// SPDX-License-Identifier: MIT // // EmulationStation Desktop Edition // NinePatchComponent.cpp // // Breaks up an image into 3x3 patches to accomodate resizing without distortions. // #include "components/NinePatchComponent.h" #include "Log.h" #include "ThemeData.h" #include "resources/TextureResource.h" NinePatchComponent::NinePatchComponent(Window* window, const std::string& path, unsigned int edgeColor, unsigned int centerColor) : GuiComponent(window) , mCornerSize(16.0f, 16.0f) , mEdgeColor(edgeColor) , mCenterColor(centerColor) , mPath(path) , mVertices(nullptr) { if (!mPath.empty()) buildVertices(); } NinePatchComponent::~NinePatchComponent() { if (mVertices != nullptr) delete[] mVertices; } void NinePatchComponent::updateColors() { const unsigned int edgeColor = Renderer::convertRGBAToABGR(mEdgeColor); const unsigned int centerColor = Renderer::convertRGBAToABGR(mCenterColor); for (int i = 0; i < 6 * 9; i++) mVertices[i].col = edgeColor; for (int i = 6 * 4; i < 6; i++) mVertices[(6 * 4) + i].col = centerColor; } void NinePatchComponent::buildVertices() { if (mVertices != nullptr) delete[] mVertices; // Scale the corner size relative to the screen resolution, but keep the scale factor // within reason as extreme resolutions may cause artifacts. Any "normal" resolution // (e.g. from 720p to 4K) will be within these boundaries though. float scaleFactor; if (Renderer::getScreenWidth() > Renderer::getScreenHeight()) scaleFactor = Math::clamp(Renderer::getScreenHeightModifier(), 0.4f, 3.0f); else scaleFactor = Math::clamp(Renderer::getScreenWidthModifier(), 0.4f, 3.0f); mTexture = TextureResource::get(mPath, false, false, true, scaleFactor); if (mTexture->getSize() == Vector2i::Zero()) { mVertices = nullptr; LOG(LogWarning) << "NinePatchComponent has no texture"; return; } Vector2f texSize; mVertices = new Renderer::Vertex[6 * 9]; texSize = Vector2f(static_cast(mTexture->getSize().x()), static_cast(mTexture->getSize().y())); // clang-format off const float imgSizeX[3] = { mCornerSize.x(), mSize.x() - mCornerSize.x() * 2.0f, mCornerSize.x() }; const float imgSizeY[3] = { mCornerSize.y(), mSize.y() - mCornerSize.y() * 2.0f, mCornerSize.y() }; const float imgPosX[3] = { 0, imgSizeX[0], imgSizeX[0] + imgSizeX[1] }; const float imgPosY[3] = { 0, imgSizeY[0], imgSizeY[0] + imgSizeY[1] }; // The "1 +" in posY and "-" in sizeY is to deal with texture coordinates having a bottom // left corner origin vs. verticies having a top left origin. const float texSizeX[3] = { mCornerSize.x() / texSize.x(), (texSize.x() - mCornerSize.x() * 2.0f) / texSize.x(), mCornerSize.x() / texSize.x() }; const float texSizeY[3] = { -mCornerSize.y() / texSize.y(), -(texSize.y() - mCornerSize.y() * 2.0f) / texSize.y(), -mCornerSize.y() / texSize.y() }; const float texPosX[3] = { 0.0f, texSizeX[0], texSizeX[0] + texSizeX[1] }; const float texPosY[3] = { 1.0f, 1.0f + texSizeY[0], 1.0f + texSizeY[0] + texSizeY[1] }; // clang-format on int v = 0; for (int slice = 0; slice < 9; slice++) { const int sliceX = slice % 3; const int sliceY = slice / 3; const Vector2f imgPos = Vector2f(imgPosX[sliceX], imgPosY[sliceY]); const Vector2f imgSize = Vector2f(imgSizeX[sliceX], imgSizeY[sliceY]); const Vector2f texPos = Vector2f(texPosX[sliceX], texPosY[sliceY]); const Vector2f texSize = Vector2f(texSizeX[sliceX], texSizeY[sliceY]); // clang-format off mVertices[v + 1] = { { imgPos.x() , imgPos.y() }, { texPos.x(), texPos.y() }, 0 }; mVertices[v + 2] = { { imgPos.x() , imgPos.y() + imgSize.y() }, { texPos.x(), texPos.y() + texSize.y() }, 0 }; mVertices[v + 3] = { { imgPos.x() + imgSize.x(), imgPos.y() }, { texPos.x() + texSize.x(), texPos.y() }, 0 }; mVertices[v + 4] = { { imgPos.x() + imgSize.x(), imgPos.y() + imgSize.y() }, { texPos.x() + texSize.x(), texPos.y() + texSize.y() }, 0 }; // clang-format on // Round vertices. for (int i = 1; i < 5; i++) mVertices[v + i].pos.round(); // Make duplicates of first and last vertex so this can be rendered as a triangle strip. mVertices[v + 0] = mVertices[v + 1]; mVertices[v + 5] = mVertices[v + 4]; v += 6; } updateColors(); } void NinePatchComponent::render(const glm::mat4& parentTrans) { if (!isVisible()) return; glm::mat4 trans = parentTrans * getTransform(); if (mTexture && mVertices != nullptr) { Renderer::setMatrix(trans); if (mOpacity < 255) { mVertices[0].shaders = Renderer::SHADER_OPACITY; mVertices[0].opacity = mOpacity / 255.0f; } else if (mVertices[0].shaders & Renderer::SHADER_OPACITY) { // We have reached full opacity, so disable the opacity shader and set // the vertex opacity to 1.0. mVertices[0].shaders ^= Renderer::SHADER_OPACITY; mVertices[0].opacity = 1.0f; } mTexture->bind(); Renderer::drawTriangleStrips(&mVertices[0], 6 * 9, trans); } renderChildren(trans); } void NinePatchComponent::onSizeChanged() { buildVertices(); } void NinePatchComponent::fitTo(Vector2f size, glm::vec3 position, Vector2f padding) { size += padding; position[0] -= padding.x() / 2.0f; position[1] -= padding.y() / 2.0f; setSize(size + mCornerSize * 2.0f); setPosition(position.x + Math::lerp(-mCornerSize.x(), mCornerSize.x(), mOrigin.x()), position.y + Math::lerp(-mCornerSize.y(), mCornerSize.y(), mOrigin.y())); } void NinePatchComponent::setImagePath(const std::string& path) { mPath = path; buildVertices(); } void NinePatchComponent::setEdgeColor(unsigned int edgeColor) { mEdgeColor = edgeColor; updateColors(); } void NinePatchComponent::setCenterColor(unsigned int centerColor) { mCenterColor = centerColor; updateColors(); } void NinePatchComponent::applyTheme(const std::shared_ptr& theme, const std::string& view, const std::string& element, unsigned int properties) { GuiComponent::applyTheme(theme, view, element, properties); using namespace ThemeFlags; const ThemeData::ThemeElement* elem = theme->getElement(view, element, "ninepatch"); if (!elem) return; if (properties & PATH && elem->has("path")) setImagePath(elem->get("path")); }