, 5, 6, 7); mat4x2 n = matrixCompMult(m, m); mat4x2 expected = mat4x2(0, 1, 4, 9, 16, 25, 36, 49); for (length_t l = 0; l < m.length(); ++l) Error += all(epsilonEqual(n[l], expected[l], epsilon())) ? 0 : 1; } { mat4x3 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11); mat4x3 n = matrixCompMult(m, m); mat4x3 expected = mat4x3(0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121); for (length_t l = 0; l < m.length(); ++l) Error += all(epsilonEqual(n[l], expected[l], epsilon())) ? 0 : 1; } return Error; } int test_outerProduct() { { glm::mat2 m = glm::outerProduct(glm::vec2(1.0f), glm::vec2(1.0f)); } { glm::mat3 m = glm::outerProduct(glm::vec3(1.0f), glm::vec3(1.0f)); } { glm::mat4 m = glm::outerProduct(glm::vec4(1.0f), glm::vec4(1.0f)); } { glm::mat2x3 m = glm::outerProduct(glm::vec3(1.0f), glm::vec2(1.0f)); } { glm::mat2x4 m = glm::outerProduct(glm::vec4(1.0f), glm::vec2(1.0f)); } { glm::mat3x2 m = glm::outerProduct(glm::vec2(1.0f), glm::vec3(1.0f)); } { glm::mat3x4 m = glm::outerProduct(glm::vec4(1.0f), glm::vec3(1.0f)); } { glm::mat4x2 m = glm::outerProduct(glm::vec2(1.0f), glm::vec4(1.0f)); } { glm::mat4x3 m = glm::outerProduct(glm::vec3(1.0f), glm::vec4(1.0f)); } return 0; } int test_transpose() { int Error(0); { mat2 const m(0, 1, 2, 3); mat2 const t = transpose(m); mat2 const expected = mat2(0, 2, 1, 3); for (length_t l = 0; l < expected.length(); ++l) Error += all(epsilonEqual(t[l], expected[l], epsilon())) ? 0 : 1; } { mat2x3 m(0, 1, 2, 3, 4, 5); mat3x2 t = transpose(m); mat3x2 const expected = mat3x2(0, 3, 1, 4, 2, 5); for (length_t l = 0; l < expected.length(); ++l) Error += all(epsilonEqual(t[l], expected[l], epsilon())) ? 0 : 1; } { mat2x4 m(0, 1, 2, 3, 4, 5, 6, 7); mat4x2 t = transpose(m); mat4x2 const expected = mat4x2(0, 4, 1, 5, 2, 6, 3, 7); for (length_t l = 0; l < expected.length(); ++l) Error += all(epsilonEqual(t[l], expected[l], epsilon())) ? 0 : 1; } { mat3 m(0, 1, 2, 3, 4, 5, 6, 7, 8); mat3 t = transpose(m); mat3 const expected = mat3(0, 3, 6, 1, 4, 7, 2, 5, 8); for (length_t l = 0; l < expected.length(); ++l) Error += all(epsilonEqual(t[l], expected[l], epsilon())) ? 0 : 1; } { mat3x2 m(0, 1, 2, 3, 4, 5); mat2x3 t = transpose(m); mat2x3 const expected = mat2x3(0, 2, 4, 1, 3, 5); for (length_t l = 0; l < expected.length(); ++l) Error += all(epsilonEqual(t[l], expected[l], epsilon())) ? 0 : 1; } { mat3x4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11); mat4x3 t = transpose(m); mat4x3 const expected = mat4x3(0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11); for (length_t l = 0; l < expected.length(); ++l) Error += all(epsilonEqual(t[l], expected[l], epsilon())) ? 0 : 1; } { mat4 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); mat4 t = transpose(m); mat4 const expected = mat4(0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15); for (length_t l = 0; l < expected.length(); ++l) Error += all(epsilonEqual(t[l], expected[l], epsilon())) ? 0 : 1; } { mat4x2 m(0, 1, 2, 3, 4, 5, 6, 7); mat2x4 t = transpose(m); mat2x4 const expected = mat2x4(0, 2, 4, 6, 1, 3, 5, 7); for (length_t l = 0; l < expected.length(); ++l) Error += all(epsilonEqual(t[l], expected[l], epsilon())) ? 0 : 1; } { mat4x3 m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11); mat3x4 t = transpose(m); mat3x4 const expected = mat3x4(0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11); for (length_t l = 0; l < expected.length(); ++l) Error += all(epsilonEqual(t[l], expected[l], epsilon())) ? 0 : 1; } return Error; } int test_determinant() { return 0; } int test_inverse() { int Error = 0; { glm::mat4x4 A4x4( glm::vec4(1, 0, 1, 0), glm::vec4(0, 1, 0, 0), glm::vec4(0, 0, 1, 0), glm::vec4(0, 0, 0, 1)); glm::mat4x4 B4x4 = inverse(A4x4); glm::mat4x4 I4x4 = A4x4 * B4x4; glm::mat4x4 Identity(1); for (length_t l = 0; l < Identity.length(); ++l) Error += all(epsilonEqual(I4x4[l], Identity[l], epsilon())) ? 0 : 1; } { glm::mat3x3 A3x3( glm::vec3(1, 0, 1), glm::vec3(0, 1, 0), glm::vec3(0, 0, 1)); glm::mat3x3 B3x3 = glm::inverse(A3x3); glm::mat3x3 I3x3 = A3x3 * B3x3; glm::mat3x3 Identity(1); for (length_t l = 0; l < Identity.length(); ++l) Error += all(epsilonEqual(I3x3[l], Identity[l], epsilon())) ? 0 : 1; } { glm::mat2x2 A2x2( glm::vec2(1, 1), glm::vec2(0, 1)); glm::mat2x2 B2x2 = glm::inverse(A2x2); glm::mat2x2 I2x2 = A2x2 * B2x2; glm::mat2x2 Identity(1); for (length_t l = 0; l < Identity.length(); ++l) Error += all(epsilonEqual(I2x2[l], Identity[l], epsilon())) ? 0 : 1; } return Error; } int test_inverse_simd() { int Error = 0; glm::mat4x4 const Identity(1); glm::mat4x4 const A4x4( glm::vec4(1, 0, 1, 0), glm::vec4(0, 1, 0, 0), glm::vec4(0, 0, 1, 0), glm::vec4(0, 0, 0, 1)); glm::mat4x4 const B4x4 = glm::inverse(A4x4); glm::mat4x4 const I4x4 = A4x4 * B4x4; Error += glm::all(glm::epsilonEqual(I4x4[0], Identity[0], 0.001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(I4x4[1], Identity[1], 0.001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(I4x4[2], Identity[2], 0.001f)) ? 0 : 1; Error += glm::all(glm::epsilonEqual(I4x4[3], Identity[3], 0.001f)) ? 0 : 1; return Error; } template int test_inverse_perf(std::size_t Count, std::size_t Instance, char const * Message) { std::vector TestInputs; TestInputs.resize(Count); std::vector TestOutputs; TestOutputs.resize(TestInputs.size()); VEC3 Axis(glm::normalize(VEC3(1.0f, 2.0f, 3.0f))); for(std::size_t i = 0; i < TestInputs.size(); ++i) { typename MAT4::value_type f = static_cast(i + Instance) * typename MAT4::value_type(0.1) + typename MAT4::value_type(0.1); TestInputs[i] = glm::rotate(glm::translate(MAT4(1), Axis * f), f, Axis); //TestInputs[i] = glm::translate(MAT4(1), Axis * f); } std::clock_t StartTime = std::clock(); for(std::size_t i = 0; i < TestInputs.size(); ++i) TestOutputs[i] = glm::inverse(TestInputs[i]); std::clock_t EndTime = std::clock(); for(std::size_t i = 0; i < TestInputs.size(); ++i) TestOutputs[i] = TestOutputs[i] * TestInputs[i]; typename MAT4::value_type Diff(0); for(std::size_t Entry = 0; Entry < TestOutputs.size(); ++Entry) { MAT4 i(1.0); MAT4 m(TestOutputs[Entry]); for(glm::length_t y = 0; y < m.length(); ++y) for(glm::length_t x = 0; x < m[y].length(); ++x) Diff = glm::max(m[y][x], i[y][x]); } //glm::uint Ulp = 0; //Ulp = glm::max(glm::float_distance(*Dst, *Src), Ulp); std::printf("inverse<%s>(%f): %lu\n", Message, static_cast(Diff), EndTime - StartTime); return 0; } int main() { int Error = 0; Error += test_matrixCompMult(); Error += test_outerProduct(); Error += test_transpose(); Error += test_determinant(); Error += test_inverse(); Error += test_inverse_simd(); # ifdef NDEBUG std::size_t const Samples = 1000; # else std::size_t const Samples = 1; # endif//NDEBUG for(std::size_t i = 0; i < 1; ++i) { Error += test_inverse_perf(Samples, i, "mat4"); Error += test_inverse_perf(Samples, i, "dmat4"); } return Error; }