// SPDX-License-Identifier: MIT // // EmulationStation Desktop Edition // NinePatchComponent.cpp // // Breaks up an image into 3x3 patches to accomodate resizing without distortions. // #include "components/NinePatchComponent.h" #include "Log.h" #include "ThemeData.h" #include "resources/TextureResource.h" NinePatchComponent::NinePatchComponent(Window* window, const std::string& path, unsigned int edgeColor, unsigned int centerColor) : GuiComponent(window) , mVertices(nullptr) , mPath(path) , mCornerSize(16.0f, 16.0f) , mEdgeColor(edgeColor) , mCenterColor(centerColor) { if (!mPath.empty()) buildVertices(); } NinePatchComponent::~NinePatchComponent() { if (mVertices != nullptr) delete[] mVertices; } void NinePatchComponent::updateColors() { const unsigned int edgeColor = Renderer::convertRGBAToABGR(mEdgeColor); const unsigned int centerColor = Renderer::convertRGBAToABGR(mCenterColor); for (int i = 0; i < 6 * 9; i++) mVertices[i].col = edgeColor; for (int i = 6 * 4; i < 6; i++) mVertices[(6 * 4) + i].col = centerColor; } void NinePatchComponent::buildVertices() { if (mVertices != nullptr) delete[] mVertices; // Scale the corner size relative to the screen resolution, but keep the scale factor // within reason as extreme resolutions may cause artifacts. Any "normal" resolution // (e.g. from 720p to 4K) will be within these boundaries though. float scaleFactor; if (Renderer::getScreenWidth() > Renderer::getScreenHeight()) scaleFactor = glm::clamp(Renderer::getScreenHeightModifier(), 0.4f, 3.0f); else scaleFactor = glm::clamp(Renderer::getScreenWidthModifier(), 0.4f, 3.0f); mTexture = TextureResource::get(mPath, false, false, true, true, scaleFactor); if (mTexture->getSize() == glm::ivec2{}) { mVertices = nullptr; LOG(LogWarning) << "NinePatchComponent has no texture"; return; } mVertices = new Renderer::Vertex[6 * 9]; glm::vec2 texSize{static_cast(mTexture->getSize().x), static_cast(mTexture->getSize().y)}; const float imgSizeX[3]{mCornerSize.x, mSize.x - mCornerSize.x * 2.0f, mCornerSize.x}; const float imgSizeY[3]{mCornerSize.y, mSize.y - mCornerSize.y * 2.0f, mCornerSize.y}; const float imgPosX[3]{0, imgSizeX[0], imgSizeX[0] + imgSizeX[1]}; const float imgPosY[3]{0, imgSizeY[0], imgSizeY[0] + imgSizeY[1]}; // The "1 +" in posY and "-" in sizeY is to deal with texture coordinates having a bottom // left corner origin vs. verticies having a top left origin. // clang-format off const float texSizeX[3]{mCornerSize.x / texSize.x, (texSize.x - mCornerSize.x * 2.0f) / texSize.x, mCornerSize.x / texSize.x}; const float texSizeY[3]{-mCornerSize.y / texSize.y, -(texSize.y - mCornerSize.y * 2.0f) / texSize.y, -mCornerSize.y / texSize.y}; const float texPosX[3]{0.0f, texSizeX[0], texSizeX[0] + texSizeX[1]}; const float texPosY[3]{1.0f, 1.0f + texSizeY[0], 1.0f + texSizeY[0] + texSizeY[1]}; // clang-format on int v = 0; for (int slice = 0; slice < 9; slice++) { const int sliceX{slice % 3}; const int sliceY{slice / 3}; const glm::vec2 imgPos{imgPosX[sliceX], imgPosY[sliceY]}; const glm::vec2 imgSize{imgSizeX[sliceX], imgSizeY[sliceY]}; const glm::vec2 texPos{texPosX[sliceX], texPosY[sliceY]}; const glm::vec2 texSizeSlice{texSizeX[sliceX], texSizeY[sliceY]}; // clang-format off mVertices[v + 1] = {{imgPos.x , imgPos.y }, {texPos.x, texPos.y }, 0}; mVertices[v + 2] = {{imgPos.x , imgPos.y + imgSize.y}, {texPos.x, texPos.y + texSizeSlice.y}, 0}; mVertices[v + 3] = {{imgPos.x + imgSize.x, imgPos.y }, {texPos.x + texSizeSlice.x, texPos.y }, 0}; mVertices[v + 4] = {{imgPos.x + imgSize.x, imgPos.y + imgSize.y}, {texPos.x + texSizeSlice.x, texPos.y + texSizeSlice.y}, 0}; // clang-format on // Round vertices. for (int i = 1; i < 5; i++) mVertices[v + i].pos = glm::round(mVertices[v + i].pos); // Make duplicates of first and last vertex so this can be rendered as a triangle strip. mVertices[v + 0] = mVertices[v + 1]; mVertices[v + 5] = mVertices[v + 4]; v += 6; } updateColors(); } void NinePatchComponent::render(const glm::mat4& parentTrans) { if (!isVisible()) return; glm::mat4 trans{parentTrans * getTransform()}; if (mTexture && mVertices != nullptr) { Renderer::setMatrix(trans); if (mOpacity < 255) { mVertices[0].shaders = Renderer::SHADER_OPACITY; mVertices[0].opacity = mOpacity / 255.0f; } else if (mVertices[0].shaders & Renderer::SHADER_OPACITY) { // We have reached full opacity, so disable the opacity shader and set // the vertex opacity to 1.0. mVertices[0].shaders ^= Renderer::SHADER_OPACITY; mVertices[0].opacity = 1.0f; } mTexture->bind(); Renderer::drawTriangleStrips(&mVertices[0], 6 * 9, trans); } renderChildren(trans); } void NinePatchComponent::fitTo(glm::vec2 size, glm::vec3 position, glm::vec2 padding) { size += padding; position[0] -= padding.x / 2.0f; position[1] -= padding.y / 2.0f; setSize(size + mCornerSize * 2.0f); setPosition(position.x + glm::mix(-mCornerSize.x, mCornerSize.x, mOrigin.x), position.y + glm::mix(-mCornerSize.y, mCornerSize.y, mOrigin.y)); } void NinePatchComponent::setImagePath(const std::string& path) { mPath = path; buildVertices(); } void NinePatchComponent::setEdgeColor(unsigned int edgeColor) { mEdgeColor = edgeColor; updateColors(); } void NinePatchComponent::setCenterColor(unsigned int centerColor) { mCenterColor = centerColor; updateColors(); } void NinePatchComponent::applyTheme(const std::shared_ptr& theme, const std::string& view, const std::string& element, unsigned int properties) { GuiComponent::applyTheme(theme, view, element, properties); using namespace ThemeFlags; const ThemeData::ThemeElement* elem = theme->getElement(view, element, "ninepatch"); if (!elem) return; if (properties & PATH && elem->has("path")) setImagePath(elem->get("path")); }