/* # # File : gaussian_fit1d.cpp # ( C++ source file ) # # Description : Fit a gaussian function on a set of sample points, # using the Levenberg-Marquardt algorithm. # This file is a part of the CImg Library project. # ( http://cimg.eu ) # # Copyright : David Tschumperlé # ( http://tschumperle.users.greyc.fr/ ) # # License : CeCILL v2.0 # ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html ) # # This software is governed by the CeCILL license under French law and # abiding by the rules of distribution of free software. You can use, # modify and/ or redistribute the software under the terms of the CeCILL # license as circulated by CEA, CNRS and INRIA at the following URL # "http://www.cecill.info". # # As a counterpart to the access to the source code and rights to copy, # modify and redistribute granted by the license, users are provided only # with a limited warranty and the software's author, the holder of the # economic rights, and the successive licensors have only limited # liability. # # In this respect, the user's attention is drawn to the risks associated # with loading, using, modifying and/or developing or reproducing the # software by the user in light of its specific status of free software, # that may mean that it is complicated to manipulate, and that also # therefore means that it is reserved for developers and experienced # professionals having in-depth computer knowledge. Users are therefore # encouraged to load and test the software's suitability as regards their # requirements in conditions enabling the security of their systems and/or # data to be ensured and, more generally, to use and operate it in the # same conditions as regards security. # # The fact that you are presently reading this means that you have had # knowledge of the CeCILL license and that you accept its terms. # */ #ifndef cimg_plugin #define cimg_plugin "examples/gaussian_fit1d.cpp" #include "CImg.h" using namespace cimg_library; #undef min #undef max // Main procedure //---------------- int main(int argc,char **argv) { cimg_usage("Fit gaussian function on sample points, using Levenberg-Marquardt algorithm."); // Read command line arguments. const char *s_params = cimg_option("-p","10,3,4","Amplitude, Mean and Std of the ground truth"); const unsigned int s_nb = cimg_option("-N",40,"Number of sample points"); const float s_noise = cimg_option("-n",10.0f,"Pourcentage of noise on the samples points"); const char *s_xrange = cimg_option("-x","-10,10","X-range allowed for the sample points"); const char *f_params = cimg_option("-p0",(char*)0,"Amplitude, Mean and Std of the first estimate"); const float f_lambda0 = cimg_option("-l",100.0f,"Initial damping factor"); const float f_dlambda = cimg_option("-dl",0.9f,"Damping attenuation"); float s_xmin = -10, s_xmax = 10, s_amp = 1, s_mean = 1, s_std = 1; std::sscanf(s_xrange,"%f%*c%f",&s_xmin,&s_xmax); std::sscanf(s_params,"%f%*c%f%*c%f",&s_amp,&s_mean,&s_std); // Create noisy samples of a Gaussian function. const float s_std2 = 2*s_std*s_std, s_fact = s_amp/((float)std::sqrt(2*cimg::PI)*s_std); CImg<> samples(s_nb,2); cimg_forX(samples,i) { const float x = (float)(s_xmin + (s_xmax - s_xmin)*cimg::rand()), y = s_fact*(float)(1 + s_noise*cimg::grand()/100)*std::exp(-cimg::sqr(x - s_mean)/s_std2); samples(i,0) = x; samples(i,1) = y; } // Fit Gaussian function on the sample points and display curve iterations. CImgDisplay disp(640,480,"Levenberg-Marquardt Gaussian Fitting",0); float f_amp = 1, f_mean = 1, f_std = 1, f_lambda = f_lambda0; if (f_params) std::sscanf(f_params,"%f%*c%f%*c%f",&f_amp,&f_mean,&f_std); else { const float& vmax = samples.get_shared_row(1).max(); float cmax = 0; samples.contains(vmax,cmax); f_mean = samples((int)cmax,0); f_std = (s_xmax - s_xmin)/10; f_amp = vmax*(float)std::sqrt(2*cimg::PI)*f_std; } CImg<> beta = CImg<>::vector(f_amp,f_mean,f_std); for (unsigned int iter = 0; !disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC(); ++iter) { // Do one iteration of the Levenberg-Marquardt algorithm. CImg<> YmF(1,s_nb), J(beta.height(),s_nb); const float _f_amp = beta(0), _f_mean = beta(1), _f_std = beta(2), _f_std2 = 2*_f_std*_f_std, _f_fact = (float)std::sqrt(2*cimg::PI)*_f_std; float _f_error = 0; cimg_forY(J,i) { const float x = samples(i,0), _f_exp = std::exp(-cimg::sqr(x - _f_mean)/_f_std2), delta = samples(i,1) - _f_amp*_f_exp/_f_fact; YmF(i) = delta; J(0,i) = _f_exp/_f_fact; J(1,i) = _f_amp*_f_exp/_f_fact*(x - _f_mean)*2/_f_std2; J(2,i) = _f_amp*_f_exp/_f_fact*(cimg::sqr(x - _f_mean)/(_f_std*_f_std*_f_std)); _f_error+=cimg::sqr(delta); } CImg<> Jt = J.get_transpose(), M = Jt*J; cimg_forX(M,x) M(x,x)*=1 + f_lambda; beta+=M.get_invert()*Jt*YmF; if (beta(0)<=0) beta(0) = 0.1f; if (beta(2)<=0) beta(2) = 0.1f; f_lambda*=f_dlambda; // Display fitting curves. const unsigned char black[] = { 0,0,0 }, gray[] = { 228,228,228 }; CImg(disp.width(),disp.height(),1,3,255). draw_gaussfit(samples,beta(0),beta(1),beta(2),s_amp,s_mean,s_std). draw_rectangle(5,7,150,100,gray,0.9f).draw_rectangle(5,7,150,100,black,1,~0U). draw_text(10,10,"Iteration : %d",black,0,1,13,iter). draw_text(10,25,"Amplitude : %.4g (%.4g)",black,0,1,13,beta(0),s_amp). draw_text(10,40,"Mean : %.4g (%.4g)",black,0,1,13,beta(1),s_mean). draw_text(10,55,"Std : %.4g (%.4g)",black,0,1,13,beta(2),s_std). draw_text(10,70,"Error : %.4g",black,0,1,13,std::sqrt(_f_error)). draw_text(10,85,"Lambda : %.4g",black,0,1,13,f_lambda). display(disp.resize(false).wait(20)); } return 0; } #else // Draw sample points, ideal and fitted gaussian curves on the instance image. // (defined as a CImg plug-in function). template CImg& draw_gaussfit(const CImg& samples, const float f_amp, const float f_mean, const float f_std, const float i_amp, const float i_mean, const float i_std) { if (is_empty()) return *this; const unsigned char black[] = { 0,0,0 }, green[] = { 10,155,20 }, orange[] = { 155,20,0 }, purple[] = { 200,10,200 }; float xmin, xmax = samples.get_shared_row(0).max_min(xmin), deltax = xmax - xmin, ymin, ymax = samples.get_shared_row(1).max_min(ymin), deltay = ymax - ymin; xmin-=0.2f*deltax; xmax+=0.2f*deltax; ymin-=0.2f*deltay; ymax+=0.2f*deltay; deltax = xmax - xmin; deltay = ymax - ymin; draw_grid(64,64,0,0,false,false,black,0.3f,0x55555555,0x55555555).draw_axes(xmin,xmax,ymax,ymin,black,0.8f); CImg<> nsamples(samples); (nsamples.get_shared_row(0)-=xmin)*=width()/deltax; (nsamples.get_shared_row(1)-=ymax)*=-height()/deltay; cimg_forX(nsamples,i) draw_circle((int)nsamples(i,0),(int)nsamples(i,1),3,orange,1,~0U); CImg truth(width(),2), fit(width(),2); const float i_std2 = 2*i_std*i_std, i_fact = i_amp/((float)std::sqrt(2*cimg::PI)*i_std), f_std2 = 2*f_std*f_std, f_fact = f_amp/((float)std::sqrt(2*cimg::PI)*f_std); cimg_forX(*this,x) { const float x0 = xmin + x*deltax/width(), ys0 = i_fact*std::exp(-cimg::sqr(x0 - i_mean)/i_std2), yf0 = f_fact*std::exp(-cimg::sqr(x0 - f_mean)/f_std2); fit(x,0) = truth(x,0) = x; truth(x,1) = (int)((ymax - ys0)*height()/deltay); fit(x,1) = (int)((ymax - yf0)*height()/deltay); } return draw_line(truth,green,0.7f,0xCCCCCCCC).draw_line(fit,purple); } #endif