#include <glm/ext/vector_integer.hpp> #include <glm/ext/scalar_int_sized.hpp> #include <glm/ext/scalar_uint_sized.hpp> #include <vector> #include <ctime> #include <cstdio> namespace isPowerOfTwo { template<typename genType> struct type { genType Value; bool Return; }; template <glm::length_t L> int test_int16() { type<glm::int16> const Data[] = { { 0x0001, true }, { 0x0002, true }, { 0x0004, true }, { 0x0080, true }, { 0x0000, true }, { 0x0003, false } }; int Error = 0; for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int16>); i < n; ++i) { glm::vec<L, bool> const Result = glm::isPowerOfTwo(glm::vec<L, glm::int16>(Data[i].Value)); Error += glm::vec<L, bool>(Data[i].Return) == Result ? 0 : 1; } return Error; } template <glm::length_t L> int test_uint16() { type<glm::uint16> const Data[] = { { 0x0001, true }, { 0x0002, true }, { 0x0004, true }, { 0x0000, true }, { 0x0000, true }, { 0x0003, false } }; int Error = 0; for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint16>); i < n; ++i) { glm::vec<L, bool> const Result = glm::isPowerOfTwo(glm::vec<L, glm::uint16>(Data[i].Value)); Error += glm::vec<L, bool>(Data[i].Return) == Result ? 0 : 1; } return Error; } template <glm::length_t L> int test_int32() { type<int> const Data[] = { { 0x00000001, true }, { 0x00000002, true }, { 0x00000004, true }, { 0x0000000f, false }, { 0x00000000, true }, { 0x00000003, false } }; int Error = 0; for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i) { glm::vec<L, bool> const Result = glm::isPowerOfTwo(glm::vec<L, glm::int32>(Data[i].Value)); Error += glm::vec<L, bool>(Data[i].Return) == Result ? 0 : 1; } return Error; } template <glm::length_t L> int test_uint32() { type<glm::uint> const Data[] = { { 0x00000001, true }, { 0x00000002, true }, { 0x00000004, true }, { 0x80000000, true }, { 0x00000000, true }, { 0x00000003, false } }; int Error = 0; for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint>); i < n; ++i) { glm::vec<L, bool> const Result = glm::isPowerOfTwo(glm::vec<L, glm::uint32>(Data[i].Value)); Error += glm::vec<L, bool>(Data[i].Return) == Result ? 0 : 1; } return Error; } int test() { int Error = 0; Error += test_int16<1>(); Error += test_int16<2>(); Error += test_int16<3>(); Error += test_int16<4>(); Error += test_uint16<1>(); Error += test_uint16<2>(); Error += test_uint16<3>(); Error += test_uint16<4>(); Error += test_int32<1>(); Error += test_int32<2>(); Error += test_int32<3>(); Error += test_int32<4>(); Error += test_uint32<1>(); Error += test_uint32<2>(); Error += test_uint32<3>(); Error += test_uint32<4>(); return Error; } }//isPowerOfTwo namespace prevPowerOfTwo { template <glm::length_t L, typename T> int run() { int Error = 0; glm::vec<L, T> const A = glm::prevPowerOfTwo(glm::vec<L, T>(7)); Error += A == glm::vec<L, T>(4) ? 0 : 1; glm::vec<L, T> const B = glm::prevPowerOfTwo(glm::vec<L, T>(15)); Error += B == glm::vec<L, T>(8) ? 0 : 1; glm::vec<L, T> const C = glm::prevPowerOfTwo(glm::vec<L, T>(31)); Error += C == glm::vec<L, T>(16) ? 0 : 1; glm::vec<L, T> const D = glm::prevPowerOfTwo(glm::vec<L, T>(32)); Error += D == glm::vec<L, T>(32) ? 0 : 1; return Error; } int test() { int Error = 0; Error += run<1, glm::int8>(); Error += run<2, glm::int8>(); Error += run<3, glm::int8>(); Error += run<4, glm::int8>(); Error += run<1, glm::int16>(); Error += run<2, glm::int16>(); Error += run<3, glm::int16>(); Error += run<4, glm::int16>(); Error += run<1, glm::int32>(); Error += run<2, glm::int32>(); Error += run<3, glm::int32>(); Error += run<4, glm::int32>(); Error += run<1, glm::int64>(); Error += run<2, glm::int64>(); Error += run<3, glm::int64>(); Error += run<4, glm::int64>(); Error += run<1, glm::uint8>(); Error += run<2, glm::uint8>(); Error += run<3, glm::uint8>(); Error += run<4, glm::uint8>(); Error += run<1, glm::uint16>(); Error += run<2, glm::uint16>(); Error += run<3, glm::uint16>(); Error += run<4, glm::uint16>(); Error += run<1, glm::uint32>(); Error += run<2, glm::uint32>(); Error += run<3, glm::uint32>(); Error += run<4, glm::uint32>(); Error += run<1, glm::uint64>(); Error += run<2, glm::uint64>(); Error += run<3, glm::uint64>(); Error += run<4, glm::uint64>(); return Error; } }//namespace prevPowerOfTwo namespace nextPowerOfTwo { template <glm::length_t L, typename T> int run() { int Error = 0; glm::vec<L, T> const A = glm::nextPowerOfTwo(glm::vec<L, T>(7)); Error += A == glm::vec<L, T>(8) ? 0 : 1; glm::vec<L, T> const B = glm::nextPowerOfTwo(glm::vec<L, T>(15)); Error += B == glm::vec<L, T>(16) ? 0 : 1; glm::vec<L, T> const C = glm::nextPowerOfTwo(glm::vec<L, T>(31)); Error += C == glm::vec<L, T>(32) ? 0 : 1; glm::vec<L, T> const D = glm::nextPowerOfTwo(glm::vec<L, T>(32)); Error += D == glm::vec<L, T>(32) ? 0 : 1; return Error; } int test() { int Error = 0; Error += run<1, glm::int8>(); Error += run<2, glm::int8>(); Error += run<3, glm::int8>(); Error += run<4, glm::int8>(); Error += run<1, glm::int16>(); Error += run<2, glm::int16>(); Error += run<3, glm::int16>(); Error += run<4, glm::int16>(); Error += run<1, glm::int32>(); Error += run<2, glm::int32>(); Error += run<3, glm::int32>(); Error += run<4, glm::int32>(); Error += run<1, glm::int64>(); Error += run<2, glm::int64>(); Error += run<3, glm::int64>(); Error += run<4, glm::int64>(); Error += run<1, glm::uint8>(); Error += run<2, glm::uint8>(); Error += run<3, glm::uint8>(); Error += run<4, glm::uint8>(); Error += run<1, glm::uint16>(); Error += run<2, glm::uint16>(); Error += run<3, glm::uint16>(); Error += run<4, glm::uint16>(); Error += run<1, glm::uint32>(); Error += run<2, glm::uint32>(); Error += run<3, glm::uint32>(); Error += run<4, glm::uint32>(); Error += run<1, glm::uint64>(); Error += run<2, glm::uint64>(); Error += run<3, glm::uint64>(); Error += run<4, glm::uint64>(); return Error; } }//namespace nextPowerOfTwo namespace prevMultiple { template<typename genIUType> struct type { genIUType Source; genIUType Multiple; genIUType Return; }; template <glm::length_t L, typename T> int run() { type<T> const Data[] = { { 8, 3, 6 }, { 7, 7, 7 } }; int Error = 0; for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i) { glm::vec<L, T> const Result0 = glm::prevMultiple(glm::vec<L, T>(Data[i].Source), Data[i].Multiple); Error += glm::vec<L, T>(Data[i].Return) == Result0 ? 0 : 1; glm::vec<L, T> const Result1 = glm::prevMultiple(glm::vec<L, T>(Data[i].Source), glm::vec<L, T>(Data[i].Multiple)); Error += glm::vec<L, T>(Data[i].Return) == Result1 ? 0 : 1; } return Error; } int test() { int Error = 0; Error += run<1, glm::int8>(); Error += run<2, glm::int8>(); Error += run<3, glm::int8>(); Error += run<4, glm::int8>(); Error += run<1, glm::int16>(); Error += run<2, glm::int16>(); Error += run<3, glm::int16>(); Error += run<4, glm::int16>(); Error += run<1, glm::int32>(); Error += run<2, glm::int32>(); Error += run<3, glm::int32>(); Error += run<4, glm::int32>(); Error += run<1, glm::int64>(); Error += run<2, glm::int64>(); Error += run<3, glm::int64>(); Error += run<4, glm::int64>(); Error += run<1, glm::uint8>(); Error += run<2, glm::uint8>(); Error += run<3, glm::uint8>(); Error += run<4, glm::uint8>(); Error += run<1, glm::uint16>(); Error += run<2, glm::uint16>(); Error += run<3, glm::uint16>(); Error += run<4, glm::uint16>(); Error += run<1, glm::uint32>(); Error += run<2, glm::uint32>(); Error += run<3, glm::uint32>(); Error += run<4, glm::uint32>(); Error += run<1, glm::uint64>(); Error += run<2, glm::uint64>(); Error += run<3, glm::uint64>(); Error += run<4, glm::uint64>(); return Error; } }//namespace prevMultiple namespace nextMultiple { template<typename genIUType> struct type { genIUType Source; genIUType Multiple; genIUType Return; }; template <glm::length_t L, typename T> int run() { type<T> const Data[] = { { 3, 4, 4 }, { 6, 3, 6 }, { 5, 3, 6 }, { 7, 7, 7 }, { 0, 1, 0 }, { 8, 3, 9 } }; int Error = 0; for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i) { glm::vec<L, T> const Result0 = glm::nextMultiple(glm::vec<L, T>(Data[i].Source), glm::vec<L, T>(Data[i].Multiple)); Error += glm::vec<L, T>(Data[i].Return) == Result0 ? 0 : 1; glm::vec<L, T> const Result1 = glm::nextMultiple(glm::vec<L, T>(Data[i].Source), Data[i].Multiple); Error += glm::vec<L, T>(Data[i].Return) == Result1 ? 0 : 1; } return Error; } int test() { int Error = 0; Error += run<1, glm::int8>(); Error += run<2, glm::int8>(); Error += run<3, glm::int8>(); Error += run<4, glm::int8>(); Error += run<1, glm::int16>(); Error += run<2, glm::int16>(); Error += run<3, glm::int16>(); Error += run<4, glm::int16>(); Error += run<1, glm::int32>(); Error += run<2, glm::int32>(); Error += run<3, glm::int32>(); Error += run<4, glm::int32>(); Error += run<1, glm::int64>(); Error += run<2, glm::int64>(); Error += run<3, glm::int64>(); Error += run<4, glm::int64>(); Error += run<1, glm::uint8>(); Error += run<2, glm::uint8>(); Error += run<3, glm::uint8>(); Error += run<4, glm::uint8>(); Error += run<1, glm::uint16>(); Error += run<2, glm::uint16>(); Error += run<3, glm::uint16>(); Error += run<4, glm::uint16>(); Error += run<1, glm::uint32>(); Error += run<2, glm::uint32>(); Error += run<3, glm::uint32>(); Error += run<4, glm::uint32>(); Error += run<1, glm::uint64>(); Error += run<2, glm::uint64>(); Error += run<3, glm::uint64>(); Error += run<4, glm::uint64>(); return Error; } }//namespace nextMultiple namespace findNSB { template<typename T> struct type { T Source; int SignificantBitCount; int Return; }; template <glm::length_t L, typename T> int run() { type<T> const Data[] = { { 0x00, 1,-1 }, { 0x01, 2,-1 }, { 0x02, 2,-1 }, { 0x06, 3,-1 }, { 0x01, 1, 0 }, { 0x03, 1, 0 }, { 0x03, 2, 1 }, { 0x07, 2, 1 }, { 0x05, 2, 2 }, { 0x0D, 2, 2 } }; int Error = 0; for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i) { glm::vec<L, int> const Result0 = glm::findNSB<L, T, glm::defaultp>(glm::vec<L, T>(Data[i].Source), glm::vec<L, int>(Data[i].SignificantBitCount)); Error += glm::vec<L, int>(Data[i].Return) == Result0 ? 0 : 1; assert(!Error); } return Error; } int test() { int Error = 0; Error += run<1, glm::uint8>(); Error += run<2, glm::uint8>(); Error += run<3, glm::uint8>(); Error += run<4, glm::uint8>(); Error += run<1, glm::uint16>(); Error += run<2, glm::uint16>(); Error += run<3, glm::uint16>(); Error += run<4, glm::uint16>(); Error += run<1, glm::uint32>(); Error += run<2, glm::uint32>(); Error += run<3, glm::uint32>(); Error += run<4, glm::uint32>(); Error += run<1, glm::uint64>(); Error += run<2, glm::uint64>(); Error += run<3, glm::uint64>(); Error += run<4, glm::uint64>(); Error += run<1, glm::int8>(); Error += run<2, glm::int8>(); Error += run<3, glm::int8>(); Error += run<4, glm::int8>(); Error += run<1, glm::int16>(); Error += run<2, glm::int16>(); Error += run<3, glm::int16>(); Error += run<4, glm::int16>(); Error += run<1, glm::int32>(); Error += run<2, glm::int32>(); Error += run<3, glm::int32>(); Error += run<4, glm::int32>(); Error += run<1, glm::int64>(); Error += run<2, glm::int64>(); Error += run<3, glm::int64>(); Error += run<4, glm::int64>(); return Error; } }//namespace findNSB int main() { int Error = 0; Error += isPowerOfTwo::test(); Error += prevPowerOfTwo::test(); Error += nextPowerOfTwo::test(); Error += prevMultiple::test(); Error += nextMultiple::test(); Error += findNSB::test(); return Error; }